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ABSTRACT 

A vector max1mum problem means a mathematical programming problem which has 
several objective functions / 1(x), f 2(x), · · · .fv(x) (-.maximize) where /i(x)(i = 1, 2 · · ·, P) are 
numerical functions defined on the n-dimensional Euclidean space. The problems of this 
type were studied by DA CuNHA and PoLAK (1966), HuRwrcz (1964), KARLIN (1959), and 
KuHN and TucKER (1951). In this paper, we first define three kinds of maximum solutions 
of the above problem and then investigate necessary conditions and sufficient conditions 
for these maximalities. 

1. A Vector Maximum Problem 

Let RP, where p is a positive integer, be the p-dimensional Euclidean space 
with the usual norm topology. The following convention for inequalities will be 
used throughout this paper. If y=(yh Yz, · · ·, ur), Y=(Yh 'liz, · · ·, Yv) are two vectors 
in RP, we write 

y~y to mean Yi~Yi for i=l,2, · · ·, p, 
y?::.y to mean y~y and y=FY, 

Y>Y to mean Yi>Yi for i=l, 2, · · ·, p. 

If y~O, y is said to be nonnegative, if y?::.O then y is said to be semipositive and 
if y>O then y is said to be positive. A vector maximum problem which we shall 
deal with is as follows. 

Basic Problem: Let X be a subset of Rn and fi(x) (i=l,2, ···,P) be numeri
cal functions defined onRn, and letf(x)=(fi(x),fz(x), ···,fv(x)). Find an xEXsuch 
that f(x)?::.f(x) for no xEX. 

In Basic Problem fi(x) (i= 1, 2, · · ·, p) are said to be objective functions and X 

47 



MASAKAZU KOJIMA 

is said to be a constraint set. Now we define three kinds of maximum solutions of 
Basic Problem; x is a weak Pareto maximum solution (w-solution) if xEX and 
f(x) > f(x) for no xEX, x is a Pareto maximum solution (P-solution) if xEX and 
f(x)?:.f(x) for no xEX, and x is a strong maximum solution (s-solution) if xEX and 
f(x)?;_f(x) for all xEX. Between these maximum solutions, we have the relations 

x: s-solution 
{} 

x: P-solution 
{} 

x: w-solution. 

2. Minimum Component Maximum Problems 

In this section, a necessary and sufficient condition for x to be a w-solution of 
Basic Problem is shown by using some minimum component maximum problem. 
For this purpose, we first observe that we may assume without loss of generality 
f(x)>O for all xEX in Basic Problem. Let Fi(x)=exp fi(x) (i=1, 2, · · ·,p), F(x) 
= (F1(x), F2(x), · · ·, Fv(x)), and consider the following vector maximum problem: 

Problem 2-1: Find an xEX such that F(x)?:.F(x) for no xEX. 
Then Basic Problem is equivalent to Problem 2-1; x is a w-solution (P-solution, 

s-solution) of Basic Problem if and only if x is a w-solution (P-solution, s-solution) 
of Problem 2-1. And at the same time we have F(x) > 0 for all xE X. Therefore 
we may assume without loss of generality that f(x)>O for all xEX in Basic Pro
blem, and do so throughout this section. 

Now we introduce the following minimum component maximum problem: 

Problem 2-2: Find an xEX that maximize min {ui/i(x)} constrained by xEX 
i€1 

where u=(u11 u2, · · ·, uv) is a given vector in the (p-1)-dimensional standard sim
P 

plex Sv={uERP; u?;_O, I; ui=1} and l={i; ui>O}. 
i=l 

Between Basic Problem and Problem 2-2 the following relation is shown: 

Theorem 2-1: x is a w-solution of Basic Problem if and only if xis a solution 
of Problem 2-2 for some uESv. 

Proof. If xEX is not a w-solution of Basic Problem, then there exists an xEX 
such that f(x)>f(x). Hence x is not a solution of Problem 2-2 for any uESv. 
Thus we have proved the "if" part of the theorem. Conversely, let x is a w-solu
tion of a Basic Problem. Define uERP and tER such that uifi(x)=t (i=1, 2, ·. ·, p) 

p 

and I; Ui=l. Then uESp, u>O and X is a solution of Problem 2-2 for U=U. In 
i=l 

fact, assume that x is not a solution of Problem 2-2 for u=u, then then there ex
ists an xEX such that 

uifi(x)>min {ujfj(x)}=t=uifi(x) for i=1, 2, .. ·, p, 
j 

which is a contradiction. Thus we have proved the "only if" part of the theorem. 
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Vector Maximum Problems 

By Theorem 2-1, the set X of all w-solutions of Basic Problem is obtained by 
solving Problem 2-2 for all uESp. It should be noted that Problem 2-2 is equiva
lent to the following usual mathematical programming problem: 

Problem 2-3: Find tER, xEX that maximize t constrained by xEX and uifi(x) 
-;;;_t for iEl. 

Therefore, the set X is obtained by solving Problem 2-3 for all uESp. 

3. Fundamental Theory of Problems with Differentiable Objective Functions 

In this section we assume the differentiabilities of the objective functions /i(x) 
(i=1, 2, · · ·, p) of Basic Problem and show a necessary condition for x to be a w
solution of it. This condition will be used in deriving the Kuhn-Tucker condition 
in maximum problems with inequality constraints and the classical Lagrange mul
tiplier methods in maximum problems with equality constraints. In order to state 
it, we define the sequential tangent cone to a set XcRn at xERn below. 

Definition 3-1: The sequential tangent cone to a set XcRn at xERn, denoted 
by STC[x; X], is the set of all vectors tERn which have the property that there 
exist a sequence of vectors {xk} in X and a sequence of positive numbers {Ak} such 
that 

and 

)..k(xk ~ x)--~t as k----+oo. 

Figure 3-1 depicts the sequential tangent cone to X at x in a case that XcR 2 and 
xER2

• 

Figure 3-1 

STC[x; X] is a kind of approximation set of X at x. In the subsequent sections, 
we shall set. 

(i=1, 2, .. ·, q)} 

or 

(i = 1, 2, ... ' q)} 
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where gi(x) (i=l, 2, · · ·, q) are differentiable numerical functions defined on Rn, and 
construct another kind of approximation set of X at x whose definition contains 
the gradients of gi(x) (i=l, 2, · · ·, q) at x. Note that the definition of the sequen
tial tangent cone to X at x contains none of them even if X is given as the above 
form. What is called a constraint qualification implies that these two approxima
tion sets of X at x coincide with each other. 

We are now ready to show the following fundamental theorem: 

Theorem 3-1: Let/i(x) (i=1,2, ···,P) in Basic Problem be differentiable. If 
x is a w-solution of Basic Problem then there exists no fE STC[x; X] such that 

<Vfi(x), t> >0 (i=l, 2, ... 'p) 

where (Vfi(x), t) implies the inner product of Vfi(x) and t. 

Proof. Let x be a w-solution of Basic Problem, then xEX and f(x) > f(.i) for 
no xEX. Suppose that there exists a fESTC[x; X] such that 

(i=l,2, ···,P). 

Then there exists a f1 > 0 such that 

(i=l,2, ···,p). 

It follows from fESTC[x; X] that there exist a sequence of vectors {xk} in X and 
a sequence of positive numbers {Ak} such that 

xk~x as k------+oo 

and 

For these xk and J.k, we have that 

fi(xk) = fi(x + (xk- x)) 

=fi(x)+<Vfi(x), xk-x)+O(IIxk-xll) (i=l, 2, · · ·, p) 

where 0($)/c~O as c~O+. Hence 

fi(xk)=fi(x)+ ;k { (V/i(x), J.k(xk-x))+J.kllxk-xl/ O~~~k~~~l) } 

(i=l,2, ···,p), 

from which follows that there exists a positive integer k such that 

(i=l, 2, .. ·, p). 

The above inequalities contradict the fact that x is a w-solution of Basic Problem. 
Q.E.D. 

Corollary 3-1: If x is a w-solution of Basic Problem and in addition STC[x; X] 
is convex then there exists a ft ~ 0 such that 
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Proof. Let x be a w-solution of Basic Problem and define the subsets Y and 
A of RP such that 

(i=l, 2, · · ·, p) for tESTC[x; X]} 

and 

respectively. Since, by Theorem 3-1, YnA=9S, and YandA are both convex cones, 
by the separation theorem for convex sets, there exists a u=t=O such that 

(u, y)~O for all yE Y 

and 

(u,a)~O for all aEA. 

Thus u;?:O and 

(t
1 

uiflfi(x), t )~o for all tESTC[x; X]. Q.E.D. 

Corollary 3-2: If P=l in Theorem 3-1 then (fl/1(x), t)~O for all t contained 
in the closure of the convex hull of the set STC[x; X]. 

Corollary 3-2 is trivial from Theorem 3-1 and the continuity and the linearity 
of the inner product, and the proof is omitted here. Corollary 3-2 is a fundamen
tal result in nonlinear programming problems, and it has been found in some recent 
papers (Canon, Cullum and Polak 1966; Guignard 1969). 

4. Problems with Differentiable Objective Functions and Inequality Constraints 

In this section, we deal with the following problem: 

Problem 4-1: Let fi(x) (i = 1, 2, · · ·, P) and gi(x) (i = 1, 2, · · ·, q) be differentiable 
functions defined on Rn, and let 

and 

f(x) = C/1(x), f2(x), · · ·• /p(x)) 

g(x)=(gl(x), g2(x), · · ·, gq(x)) 

X={xERn; g(x)~O}. 

Find an xEX such that f(x)?:J(x) for no xEX. 
First, we show a necessary condition for x to be a w-solution of Problem 4-1 

under no assumption. 

Theorem 4-1: If X is a w-solution of Problem 4-1 then there exist a uERP 
and a VE Rq satisfying the conditions 

( i ) (u, v):?:O, 
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p q 

I: uiPfi(x)- I: vJ7gi(x) =0, 
i=l i=l 

q 

I: vigi(x)=O. 
i=l 

Proof. Let x be a w-solution of Problem 4-1, and define 

l={i; gi(x)=O}, 

J=U; gj(x)<O}. 

Let g 1 (x) be the vector function whose components are gi(x) (iEI) and gJ(x) be the 
vector function whose components are gj(X) (jE]). Then, from the continuity of 
gJ(x), there exists an c:>O such that 

gJ(x)<O for all xEB,(x)={xERn; llx-xll<c:}. 

Since x is a w-solution of Problem 4-1, we have that the point (/(x), -g1 (x)) satis
fies the relation (f(x), -g1 (x))>(f(x), -g1(x)) for no xEB,(x). It is obvious that 
STC[x; B,(x)] =Rn, hence, by Corollary 3-1, there exists a (u, v1)~0 such that 

(~ uiflfi(x)-~ viflgi(x), t )~o for all tERn. 

Hence, by defining Vi=v{ (iEI) and Vj=O (jE]), we obtain (a, v) satisfying (i), (ii) 
and (iii). Q. E. D. 

It should be noted that there is no guarantee that u is semipositive in Theorem 
4-1. In cases of u=O, it is intuitively obvious that Theorem 4-1 dose not say 
much more about the weak maximality of f(x), because the function f(x) disappears 
from (ii). It is possible to exclude such cases by introducing assumptions on the 
constraint set X. These assumptions are called constraint qualifications. In this 
paper, we shall introduce the Kuhn-Tucker constraint qualification (Assumption 4-1), 
the Arrow-Hurwicz-Uzawa constraint qualification (Assumption 4-2) and the gene
ralized Kuhn-Tucker constraint qualification (Assumption 4-3). Here we need a 
new symbol. For every xEX we define 

(iEI)} 

where I= {i; gi(x) =0}. As stated in the previous section, K[x; X] is a kind of ap
proximation set of X at x by the use of the gradients of gi(x) (iEI) at xEX. 

Assumption 4-1: For every tEK[x; X] there exist a positive number it and 
an n-dimensional vector function e(r) defined on the closed interval [0, 1] satisfying 
the following conditions: 

( i ) 

( ii) 

(iii) 

e(O)=x, 

e(r)EX for all rE[O, 1], 

e(r) is differentiable at r=O and de(r) \ =itt. 
dr r=O 
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Assumption 4-2: The system of inequalities 

(flgi(x), t)~O (iEf) 

(flgi,(x), t) <0 W Ef) 

has a solution tERn where 

1 ={i; gi(x)=O and gi(x) is concave at x} 

l =W; gi,(x)=O and gi,(x) is not concave at x}. 

Assumption 4-3 : 

STC[x; X]=K[x; X] 

If the set X satisfies one of these assumptions at xEX, then we can guarantee 
that u is semipositive in Theorem 4-1. But we shall postpone the proof of this 
fact until after we give the relations between these assumptions. In fact, if the 
set X satisfies Assumption 4-1 or Assumption 4-2 at xEX then X satisfies Assump
tion 4-3 at x. In order to show these relations, the following lemmata are neces
sary: 

Lemma 4-1: If a differentiable numerical function g(x) is concave at x on Rn, 
then 

g(x) -g(x) ~ (flg(x), x- x) 

Proof. See Mangasarian (1969). 

Lemma 4-2: For any given xERn and X eRn, the sequential tangent cone 
STC[x; X] to X at x is a closed cone in Rn. 

Proof. See Canon, Cullum and Polak (1970). 

Lemma 4-3: STC[x;X]cK[x;X] for all xEX. 

Proof. See Canon, Cullum and Polak (1970). 
By using the above lemmata we can prove the following theorem: 

Theorem 4-2 : 
( i) If the set X satisfies Assumption 4-1 at xEX then it satisfies Assumption 4-3 

at x. 
( ii) If the set X satisfies Assumption 4-2 at xEX then it satisfies Assumption 4-3 

at x. 

Proof. By Lemma 4-3, we need only to prove that if the set X satisfies As
sumption 4-1 or Assumption 4-2 at xEX then K[x; X]cSTC[x; X]. 

( i) Let tEK[x; X], and let A and e(-r) be a positive number and an n-dimen
sional function satisfying the conditions (i), (ii) and (iii) of Assumption 4-1. Now 
for a sequence of positive numbers {-rk} such that 1~-rk>O (k=1, 2, · · ·) and -rk----.0 

as k----.oo, define 

(k=1, 2, ... ) 
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and 

(k=l,2, ···), 

then x'•EX (k=l, 2, · · · ), Ak>O (k=l, 2, · · · ), xk-x as k-co and 

lim ik(xk- x) = ___!__ lim e( r:k)- e(O) = + it= t. 
k->oo A k->oo 1:k 11. 

Hence we have tE STC[x; X]. 
(ii) Let i be a vector satisfying the system of inequalities of Assumption 4-2. 

By Lemma 4-2, we need only to show that for any given tEK[x; X] 

t+dESTC[x; X] for all s>O. 

Define 

(k= 1, 2, ... ) 

and 

then for every j$1 n l there exists a positive integer ki such that 

and for every iE i we have 

(k=l, 2, ... ). 

On the other hand, for F Ef we have 

where o(o)/i5-0 as a-0+. It follows from <vgi,(x), t+d> <0 that there exists a 
positive integer k such that for all i1 E l 

(k>k). 

Hence, by letting k=max{k1(j$inl), k}, we obtain that 

xkEX (k>k), 

ik>O (k>k), 

xk~x as k~co, 

ik(xk-x)~t+d as k~co. 

The above four relations imply t+dESTC[x; X]. 
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Now we prove the following necessary condition for x to be a w-solution of 
Problem 4-1 : 

Theorem 4-3 : Let the set X in Problem 4-1 satisfy Assumption 4-1, Assump
tion 4-2 or Assumption 4-3 at xE X. If x is a w-solution of Problem 4-1, then 
there exist uE RP and VE Rq satisfying the conditions (i), (ii), (iii) of Theorem 4-1 
and u~O. 

Proof In view of Theorem 4-2, we need only to establish the theorem under 
Assumption 4-3. Since STC[x; X] =l([x; X] and K[x; X] is a convex cone, by 
Corollary 3-1, there exists a u~O such that 

Hence, by Minkowski-Farkas lemma, there exist vi~O (iEI) such that 

p 

I: uJlfi(x) =I: vil7gi(x). 
i=l iEI 

Define vi=vi (iEI) and Vj=O (j$1) then (u, v) satisfies the conditions (i), (ii), (iii) of 
Theorem 4-1 and a~ 0. Q.E.D. 

By Theorem 4-3, if X satisfies one of the three assumptions above and x is a 
w-solution of Problem 4-1 then there exists (i2, v) satisfying the conditions of Theorem 
4-1 and u~O. For any given i, however, there is no guarantee that ui is positive. 
We derive now the sufficient condition for ui to be positive. This is an extention 
of Theorem 4-3. 

Corollary 4-1: Let D be a nonempty subset of the set {1, 2, · · ·, P} and let 

Let X satisfy Assumption 4-1, Assumption 4-2 or Assumption 4-3 at x. If x is a 
P-solution of Problem 4-1 then there exists (u, v) satisfying the conditions (i), (ii), 
(iii) of Theorem 4-1 and un~o where ftD is the vector whose components are ui 
(iED). 

The proof of Corollary 4-1 follows from Theorem 4-3 by observing that the 
relation f(x) ~f(x) for no xE X implies the relation fD(x) > fD(x) for no xE X where 
JD(x) is the vector function whose components are fi(x) (iED). Note the difference 
between Theorem 4-3 and Corollary 4-1. In Theorem 4-3 we assume that x is a 
w-solution of Problem 4-1, but in Corollary 4-1 we assume that x is a P-solution 
of Problem 4-1. In fact, there is no guarantee that uD~Q under the assumption of 
Theorem 4-3, because the relation f(x) > f(x) for no xEX dose not necessarily imply 
the relation fD(x)>fD(x) for no xEX. 

5. Problems with Differentiable Objective Functions and Equality Constraints 

In this section, we deal with the following problem: 
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Problem 5-l: Let /i(x) (i=1, 2, · · ·, p) and gi(x) (i=1, 2, · · ·, q) be differentiable 
numerical functions on Rn. Let 

and 

f(x) = (/I(x), /2(x), · · ·, /p(x)), 

g(x) = (g1(x), g2(x), · · ·, gq(x)) 

Find an xEX such that f(x)?::./(x) for no xEX. 
We derive the necessary condition, what is called "Lagrange multiplier method", 

for x to be a w-solution of Problem 5-1. Let P= 1 and x be a w-solution of Problem 
5-l. In the Lagrange multiplier method, we require the assumption that the gra
dient vectors 

( 1) 

are linearly independent. Under this assumption, there exists a VE Rq such that 

q 

f1/1(x)- ~ vif7gi(x)=O. 
i=l 

The linear independece of the gradient vectors (1) is a necessary assumption under 
which we may apply the implicit function theorem. Here we show the same neces
sary condition under another assumption. In order to prove it we do not use the 
implicit function theorem but the result of section 3. The assumption which we 
make here is the following one : 

Assumption 5-1: 

STC[x; X] =l-l[x; X] 

where 

(i=l,2, ···,q)}. 

Assumption 5-l is more general the assumption of the linear independece of the 
gradient vectors (1); that is, the following lemma is obtained: 

Lemma 5-1 : If the gradient vectors (1) are linearly independent then the set 
X satisfies Assumption 5-1 at x. 

Lemma 5-1 is verified by using the implicit function theorem, but proof is 
omitted here. 

Now we state the necessary condition for x to be a w-solution of Problem 5-1. 

Theorem 5-1: Let the set X satisfy Assumption 5-1 at x or the gradient vec
tors (1) be linearly independent. If x is a w-solution of Problem 5-1 then there ex
ists a (u, v) satisfying the conditions 

( i ) zt?::.O, 
p q 

( ii) ~ uif7fi(x)- ~ vif7gi(x) =0. 
'i=l i=l 

Proof. In view of Lemma 5-1, we need only to establish the theorem under 
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Assumption 5-l. Let x be a w-solution of Problem 5-1 and the set X satisfy As
sumption 5-1 at x. Since STC[x; X]=ll[x; X] is a convex cone, by Corollary 3-1, 
there exists a u~O such that 

10 

Hence, by the construction of the set ll[x; X], there exists a vERq such that 

which implies (ii). Q.E.D. 

6. Saddle-Point Problems 

In this section, we deal with a vector maximum problem with inequality con
straints; that is: 

Problem 6-1: Let M be a nonempty subset of Rn, fi(x) (i=1, 2, · · ·, p) and 
gi(x) (i= 1, 2, · · ·, q) be numerical functions defined on Rn. Let 

and 

f(x) = C/1(x), /z(x), · · ·, /y(x)), 

g(x) = (g1(x), gz(x), · · ·, gq(x)) 

X={xElV!; g(x)~O}. 

Find an xEX such that f(x)~/(x) for no xEX. 
Now we construct the saddle-point problem corresponding to the above vector 

maximum problem. 

Problem 6-2: Find uE RP, VE Rq and xEM satisfying the conditions 

c i) ca, v)~o, 
( ii) L(u, v, x)~L(u, v, x)~L(u, v, x) and all xEM and all v~O, 

where L(u, v, x)=<u,f(x))-<v,g(x)). 
Between Problem 6-1 and Problem 6-2 we have the following two relations. 

Theorem 6-1: If (u, v, x) is a solution of Problem 6-2 and u~O then x is a 
w-solution of Problem 6-1. 

Proof. Let (u, v, x) be a solution of Problem 6-2 and u~O. From the second 
inequality of (ii), we have 

<v, g(x)>~<v, g(x)> for all v~O. 

Hence we see 

<v, g(x)>=O 
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and 

g(x);::;O, 

which implies xEX. From the first inequality of (ii) and (1), we have • 

(u,f(x)>-<v, a(x));::;(u,f(x)> for all XE 1\1. 

Since v is nonnegative, we obtain 

<u, f(x));:::; (u, f(x)) for all xEX. 

But u is semipositive and hence x is a w-solution of Problem 6-1. Q.E.D. 
Similarly we can prove the following corollary. 

Corollary 6-1: If (u, v, x) is a solution of Problem 6-2 and u>O then x is a 
P-solution of Problem 6-1. 

Theorem 6-1 (or Corollary 6-1) shows a sufficient condition for x to be a w
solution (or a P-solution) of Problem 6-1 in the form of the saddle-point problem. 
In order to state necessary condition for x to be a w-solution (or a P-solution) of 
Problem 6-1 in the similar form, we must make some assumption of convexity in 
Problem 6-1 ; that is. 

Assumption 6-1: 
( i) M is convex subset of Rn, 
( ii) fi(x) (i = 1, 2, · · ·, p) are all cocave on ]VJ, 
(iii) gi(x) (i = 1, 2, · · ·, q) are all convex on 1\1. 
Under the above assumption we obtain the following theorem: 

Theorem 6-2: Let .M, f(x) and g(x) satisfy Assumption 6-1. If x is a w-solu
tion of Problem 6-1 then there exists a (u, v) such that (u, v, x) is a solution of 
Problem 6-2. 

Proof. Let x be a w-solution of Problem 6-1. Define the index set I such that 
l={i;gi(x)=O}, then there exists an s>O such that 

gi(x)<O (j$1) for xEB,(x) 

where B,(x)={xEl\1; llx-xll<s}. Define the subsets S and A of RP+q such that 

S={(y, z); yERP, zERq, Yi;:=:;fi(x)-fi(x) (i=1, 2, · · ·,p), 
zi;:=:;-gi(x) (iEI) for xEB,(x)}. 

Then A is a convex convex cone in R1Hq and, by Assumption 6-1, S is s convex 
subset of RPHJ. Since x is a w-solution of Problem 6-1, we see AnS=¢. Hence, 
by the separation theorem for convex sets, there exists a (u, v)E RP" q such that 
(u, v);;::::O and ((u, v), (y, z))~O for all (y, z)ES. Since (y, z)ES for y=O, Zi=O (iEI), 
any xi (j$1), we have 

<v, a(x)> =O 

and 
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(u, f(.r))- (v, a(x))~(u, f(x))- (v, a(x)) for all xE B,(x). 

But (u,f(x))-(v,g(x)) is concave on the convex set M, hence we obtain 

(u,f(x)>-<v, a(x))~(u,f(x))-(v, g(x)) for all xEM. 

Thus (u, v, x) is a solution of Problem 6-2. Q.E.D. 
Again, just as in the case of Theorem 4-1, there is no guarantee that u is 

semipositive in Theorem 6-1. As was done in Section 4, it is possible to exclude 
such cases by introducing constraint qualifications. In this paper we introduce 
Slater's constraint qualification, that is, 

Assumption 6-2: There exists an xEM such that g(x)<O. 
Under Assumption 6-1 and Assumption 6-2, if gi(x) (i = 1, 2, · · ·, q) are differen

tiable then the set X satisfies Assumption 4-2. This fact has been shown by 
MANGASARIAN (1969). 

Theorem 6-3 : Let M, f(x) and g(x) satisfy Assumption 6-1 and Assumption 
6-2. Then x is a w-solution 6-1 if and only if there exists a (u, v) such that (u, v, x) 
is a solution of Problem 6-2 and uzO. 

Proof. By Theorem 6-1, we need only to show the "only if" part of the the
orem. Let x be a w-solution of Problem 6-1. Then, by Theorem 6-2, there exists 
a (u, v) such that (u, v, x) is a solution of Problem 6-2. Now we show by contra
diction that u is semipositive. Suppose that u is the zero vector, then from the 
condition (i) of Problem 6-2 we have vzO. On the other hand, from the condition 
(ii) of Problem 6-2, we see 

<v, g(x)>~<v, g(x)>~<v, a(x)) for all xEM, all vzO, 

hence 

<v, g(x))~O for all xEM. ( 2) 

But, by Assumption 6-2, there exists an xEM such that g(.i)<O. For this x we 
. have (v, g(x))<O, which contradicts (2). Thus uzO. Q.E.D. 

Theorem 6-3 will be reconsidered in the next section where we shall deal with 
the duality between objects and constraints. 

7. Duality between Objects and Constraints 

Suppose that we have q different kinds of resources from which we make n 
different kinds of products. If we make Xi units of the i-th product (i = 1, 2, · · ·, n) 
then we need ZJ units of the j-th resource (j = 1, 2, · · ·, q) satisfying the relations 

(j = 1, 2, ... ' q), 

or equivalently 

z=g(x) 
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the same time we obtain y= f(x) dollars as profit. Now we consider the following 
mathematical programming problem : 

Problem 7-1: Let X 1 ={xERn; x:=o:O, g(x)~z*}. Find and .iEX 1 that maximizes 
f(x) constrained by xE X 1

• 

Let x be a solution of Problem 7-1 and define 

where y*=f(x). If there exists no xEX 2 such that g(x)"?:.g(x), then the solution x 
of Problem 7-1 also gives the efficient use of the resources. But if x does not 
satisfy the above relation then there exists an xEX 2 such that g(x)~g(x)~z*. 

Since x is a solution of Problem 7-1, we see f(x)=f(x), which implies that x is 
also a solution of Problem 7-1. The difference between x and x is that g(x)~g(x). 
Therefore it is significant to consider the following vector minimum problem: 

Problem 7-2: Find an xEX 2 such that g(x)~g(x) for no xEX 2
• 

The solution of this problem gives an efficient use of resources under the con
dition that we obtain more than or equal to y* dollars as profit. In this section 
we investigate the relation between Problem 7-1 and Problem 7-2 in more general 
form. We call this relation "duality between objects and constraints." 

Problem 7-1 is a usual mathematical programming problem which has one ob
jective function, but Problem 7-2 is a vector minimum problem which has several 
objective functions. Hence they have not symmetry. In order to deal with the 
relation between them symmetrically, we introduce a vector maximum problem 
instead of Problem 7-1 and make the vector minimum problem corresponding to it. 

Problem 7-3p: Let z* be a vector in Rq, M be a nonempty subset of Rn, and 
fi(x) (i=1, 2, · · ·,p), gj(X) (j=1, 2, · · ·, q) be continuous numerical functions. Let 

and 

f(x) = Cf1(x), !2(x), · · ·, [p(x)), 

g(x) = (gl (x), {l2(X), · · ·, gq(x)) 

X[g~z*]={xEM; g(x)~z*}. 

Find an xEX[g~z*] such that f(x)"?:.f(x) for no xEX[g~z*]. 

Problem 7-3d: Let y* be a vector in Rq, and M, f(x), g(x) be the same as those 
of Problem 7-3p. Let 

X[f;::=;y*] ={xEM; f(x);::=;y*}. 

Find an xEX[f;::=;y*] such that g(x)'?:.g(x) for no xEX[f;::=;y*]. 
Three kinds of maximum solotions (w-maximum solution, P-maximum solution 

and s-maximum solution) of Problem 7-3p and three kinds of minimum solutions 
(w-minimum solution, P-minimum solution and s-minimum solution) of Problem 7-
3d are defined just as in the case of Basic Problem in section 1. We make some 
remarks on the difference between the constructions of the above two problems. Pro
blem 7-3p has f(x) as its objective function and g(x) in its constraint set X[g~z*], 
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on the other hand Problem 7-3d has g(x) as its objective function and f(x) in its 
constraint set X[f~y*]. Both of these problems have the constraint set Min com
mon. It is arbitary to consider which problem is primal. In this paper we regard 
Problem 7-3p as a primal problem and Problem 7-3d as its dual one. 

Now we investigate the relations between Problem 7-3p and Problem 7-3d. 
First, we assume that there exists an x such that the set X[g~z*] n X[f~f(x)] is 
nonempty, closed and bounded. Then there exists an iEX[g~z*] nX[f~f(x)] such 
that f(x)?:_f(x) for no xEX[g~z*] nX[f~f(x)]. Hence we have g(x)~z*, f(x)~f(x) 
and f(x)?:_/(!i:) for no xEX[g~z*]. Furthermore, from the continuity of the func
tion f(x), the X[g~z*] n X[f~f(x)] is also nonempty, closed and bounded and hence 
there exists an xEX[g~z*] n X[f~f(x)] such that g(x)~g(x) for no xEX[g~z*] n 
X[f~f(i)]. Thus we have g(x)~z*, f(x)~f(x) and g(x)~g(x) for no xEX[f~f(x)]. 
But it follows from f(x)?:_f(x) for no xEX[g~z*] that f(x)J?_f(x). Consequently, we 
obtain 

xEX[a~z*], 

f(x) ?:_f(x) for no xEX[g~z*] 

and 

g(x)~g(x) for no xEX[f~f(x)]. 

Thus we have proved the following theorem: 

( 1) 

( 2) 

( 3) 

Theorem 7-1: If there exists an x such that the set X[g~z*] n X[f~f(x)] is 
nonempty, closed and bounded then there exists an x satisfying (1), (2) and (3). 

Corollary 7-1: Let x be a w-solution of Problem 7-3p. If the set X[g~z*] n 
X[f~f(x)] is closed and bounded then there exists an x satisfying (1), (2), (3) and 

f(x) 

g(X) 

I 
I 
I -- -- -,------
I 

-r--------------~x,-----------------~x 

Fig. 7-1 
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f(x)~f(x). Especially, if X[g~z*]nX[f:;::::f(x)]={x} then x=.f: satisfies (1), (2) and 
(3). 

It is should be noted that if the assumption of Corollary 7-1 does not hold 
then there does not necessarily exist an x satisfying (1), (2) and (3). It is apparent 
from the example of Fig. 7-1. In this example, we take n=P=q=l and M= 
{xER; x;:::;O} in Problem 7-3p and Problem 7-3d. x is a s-solution of Problem 7-3p, 
but there exists no x satisfying (1), (2) and (3); because there exists no x such 
that the set X[g;Sz*] n X[f::=:;f(x)] is nonempty, closed and bounded. 

Next we derive other relations between Problem 7-3p and Problem 7-3d under 
more general assumptions. Let x be a w-solution of Problem 7-3p. Then there 
exists no xEX[f> f(x)] such that g(x);Sg(x) where X[f > f(x)] implies the set 
{xEM; f(x)>f(x)}. It follows from the continuities of f(x) and g(x) that there exists 
no xECL[X[f>f(x)]] such that g(x)<g(x) where CL[X[f>f(x)]] implies the closure 
of the set X[f> f(x)]. Hence we have g(x) < g(x) for no xECL[X[f> f(x)]]. Now 
we introduce the following assumption. 

Assumption 7-ld: 

X[f::=:;f(x)] =CL[X[f> f(x)]]. 

If the set X[f::=:;f(x)] satisfies Assumption 7-ld then we see g(x)<g(x) for no 
xEX[f::=o;f(x)]. Thus we have proved the following theorem: 

Theorem 7-2: If x is a w-solution of Problem 7-3p and the set X[f::=o;f(x)] 
satisfies Assumption 7-1d, then x is a w-solution of Problem 7-3d for y*=f(x). 

Conversely, if x is a solution of Problem 7-3d for y*=f(x) and the set X[g;S 
g(x)] satisfies the following assumption: 

Assumption 7-lp: 

X[g;Sg(x)] =CL[X[g< g(x)]], 

then f(x) > f(x) for no xE X[g;Sg(x)]. Thus we obtain the following corollary: 

Corollary 7-2: Let xEM, let the set X[f::=o;f(x)] and the set X[g;Sg(x)] satisfy 
Assumption 7-1d and Assumption 7-1p respectively. Then x is a w-solution of 
Problem 7-3p for z*=g(x) if and only if it is a w-solution of Problem 7-3d for 
y*=f(x). 

By Corollary 7-2 we have shown the duality between Problem 7-3p and Pro
blem 7-3d under Assumption 7-1d and Assumption 7-1p. This is the duality be
tween objects and constraints. 

Finally, we relate Problem 7-3p and Problem 7-3d to the saddle-point problem 
discussed in the previous section. Let 1\1, f(x) and g(x) satisfy Assumption 6-1. 
Let x be a w-solution of Problem 7-3p. Furthermore, we assume that the set 
X[g;Sz*] satisfies Slater's constraint qualification of Problem 7-3p, that is, 

Assumption 7 -2p: There exists an xE }vf such that g(x) < z*. 
Then, by Theorem 6-3, there exist u1 ::2:0 and i?::2:0 such that 

for all XE 1\1, all v;:::; 0 
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where L 1(u, v, x)=(u,f(x))-(v, g(x)-z*). The first inequality of (4) is equivalent to 

(u\f(x)-f(x))-(v\ g(x)-g(x))~O for all xEM. ( 5) 

Now we assume that the set X[f;=::;f(x)] satisfies Assumption 7-1d. It is easily 
verified that under Assumption 6-1 Assumption 7-1d is equivalent to Slater's con
straint qualification of Problem 7-3d for y* = f(x), that is, 

Assumption 7-2d: There exists an xEM such that f(x) > f(x). 
Therefore, we may assume Assumption 7-2d instead of Assumption 7-1d. Under 

Assumption 7-2d, we have g(x)>g(x) for no xEX[f;=::;f(x)]. But, since the set X[f 

;=::;f(x)] satisfies Assumption 7-2d, there exist u 2 ;:::;0 and v 2 20 such that 

for all xEM, all u;:::;O ( 6) 

where L 2(u, v, x)=(u, f(x)- f(x))-(v, g(x)). By observing that 

for all u;=::;O, 

(6) is equivalent to 

(u2 , f(x)- f(x))- (v2, g(x)- g(x)) ~0 for all xEM. ( 7) 

Note that (7) has the same form as (5). The difference between (5) and (7) is the 
difference between u 1 20, v 1 ;=::;0 and u2 ;=::;0, v2 z0. By letting u=u1 +u2 and v=v1 +v2

, 

it follows from (5) and (7) that 

(u,f(x)-f(x))-(v, g(x)-g(x))~O for all xEM. ( 8) 

Conversely, it is obvious that if x satisfies (8) for some uzO and vzO then x is a 
w-solution of Problem 7-3p for z*=g(x) and a w-solution of Problem 7-3d for y* 

= f(x). Consequently, we obtain the following theorem: 

Theorem 7-3: Let M, f(x) and g(x) satisfy Assumption 6-1, Assumption 7-2p 
for z*=g(x) and Assumption 7-2d. Then the following conditions (i), (ii) and (iii) 
are all equivalent: 
( i) x is a w-solution of Problem 7-3p for z*=g(x), 

( ii) x is a w-solution of Problem 7-3d for y*=f(x), 
(iii) there exist u;zO and vzO satisfying (8). 

Furthermore, it follows from (8) that 

min max K(u, v, x)=K(u, v, x)=O 
u,v;;;;o xEM 

( 9) 

where K(u, v, x)=(u,f(x)-f(x))-(v, g(x)-g(x)). If we assume that M coinsides 
with Rn, fi(x) (i = 1, 2, · · ·, p) are differentiable concave functions on Rn and gi(x) 
(j=1,2, ···,q) are differentiable convex functions on Rn, then K(u,v,x) is a dif
ferentiable concave function on Rn with respect to x for every u;:::;O, v;=::;O. Hence 
the relation 

max K(u, v, x)=K(u, v, x) 
xEM 

is equivalent to the relation 
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p q 

.L: Uil7i(x)- .l:: Vjl7gj(X)=0. 
i=l j=l 

It follows from (9) that (u, v, x) is a solution of the following problem: 

Problem 7-4: Define the subset T of RP+Q-I-n such that 

Find a (u, v, x)E T that minimizes K(u, v, x) constrained by (u, v, x)E T. 
Thus we have proved the following theorem: 

Theorem 7-4: In Theorem 7-3, if in addition M=Rn and fi(x) (i=l, 2, · · ·,p), 
gi(x) (j = 1, 2, · · ·, q) are differentiable then (i), (ii), (iii) of Theorem 7-3 and (iv) 
there exist u~O and v~O such that (u, v, x) is a solution of Problem 7-4 are all 
equivalent. 

Theorem 7-4 shows the relations between Problem 7-3p, Problem 7-3d and 
Problem 7-4. The relation between Problem 7-3p and Problem 7-3d means the 
duality between objects and constraints, while the relation between Problem 7-3p 
(or Problem 7-3d) and Problem 7-4 means the duality of concave (or convex) pro
gramming. Hence we have connected these two duality by Theorem 7-4. 
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