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ABSTRACT 

In this paper, the stress correction factor for helical spring having small pitch angles 
with an epitrochoidal cross section is discussed, applying the result (MIZUNO, 1969) of which 
one of the authors had reported before. The stress correction factor for helical springs 
has been calculated by many researchers. But these methods are based on the assumption 
that the cross section of the spring remains circular after coiling. However, the deformed 
shape of the section of the circular wire after coiling is reported to be an epitrochoid 
(MIZUNO, 1969). 

The correction factor calculated considering this effect is similar to the Rover's result 
which is standing under the assumption that the cross section remains circular. 

1. The maximum shearing stress of helical springs with circular cross section. 

The maximum shearing stress, rmax, which occurs at the inside of helical 
springs with the circular cross section, has been calculated by many researchers. 
This rmax is expressed as K times as large as the maximum shearing stress of a 
twisted bar with the circular cross section, as follows: 

where, 

8PD 
<max= rrda K, 

K: stress correction factor, 
P: tensile or compressive load for the spring, 
D : mean coil diameter, 
d : bar diameter, 

and, K is the function of the spring index, C=Dfd. 
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RovER (1913) obtained K of Eq. (1) as, 

~ c 1 5 1 1 1 
K = c -1 + 4c = 1 + -4c + C2 + · C3 + o + · · · · ( 2) 

for the springs with small pitch angles (pitch angle a ~o) considering effects of 
curvature. 

According to WAHL's result (1929), 

4C-1 0.615 5.46 3 ( 1 1 1 ) 
K= 4C-4 +-c-- 1+4C+4 u+cs+0+···. ( 3) 

Assuming the shape of coils of helical springs to be a torus, K can be calculated 
in the following. 

Taking cylindrical coodinates, in Fig. 1, the stress function cp, that satisfies 
the following equations, is obtained : 

at the cross section, 

at the boundary, cp=O. 

IE---- D/2 >J 

Fig. 1. 

I 

!~ 
~,-c 

'i:: 
p. 

(f) 

} ( 4) 

From this stress function, Toz and <on the components of the shearing stress, 
are obtained. 

The approximate solutions of the stress function cp, were given by GoHNER 
(1930, 1931, 1932), and he showed Kin the following, 
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c 1 1 5 7 1 1 
K= C-1 + 4C -SC2 = 1+ 4C + 8C2 +a+ C4 +···, (5 )' 

(for C~3, aS:16o), 

5 7 1 
K = 1 + 4C + 8C2 + C3 ' 

( 5 )" 

The exact solution of the stress function cp that satisfies Eq. (4) was expressed 
in series form using Legendre function by Freibeger. HENRICI (1955) expanded 
this exact solution in power series form of 1/C. That is: 

5 7 155 11,911 
K = 1 + 4C + 8C2 + 256C3 + 24,576C4 + .... ( 6) 

From the comparison of these results, approximate solutions are larger than 
that of Eq. (6) and are in the safty-side. 

The effects of the pitch angle a are considered only in GoHNER's Eqs. (5)', 
and (5)", but it may be said that these are very small, because the Eqs. (5)' and 
(5)" coincide with Eq. (5) up to the terms of 1/C2

• 

If C~3 and aS:16o, thus springs may be regarded as closed ones. 
These results are calculated from the assumption that the section is circular 

after deformation of the material. 
But, spring material is subjected to plastic deformation in coiling, and if the 

cross section of the material is circular before coiling, the shape of the deformed 
cross section after coiling is obtained to be an epitrochoid (MIZUNO, 1969). There
fore the influence of this deformation of the cross section on the shearing stress 
should be considered. 

2. Torsion of a bar with epitrochoidal cross section. 

The boundary of the cross section is conformably mapped on a unit circle, 
~=ei0 , in order to solve the problem of a torsional bar with an epitrochoidal cross 
section. The equations of an epitrochoid after coiling are given in the following 
(MIZUNO, 1969) : 

where, 

therefore, 

x~r, (cosO+ 4~ cos 20 ). l 
·y ~ r, (sin 0 + ~ sin 20), f 

Yo: bar radius, 

C : spring index, 
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z=x+iy 

=Yo[ cos O+i sinO+ 4~ (cos 20+i sin 2o)J 

Thus the conformable mapping function w(() is 

The shearing stresses, Tzx, Tzy, are expressed as follows (SOKOLNIKOFF, 1946): 

where, 

G shearing modulus of elasticity, 

ao twisting angle per unit length, 

w((): conjugate function of w((), 

/(() : complex stress function. 

If the mapping function is written in the following: 

00 

z=w(() = 2..:: an(n, 
n=O 

where, 
an: const., 

then, the function /(() is given easily in the following manner: 

00 

f(()=cp+i¢=i 2..:: bn(n, 
n=O 

where, 

cp: torsional function, 

¢ : conjugate function of cp, 
00 

bn: 2..:: an+pfip. 
p=O 

For the epitrochoidal cross section, from Eqs. (8) and (10), 

_ 2 ( Yo )
2 

bo-Yo+ 4C , 

Substituting these terms into Eq. (11), 
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Yo 
az= 4C ' 

( 8) 
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(12) 

From Eq. (8), 

=ro(cosO+ 4
1
C cos 2o)-iro(sin 0+ 4~ sin2o), 

=r{l+ 2~ (cosO+i sino) J. 
Putting these equations into Eq. (9), the shearing stresses of a torsional bar 

with an epitrochoidal cross section at the boundary are obtained as follows: 

G 
[ 

sin 0 ( . 1 · 2 ) ] T'zx= a 0ro ( 1 ) - smO+ 4C sm 0 , 
8 C2 +C cosO+ 4 

(13) 

cosO+ --cos 20 - 1 . 
[( 

1 ) ,~-- ~.; r 2C+cos () ] 

-rzy=Gaoro 
4C 8(C2 +CcosO+T) 

From Eq. (13), the shearing stress is only T'zy for 0=0, and its value is 

T'o=o =Gaoro (1 + ( 
1 1 )]· 

8C C+z-
(14) 

This value -ro=o is compared with the shearing stress of circular cross section. The 
maximum shearing stress -r0 of a torsional bar of the circular section is 

where, 

16M M d 
-ro= rrd3 = -y; · 2 =Gaoru, 

M: twisting moment, 

d : diameter of a bar, 

(15) 

lp : polar moment of inertia of the circular cross section ( ~~
4 

) • 

Hence, the ratio of -ro=o to -ro becomes : 
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(16) 

The value of 7lu~o due to the spring index C is obtained in Table 1. 

Table 1. 

;~ ~ -~J . ···;--~--;-------~---- --:------~---~--7-----~-10--

~·~· 1 1.083 1.025 1.012 1.007 1.005 1.002 1.001 

3. The maximum shearing stress of the closed coiled helical springs with 
epitrochoidal cross sections. 

When the maximum shearing stress !"max of the springs with epitrochoidal cross 
sections is considered, its value should be refered as follows: 

(17) 

The ratio r; becomes the maximal at 0=0 and 0= rr, and at 0= rr it reaches its 
maximum value. But the maximum shearing stress Tmax occurs at the inside of 
the coil, because the effect of curvature is the largest. 

The Eq. (16), showing the increase of the shearing stress, may be expanded in 
series form as follows : 

1 1 1 1 
)j'o=o = 1 + -(,------------:1 ) = 1 + 8C2 - , 16C3 + 32C4 - •••• 

8C C+--z 
(18) 

Substituting Eq. (18) into Eq. (17), and using Henrici's series form for the 
value of K, 

8PD ( 5 1 179 13,447 ) 8PD 
!"max= rrd3 1 + 4C + Cz + 256C3 + 24,576C4 + . . . = rrd3 K'' (19) 

where, 

I_ 5 1 179 13,447 
K - 1+ 4C + C2 + 256C3 + 24,576C4 + ···. (19)' 

Comparing Eq. (19)' with Eqs. (2), (3), (5), and (5)", it is found that RovER's 
result is most close to Eq. (19)' and agrees well up to the third term. 

Its value is greater than Eq. (19)' and is in the safe side and has a simple 
form. Therefore, the RovER's formula is thought to be useful, considering defor-
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mation of the cross section of the springs. 

In the above analysis, the effects of bending stress, direct tension component 
and the secondary shearing stresses are not yet considered. but these are negligiblly 
small. 

APPENDIX 

The material shape before coiling of helical springs with the rectangular cross 
section. 

In order to obtain a helical spring with a rectangular or square cross section, 
the cross section of the material before coiling should be trapezoidal. The shape of 
the cross section before coiling is found empirically by the graphical method of 
Fig. 2 and Fig. 3. 

Fig. 2 shows how to find the shape of the cross section of the material before 
coiling in the case of the square cross section after coiling, where, D is the mean 
coil diameter, A is the length of a side. 

Fig. 3 shows the case of the rectangular cross section, where, A is the length 
of a short side, B is the length of a long side. 

In the case of the rectangular cross section, (In the case of square: A=B.), 
the lower side of the cross section in Fig. 3 is (MIZUNO, 1969), 

where, 

Thus, 

R: mean coil radius (D/2), 

xo, Yo : coordinates before deformation, 

Vo: displacement of y direction. 

A/2 
Yo= 1+xo/2R · 

Since, lxol <B/2, and 1)/Bj4R, 

A ( Xo ) Yo~T X 1- 2R , 

(a) 

(b) 

this shows that the lower side before coiling is a straight line, and from the sym
metry the upper side is also a straight line. And, at the points of four corners, 

B x~+y~ 
x = ± 2 ( =xo+Uo)=xo+ ----:ur-, (c) 

where, 
Uo : displacement of x direction. 

Putting Eq. (b) into Eq. (c), and calculating approximately, 
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A
2 

( x )z .r,~+4R.ro+ -
4

- 1-
2
; +2BR 

( A
2 

) ( A ) A
2 

= 1+ 16R 2 x~ + 4-
4

R 2 Rxo+ - 4- +2BR 

::::::x~+4Rxo+2BR=0, 

.xo=-2R±2Rvi1±B/2R::::::2R(1-1± ~ )=± ~. 

B 
Xo=± 2' 

Putting Eq. (d) into Eq. (b), 

A~=2yo:::::: A( 1± :n ). 
The equations of Fig. 3 are approximately, 

2AD A ( B ) 
A 1 = 2D-B = 1-Bj2D :::::A 1+ 2D ' 

2A(D-B) A(1-B/D) ( B)( B) ( B ) 
A 2 = 2D-B = 1-Bj2D :::::A 1- D 1+ 2D :::::A 1- 2D . 

Then it can be seen that Eq. (e) is same as Eqs. (e)' and (e)". 

(d) 

(e) 

(e)' 

(e)" 

That is, the empirical formula gives the same results as that obtained from 
the method of 'Plastic Deformation of a Wire with Circular Section in Coiling' 
(MIZUNO, 1969). 

2AD 
A1= ZD-A =2A-A2 

A =2A-A = 2A(D-A) 
.

2 
. 

1 2D-A 

, 

~I 
'*i 

I~ D 

Fig. 2. 
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2AD 
Al=-zD-B=2A-Az 

Az=2A-At ZA(D-B) 
2D~B 

D---1 
y 

Fig. 3. 
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