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Problem of Large Deflection of Coiled Spring, 
Continued Report* 

(Received March 17, 1971) 

Masayoshi SHIMOSEKI** 
Masao MIZUNO*** 

Abstract 

The discussion of the deflection of coiled springs is generally based on the 

theory of finite deformation. It seems, however, that some of its basic as­

sumptions are not properly used for the investigation of deformed springs. 

Therefore, it is of particular interest for us to treat with them in the light of 

a theory of large deformation. Now that the theory of large deformation does 

not seem to have been developed fully enough, it would be the more so. 

In this paper, we shall discuss the problem concerning the deflection of coiled 

springs under oblique loads. Dealing with such a general case, we could 

probably solve many questions under various boundary conditions. 

We do not, however, directly consider the problem about oblique loads. 

Instead, we are going to discuss the post-buckling deflection of coiled springs 

first, and then translate its theoretical outcomes into the problem of deflection 

under oblique loads. 

Furthermore, we shall carry out the numerical calculations by a computer, 

and at the same time an experiment will be made with springs made of steel 

wire in order to compare with the theoretically calculated results. 

The experimental results have shown that our theory is applicable for spr­

ings with a wide variety of slenderness. 

1. Introduction 

The theory of finite deformation provides us with powerful means in the investiga­

tion of elastic stability of bars. In this theory the squares of deformation angles are 

assumed to be negligible when compared to unit. But it is the case that if the elements 

of a spring are regarded to have infinitesimal strains in the elastic range, the spring 

itself is largely deformed on the whole. For this reason, the deflection curve of the 

central line of a coiled spring should be treated as a problem of large deflection. 

However, this theory seems not to have achieved a desirable success. The subject of 

* The previous report is reference (1). 
** r M IE ~ Graduate Student, Faculty of Engineering, Keio University. 

*** 7]( !f IE *: Professor, Faculty of Engineering, Keio University. 
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this paper is to develop the theory further; the examination of its practical problems 

will be reported later. 

Now we shall consider a coiled spring under oblique loads. General analysis on such 

a case would enable us to solve various problems with given particuler boundary 

conditions (see 3. 3). We do not, however, directly consider the problem about 

oblique loads, instead, we'll discuss the post-buckling deflection of coiled springs first, 

and then translate its theoretical results into the problem of deflection under oblique 

loads by the translation and rotation of coordinates. The reasons for this are the 

following two. The first reason is that the process to the goal is simplified and 

clarified by our method. The second is that the difficulty of experiments to determine 

whether the theory is good or not is greatly decreased. The detailed discussions of 

translation and rotation of coordinates will be given in 3. 1. Let us notice that the load 

R Fig. 1 is larger than the critical load and that it is no longer impossible to elu­

cidate R by the theory of finite deformation. And therefore, we'll have to use the 

theory of large deflection. 

As is mentioned above, we'll discuss in this paper the deflection of the central line 

of a coiled spring, that is, the central line will be treated as an elastic bar with 

a certain rigidity. Here we should note that our spring has several characteristics 

as follows. 

(1) As the pitch varies from one point to another along its central line, we 

must consider the spring as a bar with a gradually varying rigidity. 

(2) The total length of a spring is not a constant, but a variable. 

(3) The curvature of its central line caused by a varying shear is comparable 

to the one caused by bending and this curvature cannot be neglected. 

As for the above notion of shearing deflection, we must remember two different 

methods: 

(a) to find the shearing force by the slope of inflection curve ; and 

(b) to find it by the rotational angle of the cross section. 

By the definition of shearing strains, the method (b) is more precise than that of (a), but 

the analysis on method (a) is easy and its results are on the safety-side. These factors 

are worth noticing. However, method (a) leads to a noticeable error in the case of 

shearing effect is large. Springs in practical use are largely affected by shearing effects, 

so we will adopt the method (b) this time. In the previous report, we have analysed 

the problem by the method (a). Fig. 4 shows both theoretical curves in order to 

compare with each other. 

2. Post-Buckling Deformation of Coiled Springs 

2. 1 Fundamental Equations 

We consider the coiled spring with uniform pitches /z0 and with straight central 
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line in its undeformed state, buckled under the pressure R acting on both hinged 

ends (Fig. 1-a). The deformed curve is symmetrically related to a vertical line 

through its central point 0 i.e. x-axis. Then let point 0 be the origin and the tangent 

at 0 parallel to the force R be the y-axis. Fig. 1-b shows an element P of the 

elastic prismatic bar replacing the spring. in a deformed state. If 0 denotes the angle 

through which the original normal section has turned and r the shearing angle, then 

the total deformation of the element 

Further, let 

lo=the total length of the unloaded spring, 
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l =the total length of the loaded spring, 

ho=the pitch at P under no load, 

h =the pitch at P under load R, 

S =the length OP along the deflection curve of the central line of the spring, 

So= the length in the unloaded state. 

Now, let T, Q, M denote the axial force, the shearing force and the bending 

moment respectively at the element P and let tension be positive. The-n we get 

rl/2 
M=R Js sin ({J ds. 

Q=R sin 0, } .................................... (2 ·a) 
T= -R cos fJ, 

Denoting by A, B, C the rigidities for the axial force, the flexure and the shear of 

the spring under load R, and by Ao, Bo, Co their unloaded values respectively, 

T ds-dso h-ho 
Ao - dso ho 

or 
h T R cos 0 
-=1+-=1- ,·······································(2·b) 
ho Ao Ao 

so 

A=Ao ~ =Ao(1- ~o coso), 

B=Bo :o =Bo(1- ~o cos e), ·································(2·c) 

C=Co :o =Co( 1- ~o cos fJ )· 

On the other hand, the shearing strain is expressed in the following equation: 

Q R sin fJ 
r=-=---R---, 

C Co ( 1- Ao COS (J) 

so we get 
R sin fJ 

([J=O+r =0+ -------- -R- ------ -. .. ..................................... (2·1) 
Co ( 1- Ao COS 0) 

And we find that the curvature by the bending moment is given by 

rl/2 
dfJ _ M _ R J s sin ({J ds 
ds -73---(-R~)-. 

Bo 1- Ao COS 0 

....................................... (2·2) 
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Eq. (2·1) and Eq. (2·2) are the foundamental equations of the deflection curve. Then 

we introduce non-dimensional variables to make the calculations convenient hereafter: 

a=s/l, 

p=ZZR/Bo, 
}.=R/Ao, } ....................................... (2·d) 
'V=R/Co. 

With these variables, we rewrite the fundamental equations as 

0 
'}.;sin 0 

cp= + 1-}. cos(} .......................................... (2 ·1)' 

dO _ f1 ~ :
12 

sin <p da 
da - -1-}. cos 0 .......................................... (2·2)' 

and express Eq. (2·2)' in a differential form 

d~ {c1-;. cosO)~~ }=-p sin 9 .................................... (2·2)" 

Substituting Eq. (2·1)' into Eq. (2· 2)", we have 

d { dO } . ( 'V sin 0 ) 
da (1-}. cos 0) da = - f1 sm 0 + 1-}. cos 0 

or 

{ 
dO} d { dO } (1-}. cos 0) da da (1-}. cos 0) da da 

=-sm O+ (1-}. cosO) dO ................................. (2·3) . ( '}.;sin 0 ) 
1-}. cos(} 

Following Taylor's procedure, we work out all the trigonometrical expressions in the 

right-hand side of Eq. (2·3). Then 

the right-hand side =-p(PO +q03
), 

where 

} ................................. (Z·e) 

Integrating Eq. (2·3), we get 

(1-}. cos 0) 2 
( ~~) 

2 

~ -2p~ (p0-q0 3
) dO 

=-p(po2
- +qo4)+H, 
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Where, lf is an integration constant. If a denotes the angle 0 at the point A, we have 

So we get 

In the root of the above equation, the terms 05 and higher powers are neglected, 

then we must expand the left-hand side up to this order. 

(1-.;t)+ _!_iW2 • 

,../fda= 2 dO .............................. (2·4) 

,J p(a2-fJ2)- +q(a4- 04) 

Actually the above equation contains all terms up to order 02
, neglecting higher 

powers of 0. Remembering da is the non-dimensional value of ds, we find Eq. 

(2·4) the differential equation expressed by natural coordinate, that is, the funda­

mental equation for the coiled springs with an arbitrary wire section. 

2 · 2. Coiled Spring with a Circular Wire Section 

Since the wire section of coiled springs in practical use are circular, we continue 

to discuss a spring with a circular section. The case of a wire with a cross section 

other than circular, e.g. rectangular, could be treated by the similar method. The 

rigidities in the unloaded state are given as follows : 2) 

where, 

E= Young's modulus of elasticity, 

G =the shear modulus, 

2EGiho 
Bo= nr(E+2G)' 

} ............................. -(2·f) 

I= the moment of inertia of the cross sectional area of a wire, 

r= mean radious of the coil. 

= 1+2(G/E) .;t (-l )2 

f1 2 r ' 

v=(G/E)J.. 

} ·······································(2·f)' 

These formulae (2 ·f)' express the dependence of f1 and v on J.. 
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[2·2·1] Relations with Ordinary Formulae 

If we transform Eq. (2·4) as follows, 

where, 

f32=2Pfq-a2 ...... ................................................... ···(2· g) 

the right-hand side has only the terms expressed in an elliptic function. Then let us 

integrate this from point 0 to point A. 

;- ~ I 2- [ 2(1- A) ( a rr ) { ( a rr ) ( a rr ) } J t\fp.=y q f3 F ?:' 2 +Af3 F T' 2 -E ?:' 2 ,······(2·5) 

where F(a/ {3, rr/2) and E(a/ {3, rr/2) are complete elliptic integrals of the first and the 

second kind respectively. 

Now we consider a=O in Eq. (2· 5). In such a state the spring is not buckled 

yet, so the equation should coincide with the corresponding formula based on the 

theory of finite deformation. In fact, when a=O, f32=2P/q and F(O, rr/2)=E(O, rr/2) 

=rr/2, then, from Eq. (2·5), we get 

·············································(2·6) 

The quantities with suffices cr. denote the values under buckling load R. Substitut­

ing Eq. (2·d) in Eq. (2·6), we have 

And, as the central line is straight under Rcr· 

fer• = (1- Acr· )lo • 

Therefore, we get 

... ·················· ............... ···(2·6)' 

Eq. (2·6)' is no other than that of the ordinary theory of coiled springs3
) under 

buckling load. From Eq. (2· b) and Eq. (2·4), 
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l ;-- ( ) = fi V -tqF ; , + ....................................................... (2·7) 

Further, substituting Eq. (2· g) into this, we get 

; = f9v-1q{1!2(G/E)} F( ; ' + ). ·································(2·7)' 

Let a=O in Eq. (2·7), then 

+ = 1~.1 0 ······················································(2·8) 

And let 

ov=the deflection of the spring before buckling, 

n=number of turns=lo/ho, 

d =the diameter of the wire, 

then, Eq. (2·8) can be written as follows: 

64nr3 

ov=lo-l=J.lo= d4G R ·············································(2·9) 

which coincides with the ordinary formula of coiled springs. 

[2·2·2] The Coordinates of Point A (xt, Yt) 

Let us multiply Eq. (2·4) by sin cp, and integrate the result from point 0 to 

point A. 

Geometrically considering, we find 

the left-hand side (~:
12 

sin cpda) =xdl 

so we can rewrite the above equation as follows; 

vp- x; =~-~-pIn a+ ~;:;/!~~?2)-. 

Substituting Eq. (2· g) in this 

Xt _ -~ 2p ______ ( r ) a+.J o:2-+2(pfq-o:2f 
!; - v {1+2(G/E)}J.q lo In -- ;_; 2(pfq~~2f- . ·····················(2·10) 
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Thus, we have the x-compornent of the point A expressed in a non-dimensional form. 

Similarly, let us find Yl, multiplying Eq. (2·4) by cos([!, 

where, 

t=+i (1- 1 ~A r -A}, .......................................... (2·h) 

and integrating this from point 0 to the point A, we get 

~l = v' {1+2~G/E)}Aq ( ;o )[ ( 1;A - tp )F( ; ' . ~ ) +tpE( ; ' ; ) 1··· .. ·(2·11) 

Further, substituting Eq. (2·7)' into Eq. (2·11), we have the y-compornent. 

Yl 1-A-t p2 
2t p ( r ) ( a r ) h = 2p + v' {1+2(G/E)}Aq lo E y· 2 · .................. (2·11)' 

[2 · 2 · 3] Numerical Calculations 

Eq. (2·10) and Eq. (2·11)' are expressed by the material constant of the spring (G/E); 

its dimension Clo/r); the non-dimensional value of load (A); and the angle{} at the point A( a). 

Other values p, q and t are determined by the above four variables: Eq. (2·e) and 

Eq. (2·h) determine p, q and t by (A) and ).) and further, Eq. (2·f) determines ).) by 

(G/E) and (A). Thus we find p, q and t the dependent variables. 

Since Eq. (2·7)' expresses the dependency of Clo/r) on (A), (G/E) and (a), we can 

extinguish one out of them. This has the following simple physical meaning: the 

deflection (a) of a certain spring ((G/E), Clo/r)) must be determined by the load (A). 

Therefore, we can take (a) as a dependent variables. 

Let us work out complete elliptic integral of the first kind. 

Substitution of this relation and Eq. (2 ·g) into Eq. (2 · 7) gives 

where, 

!= v' {1+2~G/E)}pq ( ; ), .......................................... (2·i) 
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or 

{ rr2 } 
a2= (2pjq) (2pjq)J2-24 ........................................... (2·12) 

2]2(2pjq)- T 
From Eq. (2·12), the value of a for each (G/E), Clo/r) and (A) is determined. Now, 

we have prepared all relations necessary for the following numerical calculations. 

If we assume that (E/G)=2. 6*, then Eq. (2·1) and Eq. (2·12) give 

]=0.11 Aq (; r ................................................ (2·i)' 

a2 = 0.44P
2
(Ajq)(lo/r)

2
- Prr

2 
/(2q) .................................... (2 .12)' 

0.44 PA(lofr)- r2 /8 

and Eq. (2·6)' gives 

Acr. =0.8125{1- V'1-27.46(r/l0 ) 2} .................................... (2·6)" 

Now introducing a new variable 

K= A:r. ( = :r. ), ............................................. (2· j) 

we can express ;_ with K and Clo/r). From Eq. (2·9), it is distinct that the longi­

tudinal deflection oy is proportional to the load K for K~l. But the equation 

holds after buckling. So we substitute Eq. (2·11)' into this equation, and find 

(oy/lo) instead of (ydlo). 

On the other hand, (xdlo) is given by Eq. (2·10). Fig. 2 shows the culculated 

results of them. In this (xdlo) are represented by the family of curves which intersect 

the left ordinate at K=1 (the central line of the spring for K~1 is a straight line) 

and (oy/lo) are represented by the family of curves which intersect the right ordinate 

at K=O. 

N. B. the origin of (oy/lo) will be at the right corner as is shown in the bracket 

under the abscissa. 

[2·2·4] A Comparison of the Calculated Results and the Experiments 

Fig. 2 shows the relations between (xl/lo) and (ay/lo) with parameter K. These 

relations allow a simplification of the experiments: we do not have to measure the 

10 * this means Poisson's number m=-
3
-. 
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lo/r=10 

0.5 

~ xt/lo (ovf lo) ""'E;;...---

Fig. 2. 
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loads, and to worry about suitability of the capacity of the test machine to the spring. 

As the properties of materials except (E/G) do not clearly affect the measured 

results of this experiment, these were not researched in detail. So we have used 

springs made of ordinary steel wire in order to compare with the theoretical results 

in which (E/G) =2.6. And in the dimensions of the springs, the only quantity we 

need is (lo/r). As we have examined the springs with r= 1 mm, _the length lo was 

calculated by the corresponding value of Clo/r) in theoretical results. 

Fig. 3 shows the appearance of the testing device There C1.2 are metallic struts 

fixing the ends of a spring in an exact direction of its central line, and their cylin­

drical surface has a spiral groove into which springs are screwed. P is a plate on 

s~ 

Fig. 3. 
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which cl is fixed, to protect against the movement of cl when the spring is buckled. 

C2 is fixed to the table T2 by a nut. And bearings on both sides of T2 are put in 

order to set springs free from twisting. 

The experiment was performed with the following steps. We have attached 

springs to C1 , 2 and set the horizontal free length 2lo by adjusting the length the 

screwing-into C1 , 2• If we shorten the distance between the two tables by driving 

the testing machine*, the spring will be buckled at a certain position. We stop the 

0 0.2 0.4 

~"'ig. 4. 

* Shimazu's universal testing machine with the capacity of 2 tons. 
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machine at certain proper positions after the buckling point. As a string hangs 

down from the scale S2, we move it the point where it touches the contour of 

the spring and measure the distance 2xl. And with another scale S11 we measure 

the distance between T1 and T2. We repeat this process several times so far as the 

coils of the spring do not touch each other. The experimental results obtained as 

described above are plotted in Fig. 4. The curves in this figure are theoretical 

results obtained from Fig. 2. The coincidence of the experimental results with the 

theoretical ones, as is seen from Fig. 4, is said to be satisfactory. The broken lines in 

Fig. 4 show the theoretical results!) obtained by the other method (a) concerning shear­

ing force (see Chap. 1). Fig. 4 shows that the less the value Clo/r), the more the 

discrepancy between two lines. This indicates that a stumpy spring is largely 

affected by the shearing effect. From Eq. (2·9), the intersections of the curves and the 

ordinate in Fig. 4 are the values (Acr.). 

Fig. 5 shows the relations between CAcr.) and Clo/r). In this figure (a) and (b) are 

the same as used in Chap. 1. N. B. the curve (b) is Eq. (2·6)" itself. 

' ....... 

(a)', 

0 

' ' ' ' ' 

(b) 

4 (5.24) 8 12 

Fig. 5. 

3. Deflection under Oblique Loads 

3 ·1 Translation and Rotation of Coordinates 

lojr 

We consider a coiled spring with one end fixed at 0, deflected under an oblique 

load R acting on the other end A (Fig. 6 ·a). Then let the central line of the spring 

in the unloaded state be y-axis, and the line perpendicular to it be x-axis. Further, 
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y 

(a) (b) 

Fig. 6. 

let Oo denote the angle of the acting direction of the load R. It should be noted that 

the tangent of the deflection curve at point 0 does not coincide with the y-axis. The 

discrepancy between them is caused by the shearing strain at 0. Then we extend 

the deflection curve as a broken line shows, and draw another line tangent to the 

curve and parallel to the load R. Then we take this line as y' -axis and the line 

perpendicular to it as x' -axis. Now we obtain the same deflection curve as that of 

Fig. l·a. As we have discussed this problem in Chap. 2, we can use those results 

obtained in order to solve the oblique load problem. 

3 · 2. ·Induction· of Equations 

For simplicity, let the cross section of wire be circular. From Eq. (2·4), we have 

Cs ds l Co 1 
So=), 1-.l cos 0 = ,.j I' ),, y' P(a'-0')- +q(a'-0') dO. 

Integrating from point 0 to point A, we get 

= +J :q-{ F( ; , ; ) -F(; , sin-1 ~)}, ·····················(3·1) 
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where 

f3 2 =2(pjq)-a2• ••• ...... • ...................................... (2· g) 

Substituting Eq. (2·f)' into Eq. (3·1), we find 

; = f3v .{q{(~/E)+l} {F(; , ; ) -F(; , sin-
1 ~)} 

or 

= + v .{q{1+2(G/E)} ( ; )· ................................................ (3·2) 

Next, let us multiply Eq. (2·4) by l sin ((jJ-80 ), 

and integrate it from 0 to P, then we get 

If we take a as the upper limit of the integration, we have 

Substituting Eq. (2·f)' into this, we get 
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Eq. (3·4) is the x-compornent of the point A. 

Similarly, we find Yl, multiplying Eq. (2·4) by l cos(cp-Oo) and integrating from 

8=8o to (}=a: 

=Ril[( l;A +tfi){F(;, ; )-F(;, sin-1 ~)} 

+tfi{E(; , ; )-E(;, sin-1 ~)} 

8~(1-A) {F (~ _!!___) _ F(~ · _1 !!.!...) }] 
2 fi fi ' 2 fi ' sm a ' 

further substituting Eq. (3·1) into this, we get 

Yl 

lo 
(1-A)(1-{}n-tfi2 2 [ { ( a TC ) 

2 +-../ Aq{1+2(G/E) tfi E f:' 2 

- E ~, Sln-1 - -POoln - . ············(3·5) (
a . Oo )} -../a2 -{}g +-../ fi 2 -{}g]( r) 
fi a -../ fi 2-a2 lo 

Thus we obtain the coordinates of the point A. 

Now, in the case 80 =0, Eq. (3·2), Eq. (3·4) and Eq. (3·5) should coincide with 

the corresponding equations in Chap. 2. The elementary culculations give the desired 

results: 

Eq. (3·2)o0=o=Eq. (2·7)', 

Eq. (3·4)o
0
=o=Eq. (2·10), 

Eq. (3·5)o0=o=Eq. (2·11)', 

3 · 3. Application to the Problem of Lateral Rigidity 
We will consider the spring compressed by parallel plates and bent by the 
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1~----------------L----------------~ 

(a) 

1'4-----L/2---~ 

(c) 

Fig. 7. 

(b) 

lateral load at its middle point (Fig. 7a). If we leave the distance between plates to 

be unchanged and vary the magnitude of F, then the horizontal load P should be 

varied. But as the current theory is based on the assumption that P=const., it is 

varid only in the case P varies little, in other words in the case of finite deflections. 

So it is of practical importance to apply our theory of large deformations to this 

problem. 

Details will be reported in our next paper. So we will briefly sketch out its 

process here. The deflection curves (a), (b) and (c) in Fig. 7 are all the same, so the 

analysis of (a) is reduced to the problem of an oblique load (c). Then the additional 

equation under this condition is given as (yz/lo)=const. in Eq. (3·5). 
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