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On Lagrange Multipliers in Normal Equations 

(Received January 16, 1971) 

Yasutoshi W ASHIO* 

Abstract 

When there exist linear constraints among parameters in the linear statisti

cal model, the method of least squares seeks for the values of parameters 

which minimize the sum of squares of errors subject to the given linear 

constraints. For this minimization the Lagrange multiplier method is common

ly used. This paper treats of the problem of finding whether any Lagrange 

multipliers in the normal equations are equal to zero or not, before solving 

the normal equations. 

A necessary and sufficient condition that the Lagrange multipliers corre

sponding to any subset of linear constraints can be taken to be equal to zero 
is given. A sufficient condition for any Lagrange multipliers to be equal to 

zero is also given. Further a method for finding zero Lagrange multipliers is 

proposed and is illustrated by some examples. 

1. Introduction 

Consider the linear statistical model 

y=X{l+e, (1. 1) 

where y is an nx1 vector of observations, X is a known nxp matrix of rank r, p 
is a P X 1 vector of unknown parameters and e is an n x 1 vector of errors with 

expectation E(e)=O and with variance E(ee')=a2l, where a prime denotes the trans

pose of a matrix, a2 is an unknown positive constant and I is the n x n identity 

matrix. The matrix X may be called a design matrix. This paper deals with the 

linear estimation of p in the case where there exist t linear constraints among 

parameters 

B{l=O, (1. 2) 

where B is a known txp matrix. This situation arises, for example, in the analysis 

of variance model or in the problem of testing linear hypothesis in the linear 

statistical model. The least squares estimate p of p is the value of p which mini

mizes (y-X{l)'(y-Xp) subject to the constraints (1. 2). For this minimization the 

Lagrange multiplier method is commonly used. 

* ~ ~ * ~ Associate Professor, Faculty of Engineering, Keio University. 
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Let .i' =(A11 A2, ···,At) be a vector of Lagrange multipliers corresponding to the 

linear constraints (1. 2). Then the normal equations for obtaining the least squares 

estimates p are given by 

X' Xp+B'.i=X'y 
(1. 3) 

==0. 

It can be shown that the normal equations (1. 3) are consistent and have at least 

one solution (p' .i') for every y (see, for example, Yamamoto, S. and Fujikoshi, Y. 

[6]). It can be also shown that a least squares estimate jJ of p satisfies the normal 

equations (1. 3), and that any solution p of the normal equations, which is a function 

of y only, is a least squares estimate of p. 
At this situation, it is of importance for us to know before solving the normal 

equations whether each Ai is equal to zero (or can be taken to be equal to zero) for 

every y or not. Because, when some of Ai, i=l. 2, ···, t, are equal to zero, the normal 

equations become simpler and so it facilitates us to solve them. 

This problem has been investigated by many authors. Mann, H. B. [1] gave a 

sufficient condition for the Lagrange multiplier corresponding to a particular con

straint to be equal to zero for every y under some assumptions on the design matrix 

and the constraints. A generalization of the Mann's theorem was given by Masu

yama, M. [2]. A set of linear constraints B{l=O is called a set of identifiability 

constraints if the matrix B satisfies the following conditions (a) and (b): (a) The 

composite matrix [~] has rank p. (b) No linear combination of the rows of B is a 

linear combination of the rows of X except 0'. It is known that if the constraints 

B{l=O is a set of identifiability constraints, then the Lagrange multipliers corre

sponding to these constraints are equal to zero for every y (see, for example, 

Plackett, R. L. [3] and Seber, G. A. F. [5]). Reiersq)l, 0. [4] gave a necessary and 

sufficient condition for the Lagrange multipliers corresponding to any subset of linear 

constraints to be equal to zero for every y, assuming that all the constraints are 

linearly independent. Yamamoto, S. and Fujikoshi, Y. [6] gave a necessary and 

sufficient condition that B' .i = 0 for every y in the normal equations (1. 3), without 

assuming linear independency of the linear constraints Bfl=O. 

In this paper, we shall give a necessary and sufficient condition that the Lagrange 

multipliers corresponding to any subset of the given linear constraints can be taken 

to be equal to zero for every y, without assuming linear independency of the con

straints, in Section 2. A sufficient condition for any Lagrange multipliers to be equal 

to zero is also given in Section 2. In Section 3, a method for finding zero Lagrange 

multipliers by making use of our results is proposed and is illustrated by some 

examples. Section 4 contains some remarks on Lagrange multipliers. 
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2. Conditions That Lagrange Multipliers Are Equal to Zero 

or Can Be Taken to Be Equal to Zero 

Throughout this paper, a linear combination of row vectors of the coefficient 

matrix B in the linear constraints BfJ=O plays an important role. Denote this 

linear combination by l'. Then 

[
b[l 

where B= ~: and c' =(c, c,, ···, c,) is an arbitrary vector. 

The range space of a matrix A, or the subspace spanned by the columns of A 

will be denoted by SR[A]. The orthogonal complement of SR[A] will be denoted by 
{SR[A]}-1-. 

THEOREM 1. Suppose that there exists a set of linear constraints among para

meters 

BP=[ -~~-]P=O (2. 1) 

in the linear statistical model (1. 1) (B2 may be 0), and let A.'= [A.i: A.~] be a vector of 

Lagrange multipliers corresponding to the constraints (2. 1). Then A.1 can be taken to 

be equal to 0 for every y as a consistent solution to the normal equations*) if and 

only if 

lESR[X'] implies lE$[B:]. 

Proof. The normal equations can be writtem as 

X' X/J+ Bil.1 + B~A.2=X'y 

=0 

=0. 

Then Bil.1=0 for every y in (2. 3) if and only if the ~quations 

[
X' X B~] p [X'y] 

B1 0 [ ] = 0 

B2 0 A.2 0 

(2. 2) 

(2. 3) 

(2. 4) 

are consistent for every y. The last statement is equivalent to each of the following 

*) In what follows, we shall use the expression such that A1 can be taken to be equal 

to 0 for every y as a consistent solution to the normal equations instead of B[A1=0 for 

every y in the normal equations. 
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statements (2. 5) and (2. 6). 

{ [

X'X B~J}J..-{ [X'X B~ X'y]}J.. 
IR B1 0 - IR B1 0 0 

B2 0 B2 0 0 

for every y. 

X'Xu+Biv1+B~v2=0 and B2u=O 

imply Xu=O and Biv1 + B:v2=0. 

(2. 5) 

(2. 6) 

Now we shall prove that the statements (2. 6) is equivalent to the following 

statement (2. 7). 

(2. 7) 

We first prove that (2. 6) implies (2. 7). Suppose that 

(2. 8) 

holds. By a property of normal equations, the equations 

(2. 9) 

have a solution (u', vD for every p. From (2. 8) and (2. 9), we have 

=0. 

Then, from the statement (2. 6), we get 

Thus the statement (2. 7) holds. Conversely, suppose that the statement (2. 7) holds 

and that 

X' Xu+ B i v1 + B: v2 = 0 
(2. 10) 

=0. 

From the statement (2. 7), we can write as 

for some s. (2. 11) 

Substituting (2. 11) into (2. 10), we get 

X'Xu-B:s=O. (2. 12) 

Multiplying (2. 12) on the left by u' and making use of (2. 10), we have Xu=O. 

Substituting Xu=O into (2. 10), we obtain 

90 



On Lagrange Multipliers in Normal Equations 

Thus the statement (2. 6) holds. 

The equivalence between the statements (2. 7) and (2. 2) is clear. It can be 

verified that the above argument also holds for B2=0. Thus the proof is complete. 

Theorem 1 contains the results obtained so far as special cases. A necessary 

and sufficient condition that B' A.=O for every y in the normal equations (1. 3) is 

obtained by putting B2=0 in Theorem 1. The result can be written as follows: 

CoROLLARY 1. Suppose that there exists a set of linear constraints Bp=O among 

parameters in the linear statistical model (1. 1), and let A. be a vector of Lagrange 

multipliers corresponding to the constraints. Then A. can be taken to be equal to 

zero for every y as a consistent solution to the normal equations (1. 3) if and only if 

no linear combination of the rows of B is a linear combination of the rows of X 

except 0'. 

Corollary 1 is identical with the result given in Yamamoto, S. and Fujikoshi, Y. 

[6]. We can conclude from Corollary 1 that the case where all the Lagrange 

multipliers can be ignored in solving normal equations is only the case where the 

given set of constraints is a set or a subset of identifiability constraints. 

When the linear constraints are linearly independent, the solution A. to the 

normal equations (1. 3) is unique, and the condition (2. 2) in Theorem 1 turns out 

that 

implies c1 =0. 

Therefore, Theorem 1 leads to the next. 

CoROLLARY 2. Suppose that B p = 0 and A.'= [A.i : 1:1 are as in Theorem 1, and 

further that the linear constraints Bp=O are linearly independent. Then A.1 is equal 

to 0 for every y if and only if 

implies c1 = 0 . (2. 13) 

Reiersg)l, 0. [4] gave the following condition (2. 14) instead of (2. 13). 

Et[X':B:] nEt[Bi]={O}. (2. 14) 

We shall prove the equivalence between (2. 13) and (2. 14). If (2. 14) is false, 

then there exist vectors Z1, z2 and za such that 

and (2. 15) 

Since z1 ~ 0, (2. 15) shows there exists a vector l such that 

[E9{[X'] and 

which is the negation of (2. 13). Thus (2. 13) implies (2. 14). Conversely, if (2. 13) 
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is false, then there exist vectors Ct, Cz and Ca such that c1 ~ 0 and 

[X':B~] [ Cal=Bic1. 
-Cz 

(2. 16) 

Since the columns of B[ are linearly independent, B[c1~0. Hence (2. 16) shows the 

negation of (2. 14). Thus, (2. 14) implies (2. 13), and the equivalence is proved. 

The next theorem gives a sufficient condition for ..<1 to be equal to 0 for every y. 

THEOREM 2. Suppose that there exists a set of linear constraints among pa

rameters 

(2. 17) 

in the linear statistical model (1. 1) (Bz may be 0), and let ..<' = [..<[ :..<~] be a vector of 

Lagrange multipliers corresponding to the constraints (2. 17). If 

(2. 18) 

then l1 =0 for every y. 

Proof. The normal equations are given by (2. 3). From the first equations in 

(2. 3), we have 

(2. 19) 

Since the normal equations are consistent, (2. 19) implies that B[l1 + B~lz must 

belong to SR[X']. Hence, by the condition (2. 18), l1=0. 
The next theorem gives a relationship among Lagrange multipliers and will be 

helpful in obtaining the values of non-zero Lagrange multipliers. 

THEOREM 3. Suppose that there exists a set of linear constraints among 

parameters 

B,a=[-~~J.a=o (2. 20) 

in the linear statistical model (1. 1), and let . ..<'=[..<[:.<f) be a vector of Lagrange 

multipliers corresponding to the constraints (2.20). If l=B[c1+B~czESR[X'] implies 

that c1 = 0 and that there exists a vector Cz such that B; Cz ~ 0 and that there exists a 

unique relationship among components of vector Cz, say a;cz=O, then l1=0 and a 

relationship a;lz=O holds. 

Proof. The normal equations are given by (2. 3). By Theorem 2, we have 

l1=0. Substituting l1=0 into (2. 3), we get 

B;lz=X'(y-Xfl). 

Then, by the assumptions of the theorem, the relationship a;lz=O must hold. 
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3. A Method for Finding Zero Lagrange Multipliers 

We shall propose a method for finding zero Lagrange multipliers in practice by 

making use of theorems and corollaries given in Section 2. 

When the rank of the design matrix X is p, l belongs to SR[X'] for any c. It 
is, therefore, easy to apply the theorems and corollaries in finding zero Lagrange 

multipliers. For example, if the constraints Bf1=0 are linearly independent, then by 

Corollary 2 each of the components of .A is not equal to zero for every y. Then we 

shall confine ourselves to the situation when the rank of the design matrix is less 

than p. 
In order to examine whether each of the Lagrange multipliers can be taken to 

be equal to zero for every y or not, we at first want to know the set of values of 

c'=(cl, c2, ... , Ct) when l belongs to SR[X']. A matrix, say D, is introduced for this 

purpose. If the rank of X, r, is less than p, then there exists a px (P-r) matrix D 

of rank (p-r) such that XD=O. The matrix D may be called a matrix which 

shows linear dependency among columns of X. In the analysis of variance model it 

will be easy to find out the matrix D. 

Since the columns of D can be regarded as a basis for {SR[X']}.L, a p-dimensional 

vector l belongs to SR[X'] if and only if l' D=O'. Hence the set of solutions c' = 

(c1, c2, ... , Ct) to the equations l' D=O' gives the set of values of c, when l belongs to 

SR[X']. 

Therefore, we can find zero Lagrange multipliers by checking the following two 

or three steps : 

STEP 1. Find a matrix D which shows linear dependency among columns of X 

from the design matrix X. 

STEP 2. Obtain the set of solutions c'=(cl, c2, ... , Ct) to the equations l'D=O', 

where l=c1b1 + ... +ctbt. 

Here we shall note that the equations l' D=O' have t unknowns and (p-r) 

equations. At this step, Theorem 2 and Theorem 3 can be applied. If the con

straints are linearly independent, then Corollary 2 can also be applied at this step 

and we can find zero Lagrange multipliers. 

STEP 3. By making use of the result of Step 2, find a matrix B such that l 

must belong to SR[B'], where each row of B must consist of a row of B, when l 
belongs to SR[X']. Clearly B is not unique, but the B with the smallest number of 

rows is preferable for the purpose of making the normal equations simpler. 

If the constraints are not necessarily linearly independent, Theorem 1 can be 

applied at this step and we can find zero Lagrange multipliers. 
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Now we shall illustrate the method mentioned above by some examples. 

ExAMPLE 1. The results given by Mann, H. B. [1] and Masuyama, M. [2]. 

Here we shall refer the result given by Masuyama. The assumptions adopted 

in it can be given in an equivalent form as follows: i) The n xp design matrix X 

has the properties (a) and (b). (a) The pth column consists solely of 1. (b) The 

sum of the first q columns of X is equal to the pth column of X. ii) In the linear 

constraints B{J=O, the matrix B has the form such that 

From the assumption (b) on X, we can choose a matrix D such that 

1 

i 

D= 0 

6 

-1 

as a matrix which shows linear dependency among columns of X. Then, from the 

assumption on the matrix B, we have 

q 

Hence if I: b1j-:'st:-O, then l' D=O' implies c1 =0. The last statement means that 
1 

lESR[X'] implies c1=0. 
q 

Thus, if I: blj-:'f:-0, then A1=0 by Theorem 2. We note that the assumption (a) on X 
1 

can be removed. If Theorem 1 is applied, we can conclude normal equations have 

a solution with A1 =0. 

ExAMPLE 2. The two-way layout with equal numbers of observations in the 

cells. 

If Yijk denotes the k th observation in the (i, j) cell, then Yijk can be written as 

(i=1,2; j=1,2,3; k=1,2) (3. 1) 

where f1 represents the general mean, ai the main effect of factor A, pj the main 
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effect of factor B, rii the interaction between A and B and eijk the random error. 

Clearly the design matrix is not of full rank, and usually a set of linear constraints 

(3. 2) 

is introduced as a set of identifiability constraints. Let us consider the problem of 

obtaining the least squares estimates of parameters when a1 =a2=0. This problem 

arises when a hypothesis flo: a1 =a2=0 is tested. 

When a1=a2=0, the model (3.1) turns out to be 

(3. 3) 

and a set of constraints (3. 2) turns out to be 

~ nj=O U=1, 2, 3). 
i 

(3. 4) 

If we consider the linearly independent constraints only, then the constraints (3. 4) 

can be written in our notations as 

0 1 1 1 0 0 0 0 0 0 

0 0 0 0 1 1 1 0 0 0 

B= 0 0 0 0 0 0 0 1 1 1 -
0 0 0 0 1 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 

fi' = (f1, /31• (32, (33, ru, r12, r13, r21) r22, r23) . 

The design matrix X has 12 rows and 10 columns 

choose a matrix D such that 

D= 

1 1 0 o. 
---------------------------------------

-1 0 1 0 
-1 0 0 1 

-1 0 0 0 

0 -1 -1 0 

0 -1 
0 -1 

0 -1 

0 0 
·---------...._-----------------------------

0 -1 -1 0 

0 -1 0 -1 

0 -1 0 0 

b{ 

b~ 

b~ 

b: 

b~ 

and has rank 6. 

From the equations l'D=(clb{+···+csbnD=O', we have 
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and 

Since the constraints are linearly independent, Corollary 2 can be applied and we get 

and 

Furthermore, by Theorem 3, we can see there exists a relationship such that lz+la=O. 

ExAMPLE 3. The two-way layout with one observation per cell. 

If Yii denotes the observation in the (i, j) cell, then Yii can be written as 

(i=1, 2; j =1, 2, 3) 

where p, ai, and f3i are as in Example 2 and eii the random error. The design 

matrix is not of full rank, and usually a set of linear constraints 

(3. 5) 

is introduced as a set of identifiability constraints. Let us consider the problem of 

obtaining the least squares estimates of parameters subject to an additional constraint 

(3. 6) 

In order to illustrate our method in the case where the linear constraints are not 

necessarily linearly independent, suppose that there exists a further linear constraint 

which is derived from (3. 5) and (3. 6). After all, the given constraints can be 

written in our notations as 

B=[! 
1 1 0 

0 ] [b:l 0 0 1 1 1 b~ 

0 0 2 -1 0 = b~ ' (3. 8) 
0 0 3 0 1 b~ 

fJ' = (p, a1, az, (31, (3z, /3a) • 

The design matrix X has rank 4 and we can choose a matrix D such that 

1 1 
-1 0 

D= 
-1 0 

0 -1 

0 -1 

0 -1 

Thus the equations l' D=O' are 
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(3. 9) 

and the general solution to (3. 9) is given by 

Ca=kz, (3. 10) 

where k1 and kz are arbitrary constants. Then, when IE SR[X'], l can be witten as 

l' =ka(O, 0, 0, -5, 4, 1) 

=ka(b~-3b0 

=ka( -4b~ +b~), 

where ka is an arbitrary constant. 

If Theorem 3 is applied to (3. 9) or (3. 10), then we have 

and 

(3. 11) 

(3. 12) 

(3. 13) 

If Theorem 1 is applied to (3. 11), then we can see that the normal equations have 

a solution which satisfies 

and 

(3. 14) 

(3. 15) 

(3. 16) 

(3. 14) and (3. 15) follow from Theorem 1 by noticing that lESR[bz:ba] and that b2 

and b3 are linearly independent. (3. 16) follows from (3. 13). 

On the other hand, if Theorem 1 is applied to (3. 12), then we can see that the 

normal equations have a solution which satisfies 

and 

4. Some Remarks 

As mentioned before, if the given constrains consist of identifiability constraints 

only, then the Lagrange multipliers corresponding to these are equal to zero (or can 

be taken to be equal to zero). If there exist additional constraints in addition to 
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identifiability constraints, however, then the Lagrange multipliers corresponding to 

identifiability constraints may not be equal to zero. 
As an example, we shall refer Example 3. Suppose that the constraints under 

consideration consist of the identifiability constraints (3. 5) and an additional con

straint (3. 6), and denote the Lagrange multipliers corresponding to these by .{17 .{2 

and Aa respectively. Then we have A1 =0, A2::'s;:O and Aa::'s;:O. 

In fact, the values of Lagrange multipliers depend on the expressional form of 

additional constraints. Denote the identifiability constraints and the additional con

straints by 

HP=O 

and 

respectively. Since Hp=O are identifiability constraints, F=G[~J for some G. 

Thus (4. ?) can be transformed into 

(4. 1) 

(4. 2) 

(4. 3) 

If (4. 3) is given as additional constraints instead of (4. 2) and all the constraints are 

linearly independent, then we can conclude from Corollary 2 that the Lagrange multi

pliers corresponding to identifiability constraints are all equal to zero and that each 

of the Lagrange multipliers corresponding to additional constraints is not equal to 

zero. 

In general, a given constraints BP=O can be transformed into the equivalent 

constraints [-j~]fl =0 which satisfy the following properties : i) The rows of [-~:-J 
are linearly independent. ii) No linear combination of the rows of Eo is a linear 

combination of the rows of X except 0', i.e., BoP=O are identifiability constraints or 

a subset of them. iii) Each column of ii; belongs to !R[X']. If [~:-J ,8=0 is adopted 

as constraints instead of Bp=O, then the Lagrange multipliers corresponding to 

BoP=O are equal to zero and each of the Lagrange multipliers corresponding to 

B1P=O is not equal to zero. 
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