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Quantum Mechanical Descriptions of an Electron 

in a Magnetic Field 
(Received June 5， 1970) 

Abstract 

Mitsuru FUKUCHI* 

Ki yoshi SETO柑

The various quantum mechanical descriptions for an electron in a constant 
homogeneous magnetic field are considered for some particular gauges using the 
elementary methods of solutions. The internal relations between' t1iem are in-
vestigated by the quantum mechanica1 operator technique to get the systematic 

solutions for the wave functions in coordinate space. Then the transformation 

theory between various solutions is established and further the osci11ating motion 
of a wave packet is analyzed to present another direct example of tbe theorem 

due to Ehrenfest. 

1. Introduction 

Quantum mechanical behaviour of an electron in a uniform constant magnetic field 

is a well-known problem. Helical orbits are quantized into the famous Landau 

levelsω. We consider in this paper mainly the relations between the various quan-

tum mechanical descriptions， which are originated owing to the degeneracy of the 
energy eigenfunctions， or may be interpreted in a c1assical mechanical language， 
by the fact that the axes of helical orbits with the same energy may lie anywhere 

in the plane perpendicular to H. Further the arbitrariness for the vector potential 

by the gauge transformation makes the problem rather obscure. 

Before treating the problem quantum mechanically， we may mention br匂自ythe

classical mechanical description. Newtonian equations of motion of an electron in 

a static homogeneous magnetic field along the z-direction are expressed as 

骨福地

桝瀬戸

mez=-dz uu・
c .. 

叫=+竿 Vx，
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(1-3) 

where m is the electronic mass and -e, its charge. The motion along the magnetic 
field is identical as the free motion, and we shall attend to the description for the 
motion in a plane perpendicular to H, i. e. the x-y plane only. Equations (1-1) 
and (1-2) are expressed as 

Vx= -WVy, 

where w = eH is the cyclotron frequency, and we have the solutions, 
me 

and further integration gives, 

and 

X=Vx=TcW COS (wt+a), 

Y=Vv=TcW sin (wt+a), 

(1-4) 

(1-5) 

(1-6) 

(1-7) 

(1-8) 

(1-9) 

Here the electronic coordinates are expressed as the sum of two; the coordinates x0 

and Yo that are identified with the center of the circular orbit, and the relative 
Coordinates e and 7J Which describe the relative Circular motion to the Center Xo 

and y 0 , and are related to the velocity components Vy and Vx. 

and -1 
7J = -- Vx= -Tc COS (wt+a). 

w 

(1-10) 

(1-11) 

The helical motion is a simple circular motion of the radius rc with constant speed 
in a x-y plane centered at the point (x0, y 0) with angular velocity w. The energy 
E of the motion in a x-y plane is expressed only with the radius rc and the angular 
frequency w and therefore independent on the center of the orbit x0 and Yo· 

E= ~ mrc2w2 • (1-12) 

In a quantum mechanical treatment we have to formulate the problem in terms 
of the Hamiltonian operator which includes the vector potential explicitly rather than 
the magnetic field, so there appears some uncertainty concerning the gauge trans
formation. In the following we solve the Schrodinger equations for the stationary 
state wave functions in the x-y plane for the various gauges by elementary methods, 
and ask for the internal relations between them. The internal relations are in
vestigated using the quantum mechanical operator formulation to get the systematic 
solution to the problem. and the meanings of various constants of motion are made 
clear to get the density of states for particular methods of solutions. Finally the 
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motion of a wave packet is analyzed to get another example of verification for the 
theorem due to Ehrenfest. 

II. Elementary Solutions for Schrodinger Equations 
in Various Gauges 

We shall now consider the elementary solutions ·to the free electron problem in a 
uniform magnetic field in the nonrelativistic quantum mechanics. The Hamiltonian 
for our problem is 

where we omit the unnecessary part along the field direction (z-component). We 
now have to specify the vector potential. Since it is the magnetic field that is the 
observable physical quantity, all vector potentials which produce the same field 
( 0, 0, H) should be physically equivalent (gauge in variance). We may take three 
commonly used forms to the vector potentials. 

(1) A 0 )=(-Hy, 0, 0,); This gauge is called Landau or linear gaugem. 
(2) A<2)=(0, Hx, 0); This is essentially the linear gauge, where roles of x

and y-components are interchanged in contrast to the gauge Am. 
(3) AW= ( -!Hy, !Hx, 0) ; This is called symmetrical gauge. 
First, we consider the Landau gauge. The Hamiltonian in this gauge is represented 

as 

(2-1) 

Thus the staitionary state wave function wm must satisfy the Schrodinger equation, 

(2-2) 

It is easy to see that, looking for the solution in the form, 

_1 
1JfCl>(x, y)=(2n-) 2 exp(ik;,:x)<p(y), (2-3) 

we can separate the variables in the Hamiltonian. In other words the coordinate 
x does not appear in the Hamiltonian (2-1), and Px is a good quantum number (Px 

commutes with the Hamiltonian and its eigen value is denoted as hkx). The equa
tion to be solved for <p(y) becomes 

(2-4) 

and 

(2-5) 

The equation (2-4) is identical with the problem of one-dimensional harmonic 
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oscillator centered at y 0 =k.xA. 2• As for the eigenvalues we immediately get from 
the equation (2-4), 

E=hw(n+!), n=O, 1, 2,···, 

and the corresponding eigenfunctions are 

where H n ( p) are the Hermite polynomials. Thus we obtain 

lJf n:l~x (x, y) = (2n) -~ exp (ik.,x) r/Jn ( Y~Yo), 

and especially for the ground states 

lffo?kx = (2n) -! exp (ik.x) (A. ~rr) -! exp {- ~- ( y-~xA.
2 f}· 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

(2-9') 

The length il defined in the equation (2-5) is called the magnetic radius and de
termines the order of the cyclotron radius in the quantum mechanical ground state 
(n=O) and is therefore characteristic for the quantum mechanical treatment. In 
the wave function for stationary states (2-9) and (2-9'), we see the oscillatory mo
tion along the y-direction but not along the x-direction. The probability density 

llf! n: 1~x 1
2 is uniform for the x-direction in contrast to the oscillatory motion in clas-

sical treatment. 

We shall now determine the degeneracy of levels. First, we observe that just as in 
the classical description the energy (2-6) is independent on the position of the center 
y 0• This means that all the wave functions given in the equation (2-9) with dif
ferent kx (or equivalently y 0) belong to the same energy eigenvalue. Since in free 
space there is no restriction on kx, we may conclude that each level has an infinite 
degeneracy. But we consider an electron to be in a cubic box of a dimension L. 
If we apply the usual periodic boundary condition to the wave function in the x-

direction, then the allowed values of kx are 

(2-10) 

where nx is an integer. The center of the orbit, y 0 must be within the normaliza
tion length L. The wave functions with centers located within the distance A. from 
the boundaries may suffer the serious modifications due to the occurence of the sur
face states, but the relative number of such states is considered to be very small 

as long as A. ~L. This means O<;;:;kx= ~~- <;;:; -{;-. Since within the unit length of 

kx there are L/2 n allowed kx values, the total number of allowed kr values is 
L 2 /2 n A. 2 • and this is the degeneracy of each Landau level. The density of states 
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is 1;2rr ,p per unit surface area. When the magnetic field is so strong that the 
interval hw between the Landau levels becomes very large, we see the phenomena 

of strong bunching of the allowed levels. 
Next, the gauge A (2) is considered with the following Hamiltonian, 

Km= 2~ Px2+ 2!n (P 11 + ~ Hxf. (2-11) 

Following the similar analysis to tl:e ca~e of gauge Am we can easily obtain the 

solution, 

11r (2) ( ( )-t 'k ,.. ( x+k11 l 2
) 

'L' n, ky x, y) = 2rr exp t yJ'I'n ,{ ' (2-12) 

with the same expression as ( 2-6) for the energy eigenvalues. The degeneracy in 

this case is seen to be identical in the Landau gauge. We see in this gauge the 
center of the oscillator at x0 = -k11 l 2 and the ground state wave functions are ex
pressed as 

lffo~2k11 = (2rr) -i exp ikuY U ~n) -t exp {- (x~~~l
2

)
2 

}· (2-13) 

Finally, we consider the symmetrical gauge A(3)= ( -i Hy, i Hx, 0). In this gauge 
the Hamiltonian Kc3) is expressed as 

K( 3
)= 2~ (Px2+P 11

2)+ ~ wlz+ ~ mw2 (x2+y2
). (2-14) 

In this gauge both P x and P 11 are not constants of motion because we have both 
coordinates x and y in the Hamiltonian but we have another constant of motion, 
namely lz= (rxP)z as is easily seen. 

In order to make the physical situation clear, we may try to solve the cor
responding Schrcdinger equation in t:olar coordinates in the form ¢ (r, 8) 

1 

= (r)- 2 F(r)eiM 8 , with F(r) ol::eying tl:e following radial wave equationm: 

(2-15) 

where (2-16) 

"fA' e consider the caee where M is a very large positive or negative integer, thus the 
correspodence principle may be applicable. The effective radial potentiol Vett has 
a minimum value at 

and is approximated as 

Veff=Vo+!mw2 (r-rm) 2 + ... , 

where the minimum value of Vett is denoted as V 0• 
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(2-19) 

In the region where the principle of correspondence is applicable, V 0 is approximated 

as 

or 

V 0=1twM, when M is a large positive integer, 

V 0 =0, when M is a large negative integer. 

Thus we may expect that the eigenvalues of the Hamiltonian (2-14) to be 

ltw(M+!), ltw(M+!+1), ltw(M+!+2).···, M>O 

ltw!, ltw(!+1), ltw(!+2),-··. M<O 

(2-19') 

(2-19") 

(2-20) 

The eigenvalues as a whole are of course identical to the expression (2-6). 

The direction of circular motion in the magnetic field is expected to be the origin 
of the difference due to M values. 

The exact solution to this symmetrical gauge problem may be obtained easily 
rather in the form 

1JfC3) (r, ()) =R(r) eiMB, (2-21) 

where the radial wave function R(r) is investigated by usual polynomial expansion 

method for the function R(r)jexp (- ;;2 ). We cite here only the results, the 

details of which may be found in referencesC 3), 

nrc3)( 0)-(2-n+t+l 'l')-!1(r)n-l {·c l)O r2
}L (r2

) '~'n,t r, - nn. . T T exp t n- - 4,{2 n, t ""F , 

where the polynomial part of the wave function is denoted as 

Ln, t(P) =exp (p/2) ( ddp )n [p~ exp (- p/2) ]. 

The energy eigenvalues depend only upon n valves 

En=ltw(n+!), 

(2-22) 

(2-23) 

(2-6) 

and are degenerate to l values or toM. The quantum number M previously intro
duced by the equation (2-21) is given by the difference of n and l, 

M=n-l, (2-24) 

where 
1=0, 1, 2, 3, ... 

(2-25) 
n=O, 1, 2, 3, ... 

The positiveness for the l values is the reflection of (2-20). The ground states 
are obtained by putting n equal to zero, 

(2-26) 
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The degree of degeneracy or equivalently the state density for the level En 
=hw(n+i) is difficult to obtain in this gtage of investigation, where the meaning of 
the quantum number 1 is not clear although it has been introduced by the require
ment of termination of series for the function Ln, z ( p). 

We have now investigated the wave functions in three different gauges. Now 
we shall proceed to consider the internal relations between them. As is well known 
the gauge transformation is represented by the canonical transformation for the 
wave functions in quantum mechanics. 

vr ~w' = exp (- ~ft) qr (2-27) 

The vector potential appears in the Hamiltonian in the form of combinations of 

P + !!_ A where this quantity is transformed by the canonical transformation (2-27), c 

P+!!_A~P'+!!_A'=exp(- ief)(P+!!_A)exp(+ ief) 
c c ~ c ~ 

=P+!!_ (A+yf). 
c 

(2-28) 

Thus the wave function l/f' is expected to be one for the gauge A+yf. Unfortunately 
we are not able to obtain the simple relation (2-27) for the solutions (2-9), (2-13) 

and (2-22). For simplicity we consider the ground state wave functions mainly in 
the following. The linear combinations of the degenerate wave functions that are 
obtained by the transformation (2-27) are need to obtain the correct wave function. 
Starting from the wave function qrm for the Landau gauge, we seek after the 
solution l/f<2> in the gauge A <2), where the gauge transformation is 

A<2)=A<ll+Y/' 

and f'=Hxy. 
According to the equation (2-27) we obtain from the equation (2-9'), 

lff o,gkx = const X exp { ikxx- i ~~ - (y-;; : 
2

) 
2
}, 

(2-29) 

(2-29') 

for the gauge transformed wave functions. We have further to make the linear 
combination of the above wave functions which have different kx values in order 

to have lff <2) 
0, ky ' 

(2-30) 

f c(k k )lf! g dk ex: e.x:p {ik y- (x+kuA
2

)
2
}Jexp- R_ (k - Y+ix+iA

2
kY )

2
dk 

y' x 0, kx x y 2 A 2 2 x A 2 .£ • 

(2-31) 

This is exactly proportional to the function l/f0~2~11 , (2-13). For the excited state 
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wave functions we can obtain the same coefficients of linear combinations propor
tional to above c(kv, kc) using the generating function for the Hermite functions. 

Next, the wave function 1Jf0,c{~ 0 is obtained from the function 1Jf0~ 1~x· In this gauge, 

and 
then we obtain 

A c3) =Ac1)+r/" 

f''=! Hxy, 

g' {. • xy (y-kxA 2
)

2
} 

1lf0, kx =Constxexp zkxx-t ""'2).""2- --
2
-).-2 - • 

(2-32) 

(2-32') 

(2-32") 

T k. th ffi · '(k ) 1 t ( ). 
2
kx

2
) nr (a) • ·1 bt · d · a mg e coe ctent c x equa o exp - -

2
- , '~' o. t=o ts east y o atne , I.e., 

we can see 

(2-33) 

is exactly proportional to the function if/o.?~o, (2-26). 

III. Systematic Solutions for the Wave Functions 

So far we have worked out with the wave functions for a specific vector potential 
in each case. Now we proceed to work with the systematic treatment. In this 
formulation the eigenvalue problem can be treated in terms of the relative coor
dinates and the coordinates of the center of the orbit co, and the corresponding 
eigenfunctions are obtained by factorization procedure, in which the constants of 
motion may be conveniently used to classify the wave functions. 

The Hamiltonian is expressed in terms of the kinetic momenta, 1r 

1r=P+ .!!_A, 
c 

where 1r x and rr Y satisfy the commutation relation, 

[rrx, 7ry]=- !!!!:_Hi. 
c 

(3-1) 

(3-2) 

(3-3) 

Relative coordinates e and r; are introduced quantum mechanically by the definition, 

7r ).2 
e=-y- =- 1ry 

mw h ' 
7r X ). 2 

r;=- mw =- h 1rx, (3-4) 

and therefore, they are not independent variables for each other as in classical 
treatment, but they have to be considered the canonical variables which are com
plementary to each other. 

(3-5) 
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The Hamiltonian (3-2) are expressed in terms of these relative coordinates g 
and r;. 

K=i mw2(e+r;2) (3-6) 

The radius of circular motion rc is related to these coordinates,· 

r 2-~2+r;2- 2 K 
c -<; - mw2 , (3-7) 

from which we can conclude that rc is a constant of motion and an eigen state of 
the Hamiltonian K may therefore be constructed to become an eigenstate for the 
operator r c also. Another set of coordinates are those for the center of the circular 
orbit x 0 and .y0 , which are defined as 

.A,2 
X 0=x-g=x- T rry,. 

..(2 
Yo=Y-TJ=Y+ T 1rx • 

(3-8) 

These variables are independent to the relative coordinates, because we may easily 
see using: the relations (3·.:·1)', (3:.._4) and (3..:..8), 

(3-9) 

and therefore they commute with the Hamiltonian (3-6) , but they are not mutually 
commutable for each other, 

(3-10) 

The coordinates of the center, x 0 and Yo have therefore to be considered as another 
set of canonical variables in addition to the canonical variables .~ and r;. 

We have thus obtained two sets of canonical variables (g, r;) and (x0 , y 0) and as 
the Hamiltonian does not contain the one set of variables (xo, y 0) we may conclude 
that the eigenfunctions are degenerate by the way in which the eigen functions are 
expressed in terms of the variables x 0 and Yo· Thus the variety of the eigen func
tions is not due to the selection of the gauge to the vector potential, but due to 
the selection of the wave function for the variables Xo and Yo· 

We shall proceed to work with the eigenvalues and the eigenfunctions concretely. 
The annihilation and creation operators for the oscillation of the relative coordinates, 

a and a* are defined as 

1 (!!: •. ) i). ( . ) a=.; 2 A. ... -tr; = l'i h nx-tr:y , 

(3-11) 
* 1 ( +.) i). ( +. ) a =-:[2T ~ tr; =- ../2 h 'lrx t'!ry. 

The Hamiltonian is seen to be diagonal in the occupation number representation, 

* _ 1 (!!: 2 + 2) _ 1 _ K _ 1 
a a- 2,{2 r.,; r; 2 - ltw 2' (3-12) 
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whose diagonal elements, 
En=ltw(n+i), (3-13) 

are identical to the well known Landau levels. The corresponding eigen functions 
are obtained from the ground state wave functions which are determined by the 
requirement alff0 =0. 

Although the eigenfunctions are determined by the equations, 

~n=(n.')-! (a*)nlf!o, (3-14) 

alff0 =0, 

the concrete forms of wave functions are dependent on the variables x 0 and Yo· 

Three choices of the wave functions for the center of orbit x 0 and Yo are considered; 
Case I. The wave functions are the eigenfunctions for y 0• 

Case II. The wave functions are the eigenfunctions for x0 • 

Case III. The wave functions are eigenfunctions for x0
2+y0

2
• 

We first consider Case III; the wave functions are the eigen functions for the 
operator r 0

2 =x0
2+y0

2, in which x0 and Yo are considered to be canonical variables 
according to the commutation relation (3-10). Introducing the creation and annihila
tion operators b*, and b for these variables, 

we obtain 

and 

b*- 1 ( -. ) - ,.;
2

-;, Xo tYo, 

b= ,.;-2~ A (xo+iYo), 

b*b= 2~ 2 (Xo2 +Yo2 +i[Xo, Yo])= 2~ 2 (ro2-A. 2
), 

(3-15) 

(3-16) 

(3-17) 

The eigenvalues of r 0
2 =x0

2+ y 0
2 , that is, the squared distance from the origin of 

the center of the orbit are quantized into the discrete values, 

(3-17') 

The degenerate ground state wave functions are classified according to above /
values, 

1f!0 (l) = (l!) -i (b*)llf!0 (l=0) =(l!) -i {,.; 
2
1 A. (x-iy) r lffo(/=0), (3-18) 

where the creation operator b* is equal to ,.; 
2
1 A. (x-iy) -a and therefore we may 

drop the operator a for the ground states 1f!0(l). The starting ground state in Case 
Ill, 1f!0(l =0) is completely determined by the requirments, 

a1ff0 (l=0) =0, 
(3-19) 

and b'lfo(/=0) =0. 
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These equations are expressed in terms of rr x and rr Y, 

7r:x1ffo(l=0) = 2~2 i(x+iy) W0 (l=0), 

rryWoCl=O) = 2~2 (x+iy) W0 (l=0), 

(3-20) 

and thus we can obtain the differential equations which the required wave function 
has to satisfy in the ordinary coordinate space representation. 

oW0 (l=O) __ 1_ (- _;y-. 2Ax) nr (l-O) 
ox - 2,{2 X • z H 'I' 0 - , 

o1Jf0 (l=O) = _1_ (+ix- y-i 241L) 1Jf (l=O) 
ay 2A. 2 H o • 

(3-21) 

and 

The solution for the equation (3-21) is confirmed to be 

(3-22) 

using the relation H =rotzA. 

The phase integral J Ax dx+ JAy dy is related to the gauge transformation A 

=A (3) +J"/, where we have defined the general gauge relative to the symmetrical 
gauge, A(3)=(-iHy, iHx, 0) using the scalar function f. 

2/= j Axdx+ j Aydy . (3-23) 

The wave function (3-22) becomes finally to 

(3-22') 

The factor exp (- i /;,. 2 ) is identical to the canonical transformation (2-27). The 

degenerate ground state wave functions are obtained in Case III in coordinate space 
using the relation (3-18), 

(3-18') 

which confirms the result (2-26) for the arbitrary gauge. 
From the expressions (3-17) and (3-17') we can obtain the meaning of the quan

tum number l, that is the measure for the distance of the center of the orbit from 
the origin. Considering the specimen to be a circle of radius R and neglecting the 
boundary effects to the number of states we may obtain for the density of states 
per unit surface area for the very large value of R, 

1 1 ( R 2 
) 1 

rrR2 lmax= 2rrR2 V-1 ---.. 2rr ,{2 • 
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The form (3-18') confirms that the angular momentum lz= ~ aae is a constant of 

of motion only in the symmetrical gauge A <3), where I is equal to zero as is pointed 
out previously. The solution for the Landau gauge Am should be obtained if we put 

I equal to- !Hxy but the function ).]
2

n exp (- x:tf2

) exp ( -i :~) is the wave 

function corresponding to 1=0 and n=O in the LandaQ. gauge. In order to get the 
wave function of the form (2-9) and (2-9') we have to proceed to Case I. 

Next we consider the wave functions in Case I, where the ground state wave 
functions are classified according to the eigenvalues y 0'. The wave function 1Jf0 (Yo') 

is obtained from the wave function 1Jf0 (y0'=0) using the displacement operator for y 0, 

· ( · Yo'Xo) t.e., exp z---;:;--- . We can ea~ily see the function 

is the eigenfunction of y 0 with eigenvalue Yo' using the relation 

Yo7fo(Yo'=0) =0, 

( ·Yo'Xo) (·Yo'Xo) ' exp -z~ Yo exp z-).-2 - =Yo+ Yo. 

(3-24) 

(3-24') 

The starting wave function in Case I is therefore determined by the requirments, 

a1Fo(Yo' =0) =0, 
(3-25) 

Yo1Fo(Yo' =0) =0. 

The equations (3-25) are transformed into the following form in terms of n x and 

(3-25') 

and finally into the form of differential equations in coordinate space. 

a: Wo(Y'o=O) = ia (- yi-i-4;) Wo(Yo'=O), 

(3-26) 

_E__ Wo(Yo' =0) = _!_ (- y-i AHy) 1f!o(Yo'=0). ay ).2 

The solution of the equations (3-26) is expressed in terms of scalar function I 
previously defined, 

11r ( '-0)-(2 ,- ).3)-! { Y
2 

·( I + xy )t '~"o Yo- - nvn exp -212-z ).2H 2).2 j" (3-27) 

In order to get 1f!0 (y0') from the solution (3-27) using the relation (3-24), we notice 
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and we may therefore move the factor exp {- ;.!H (f+i Hxy)} through the 

operator x 0 to the left, 

1Jf0(y0')=(2rr.[K J. 3)-iexp{- ;.!H (!+ H:y)}exp{if{ (x- ~ Py)}exp(- /;~2 ) 

=exp {- ;.!H ( !+ H:y)} (2rr J. 2
) -! exp (i Y~;) U~1r) -! exp{- (y;J2°

1

)

2

}. 

(3-28) 

The function (3-28) is identical to the function (2-9'), where we remark the relation 
Yo' =kxA 2 , and /+! lfxy is equal to zero for the gauge Am. 

The wave function 1Jf 0 (y0'), (3-28) is changed into the form 

1Jf (y ') oc exp (-i _f_) exp (- x2+ .t.) exp (x-iy+2iYo')2 
o o ;_ 2H 4}. 2 4}. 2 • 

(3-28') 

In the form (3-28') the last factor is the function of (x-iy), the power series ex

pansion of which thus may give the expansion of 1Jf0 (y0') by the wave function 7f!o(l). 

We notice here that the states of even l may appear for the state 7f!o(Yo'=0) but 
states of alll's may appear for the general state 1Jf0(y0'), and further that the same 
expansion formula may apply for the excited state wave functions because they can 
be obtained by repeated application of the creation operator a* to them. The state 
1Jf o(Yo') is an eigenstate of the operator y 0 and the operator Xo consequently has 
infinitely large uncertainty as is required by the commutation relation (3-10). 
This is the reason why 11/f n, kx m 12 has uniform charge density for the x-direction. 

Finally we can treat Case II similarly. The wave function 7f!o(xo'=0) is deter-
mined by the requirements, 

and 
whose solution is 

a~o(Xo'=O) =0, 

Xo1f!o(Xo' =0) =0, 

7f! 0 (x0'=0)=(2rr~7r A3)-lexp{- ;;2 -i( ;_&- :J2 )}· 

(3-29) 

(3-30) 

The displacement operator exp ( -i x~.;o) generates the function 1Jf0 (x0') from the 

function 1Jf0 (x0' =0), 

~o(Xo')=exp(-i x~~) 1Jf0 (Xo'=0) 

=exp{- ;_ 2~ ( /- H:y)} (2rr }. 2
) -! exp ( -i x~ ;o) O.l1r) -! exp {- (x;:.

2
o') 

2

}, 

(3-31) 
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and the analogous one for the equation (3-28') is 

lJf (x ')ex: exp (-i_L) exp(x2+~) exp{- (x-iy-2xo')
2

} 
0 0 J..2lf 4).2 4).2 ' 

which may give the expansion of lJr 0 (x0') by the function lJf 0 (l). 

IV. Conclusion and Further Discussions 

We have developed the theory for the wave functions in the general vector poten
tial, and reached the conclusion that the differences in the wave functions originate 
from the differences which constants of motion we chose to classify the degenerate 
wave functions. The different vector potentials may give the different constants 
of motion at first sight in terms of rand P but, as our previous treatment in terms 
of 1r shows, we can obtain the same constants of motion in the general gauge al
though they become obscure for the particular gauge. The remaining problem is 
to find out the transformation theory in quantum mechanics from the general point 
of view. As two sets of the cannonical variables are (~, r;) and (x0, y0) for our 
Hamiltonian, we may work out the transformation theory in the ~ and Yo repre
sentation. We can obtain the wave functions in this representation. 

Case I. 

lJf n (Yo')= In> 0 (Yo- Yo')' (4-1) 

where In> is the n-th oscillator wave function as a function of~ to the Hamiltonian, 
K=! mw2(~2+r;2). 

Case n. 
lffn(Xo')= ln>(2n-J.. 2)-! exp ( -i x~~o ), (4-2) 

where we have used the commutation relation [x0 , y0]=iJ.. 2, and normalized the weve 
functions for the continuous variable x 0', as is done for Case I for the variable Yo'. 

Case m. 

lffn(l)= ln>Yz(Yo), (4-3) 

where Yz(Yo) = (2 1lf.v'n J..) -! /fzOYo) exp (- ;;: ) is the normalized wave function 

for the operator x 0
2+y0

2 whose eigenvalues are J.. 2(2l+1) in Yo representation. 
The coefficients of transformations between them are easily obtained in this 

representation taking the inner product between the above wave functions. 
Case I and Case ll 

(lJf n(Yo') llJf n,(xo')) = on,n• -/2~). exp ( -i Xo;~o') 

Case I and Case ][ 
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Case li and Case 1II 

(4-6) 

As a final interesting example the motion of a wave packet in a constant magnetic 
field is shown to have an exact solution as in a one dimensional harmonic oscillator 
problem<~>. As for the initial state wave function of a packet, the function 

• _ _ 1 ( . x2 + yz ) 
1/f(x, y, t-0)- lii A exp tkx- 212" (4-7) 

is chosen and we will try to look for the time evolution of the packet. The form 
of the wave function (4-7) means that an electron is localized near the origin and 

has the initial mean velocity Ilk along the x-direction. 
m 

The function is expanded in terms of the eigenfunctions of the Hamiltonian for which 
we use Km, (2-1) of the Landau gauge for simplicity, thus the time development 

is easilly achieved by the factor exp (- i Ei/ ) . 
00 co 

1JI'(x, y; t)= L J dk'Wn~1l.An,11exp (-inwt) exp(- ~ wt) (4-8) 
n=O -oo 

The coefficients An ,k• are obtained by the inner product between the function 
V'(x, y; t=O) and the eigenfunctions P'n~~~,, (2-9). 

=(~)i (- ,P(k-k')2) (-Ak')n {- (!!:_3._)2} lii exp 2 (2nn!)! exp 2 (4-9) 

With these coefficients An,~:,, we can sum up over n using the property of the generat
ing function for the Hermite functions and then the integration over k' can be 

performed with use of the Gaussian integral formula. 

- 2\2 (y-k' A2)2- ~ wt} 

= ~2 { rr (S- 4e-'-"t+ e-2;:..t)} -t exp [{kA 2+ix+ y(l-e-i."'t) p .,.....1__ _ (kA) 2+iwtJ 
A .P(5-4e-;.,t +e 2'"'') 2A 2 2 

(4-10) 

The moving wave packet (4-10) gives the position probability density proportional 
to exp (2F) as a function of space coordinates, 
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;.,zp= {kJ.. 2+ix+y(1-e-iwt)p {kJ.. 2-ix+y(1-e'wt)p _ _!_ 2 

2(5-4e-iwt+e-2i•'t) + 2(5-4eiwt+e2iwt) 2 Y' (4-11) 

where F is a quardratic function for the x and y. The equations which gives the 
center of our oscillating wave packet are obtained by the requirement that F has 
a maximum value and are written down after some rearrangement. 

x(5-4 cos wt+cos 2wt) +y sin 2wt =kJ.. 2(4 sin wt- sin 2wt) 

x sin 2wt+y(7-4 cos wt-cos 2wt)=kJ..2(9-10 cos wt+cos 2wt) 

The equations (4-12) have obviously the solution, 

x=kJ.. 2 sin wt, 

Y=kJ.. 2(1-cos wt), 

(4-12) 

(4-13) 

which shows that the packet represented by the equation (4-10) oscillates exactly 
as in classical mechanics. Thus we have another direct example of the theorem 
due to Ehrenfest. 
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