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On the Numerical Analysis of Transient :Flow 
in a Pipe Filled with Viscous Liquid 
(by the Method of Characteristics) 

(Received January 27, 1970) 

Abstract 

Takahiko T ANAHASHI* 
Tsuneyo ANDO** 

With the development of industrial technology, the hydraulic machines and 

equipments of late have become larger in size, and the non-steady flow of fluid 

in the pipe conduit of the oil pressure circuit came to attract an increasing 

amount of attention. The analysis of this problem boils down to the question of 

how accurately the Navier-Stokes equation can be solved. Many a method has 

been proposed, which introduces the idea of the impedance and admittance in 

the electric circuit, in obtaining the analytical solution in a form corresponding 

to the frequency. However, the processes involved in the proposed solution are 

too complicated, and an application of these methods to the flow of fluid in the 

pipe conduit cannot be justified. Furthermore, these methods fail to take into 

consideration the influence of gravity and the elasticity of the pipe conduit. 

This paper, therefore, describes an analysis of this problem by means of the 

characteristic curve method, taking into account the shortcomings of the above

mentioned methods. The advantage of this method lies in its facility, enabling to 

obtain numerical solutions taking into consideration such conditions as the charac

teristics of the ramifications, combining and the varying calibers of the pipe. This 

paper also reports the manner, in which the pressure wave declines, in case the 

resistance arrived at through numerical calculation is in proportion to the first 

power of the velocity, and that in case the resistance is in proportion to the 

second power of the velocity. 

I. Introduction 

There are two methods of analyzing the non -steady flow of fluid in the oil pres

sure circuit. (i) A method based on differential equation: this is further divided 

into two, (a) one takes into consideration the inertia of the fluid but disregards the 

compressibilityc1), while (b) the other takes into consideration the compressibility but 

disregards the inertia c2
). (ii) Another method based on partial differential equation : 

* tJj)J m ~ 1J; Instructor, Faculty of Engineering, Keio University. 

** rti. Iii 1~ i.!t Associate Professor, Faculty of Engineer.ing, Keio University. 
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(a) this treats the fluid as inviscid fluid in one dimension; (b) treats the fluid as vis

cous fluid in one dimensionca), and (c) treats the fluid as viscous fluid in two dimen

sionsC4)· cs), CG). The last method introduces the idea of Series Impedance and Shunt 

Admittance of the electric circuit, in obtaining the analytical solution in the from 

corresponding to the frequency. However, the processes involved in the proposed 

solution are too complicated, and an application of this method to the analysis of 

the flow of fluid in the pipe conduit cannot be justified. Furthermore, this analysis 

disregards the influence of the elasticity of the pipe conduit, its inclination and the 

gravity. 

In an effort to remedy these shortcomings, the authors worked out an analysis 

by means of a characteristic curve method which reflects the characteristics of the 

ramification of the pipe conduits, their combination, connection of pipes with varying 

diameters, the valves and the boundary characteristics. 

II. Notations 

cross.sectional area of conduit 

inside diameter of conduit 

A 

D 

E modulus of elasticity of pipe wall materia_ 

F 

H 

flo 

1 ffi 
. 32 

oss coe c1ent = y'YJ 

pressure head 

aUo 
normal pressure head=-

g 

HR : pressure head of reservoir 

K : bulk moduls of water 
1 

K' : equivalent bulk modulus= 
1 

A 

x+!f 
L total length of conduit 

u 
M Mach-number=-

a 
Uo 

Mo: normal Mach-number=-
a 

P : P+po(JZ 

PR : reservoir pressure 
R inside radius of conduit 

a velocity of pressure wave 

c coefficient determined by support conditions of conduit 

e thickness of conduit material 

f Darcy-Weisbach friction coefficient 
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g gravity acceleration vector 

g absolute value of gravity acceleration= lu! 
hz dimensionless hydraulic loss head 

m 
p 

s 

t 
u 
v 

w 

X 

z 

p 

Po 

lJo 

= 1 (t t ~;
2 

) for turbulent flow 

= ;
0 

( ~~ r; UoL) for laminar flow 

mass within control surface= pAox 

pressure 

dimensionless deviation of density= p- Po 

time 

axial velocity component 

radial velocity component 

velocity vector 

po 

positive distance measured from valve to rescrvlJJ 

height of conduit from reference level 

density of water 

normal density of water 

viscosity 

kinematic viscosity 

normal kinematic viscosity 

eigenvalue 

elasticity factor= ! (2sl +s2) 

. f . 1 . dR circum erentla stram= R 

1 . d. 1 . d(ox) 
ong1tu ma stram= a;;-

circumferential stress 

longitudinal stress 

Poisson's ratio for pipe wall material 

III. Fundamental equations 

Equation of Navier-Stokes 
dW 1 ]../ 
dt =-p-17p+lJI72 W+ Tl7(17· W)+g. ( 1) 

Equation of continuity for cases where the control surface is changeable 

om at +17·(m W)=O. ( 2) 

23 



Takahiko TAN A HASH I and Tsuneyo ANDO 

State equation for oil 

dp K 
dp p 

( 3) 

Hook's Law for thin pipe 

(
ct )= ~ ( 1 - fl)(al) • 
cz - p. 1 <lz 

(4) 

The above four are the fundamental equations. The coordinate axis (Fig. 1-a 

and b) is designated as (x, r, O') and the axis x is plotted along the pipe axis, r axis 

is plotted in the direction of the radius and the 0' axis is along circumferential di

rection. 

Postulations 

i. 1.1=1.1o constant 

ii. Axious symmetric flow of two dimentions W=(u, v, o) and u'J/v. Accord

ingly, the pressure is uniform on the section, P= p (x, t). 

iii. Flow pattern changes while maintaining the distribution of velocity in the 

laminar flow and parabola: 

1 rk 
U(x, t) =AJo 2nru(a, r, t)dr, 

u(x, r, t)=2U(x, t) {1-(; Y}. 
iv. R'J/L. 

v. The compressibility of the fluid and the elasticity of the wall of the pipe is 

about the same : 

p=po(1+s), s~1. 

vi. g=( -g sin 0, 0, 0). 

From Eq. (1), on the basis of the above-mentioned postulations, 

du =- _!_ ap + l.lo ( o
2

U + 2_ au ) - g sin 0 
dt po ox or2 r or 

is obtained. From Eq. (2) 

_!_ dp _!_ dA __!_ d(ox) p. W-O 
p dt + A dt + ox dt + - . 

By means of Eqs. (3) and (4) 

1 dp 2ct dp c dp 
K dt + dp dt + dp dt +P· W=O. 
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Accordingly 

( 6) 

is obtained. 

Where 

for both sides are fixed, 

5 
c = T - p. : for one side is fixed, the other is free. 

We define 

P=P+pogz, 

J----, J-K;---;;-;--K ---··--
a= -= 1+ KDc, 

Po -Ee-
32 

F= [)2 r;' 

and Eqs. (5) and (6) is averaged on the section. By using the postulation (ii) and 

(iv) 

au au 1 aP F - + U- =-·- ---- U 
at ax Po ax po ' 

( 7) 

aP u( ap . ) 2 au --+ --pogsmO =-poa --
at a;_ ax 

( 8) 

are obtained as the first approximation. These are the fundamental equations for 

analyzing the impact on the oil pressure circuit. 

IV. Characteristic curve method 

Equations (7) and (8) are the partial differential equations of the non-linear and 

hyperbolic type. 

We can write them in the following vector type : 

AV+Vt=C, ( 9) 

where 

(u-1) A= ' Po , 
poa2

, U 
V= (~), V,=(~:), (Ut) (-__f___ U ) Vt= , C= Po . 

Pt p0gUsin 0 
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Accordingly, the characteristic equation of Eq. (9) is 

IA-z-11=0, (10) 

on the basis of which the eigenvalues of (i=1, 2) are obtained; 

rz= U-a. 

If the eigenvector corresponding to the eigenvalue ri is assumed to be hi, we have 

1 
hu: h1z=a: -, for r1; 

po 

1 
hz1: hzz= -a:-, for rz. 

po 

Multiplying Eq. (9) by eigenvector hi from the left-hand side, we have 

h·(ri V.x+ Vt)=hi·C, 

hi·dV=hi· Cdt. 

This is the characteristic curve. It is divided into two component parts : 

dP= -poadU+(pofJ sin 0-aF)Udt, 

for dx=(U+a)dt, 

and 

dP=poadU+(pog sin O+aF) Udt, 

for dx=(U-a)dt. 

V. Method<s) of calculation of numerical value 

(11) 

(12) 

(13) 

(14) 

The method is divided into three parts, and each of them is solved as simultane
ous equations along the characteristic curve. 

( i ) The end of the left-hand side 

Boundary condition; 

P=f(U). (15) 

Characteristic curve ; 

dP= poad U + (pofJ sin 0 +a F) Udt . (14) 

( ii ) On the pipe line 

Characteristic curve of the negative slope ; 
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dP= -poadU+(pofJ sin 0-aF)Udt. 

Characteristic curve of the positive slope ; 

dP=poadU+(pofJ sin O+aF)Udt. 

(iii) The end of the right-hand side 

Characteristic curve ; 

dP= -p0adU+(po(J sin 0-aF)Udt. 

Boundary conditions; 

P=g(U). 

(13) 

(14) 

(13) 

(16) 

The results are given at the intersection points. Particularly, in the case of 

liquid, it being M= ~ ~ 1~~0 =0.01, the calculation is much simplified by linearizing 

it as dx= ±adt. When equation (13) is integrated to CD and ® with reference to 

Fig. 3-a and equation (14) is integrated to @ and ®, equations (17) and (18) result : 

P2-P1= -poa(U2- Ul)-+(aF-pofJ sin O)(U2+ U1)Llt, 

Substituting the following k1( U) and k2( U) into equations (17) and (18), 

we have 

kl(U)=+(aF-pofJ sin 0) Vilt, 

k2(U)=-}(aF+pofJ sin 0) Vilt, 

{P2+k1CU2)}- {P1-k1(U1)} = -poa(U2- U1), 

{P2-k2CU2)}- {Pa+k2(Ua)} = +poaCU2- Ua). 

(17) 

(18) 

(19) 

(20) 

If equations (19) and (20) are reproduced in the form of diagrams, they result in 

Fig. 3-b and c. Generally under this method, k1 and k2 become valid in relation to 

the radom function of V. Particularly, the flow of fluid of low viscosity in the 

pipe conduit becomes turbulent, accompanying a resistance loss in proportion to the 

second power of the velocity. Even in this case, only k( V) becomes a quadratic and 

equations (19) and (20) still remains valid. 

VI. Calculation models and their review 

All the calculations were made under the assumption that the valves in the 

normal flow of the fluid is suddenly closed. 
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i. Fig. 4-a, b, c and d show the changes over time in the pressure at a point 

right behind the valve, in case the viscosity of the fluid flowing through a 

horizontal pipe conduit increased. Fig. 4-a shows the case in which the fluid 

being non-viscous there took place no loss of energy. In this case, this was 

a perfect rectangular wave and no decline was observed. On the other hand, 

as the viscosity of the fluid increased the pressure rapidly decreased. In this 

case, the relations between the maximum pressure and the coefficient of vis

cosity can be shown by 

( 
16!.iL) 

Pmax~2paUo 1- DZa . (21) 

Fig. 5-a, b, c and d shows the changes in the pressure at the center of the 

pipe conduit, and due to the overlapping pressure of the reflected waves 

generated from the reservior, the changes in the pressure becomes compli

cated. 

ii. In an effort to determine the effects of the various angle, calculations were 

conducted on the basis of 0=0°, 30°, 45°, 60° and 90°. However, the results 

showed little influence on the pressure, other than those on the potential 

energy, as shown in Fig. 6-a, b and 10. Accordingly, even if the influence 

on the potential energy was ignored, the resulting error would be in the 

order of 1%. This can be seen also from equations (13) and (14) to be 

p0g sin OUilt = poa . L sin 0 . Uo . _!!___.~<Mo. 
~ r & a ~ P 

iii. Generally, the fundamental equations applicable to the cases, in which the 

flow in the pipe is turbulent, are 

(22) 

(23) 

The solution of the case, in which 50% of the head was lost under similar 

boundary conditions, obtained on the basis of the above-mentioned equations, is 

shown in Fig. 7 -a and b. When this was compared with Fig. 4-c and 5-c, 

it becomes evident that the decline of pressure of such viscous fluid as oil is 

more precipitous than other fluids, in spite of the fact that the energy loss 

of these fluids is the same. Fig. 8-b shows a comparison of decline of pres

sure between the case in which the loss of energy is in proportion to the 

second power of the velocity and that in which the same is in proportion to 

the first power of the velocity. According to the results of the theoretical 
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calculation, they are 

P-PR { FL t } ---=exp -0.73(1±s)- ·- , 
poa Uo poa 2p 

(24) 

H-HR = exp{ -0.26(l±s) /JL-lfl;_ · _!_}, 
aUo V 2D 2p 

(25) 

g 

where s:;;;0.2. 

However, in these calculations, the reflection was assumed to have caused no 

loss of energy, and losses relating to the boundary layer were not taken into 

consideration. In practice, therefore, the decline of pressure should have 

been somewhat more rapid than those indicated by the above results. 

iv. Fig. 8-a shows the maximum rise of pressure and the minimum decline of 

pressure occuring when the lost head in the pipe is increased, with the head 

fixed (by such means as roughening the interior surface of the pipe, raising 

the viscosity of the fluid and narrowing and lengthening the pipe conduits, 

etc.). As the loss of head is increased, the rate of rise of the maximum 

pressure slows down and at the same time the minimum pressure also de

creases. Particularly disturbing in this case are the separation of the water 

column in the case of water hammer, and the generation of air bubbles in 

the case of oil hammer. It would be of interest to calculate taking these 

conditions into account. 

v. Fig. 9-a and b show the decline of pressure when Ho is increased as the lost 

head increases, under conditions in which HR is fixed. From these figures, 

it is evident that as the loss of head increases, the tempo of pressure changes 

becomes accelerated. 

VII. Conclusion 

Fundamental equations have been formulated taking into consideration the effects 

of gravity, the elastic deformation of the pipe conduit, and the compressibility of oil, 

and by means of a diagram analytical method based on the characteristic curve method, 

which facilitates analysis of the pipe conduits and incorporation of the boundary con

ditions, a numerical calculation method is shown. This method enables field engineers 

to obtain solutions by means of repetitive simple calculations, and the authors believe 

that this is eminently suitable to field engineers who have the benefit of a digital 

electronic computer, but not the highly sophisticated knowledge of mathematics. 
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R 
dt 

----------center 1 ine of conduit 

Fig. 1-a. Coordinates. Fig. 1-b. Relations of stress. 

t 

0 L X 

Fig. 2. Physical plane. 

H 

---~-L--~-~~-x 

L +\ 

Fig. 3-a. Linearized physical plane. ------ u --- ----K-i(u) 

Fig. 3-b. Hodograph plane. 

i-t i.+t 
.•.;.•. .+.1.•. ···i··· 

A, A2lA3A4 s,s2lB3B4 c~cz:c3c4 
t.: • ~, QJ}:,Jz( U) ,I. 
A B C 

Fig. 3-c. Model of conduit. 
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Fig. 4-a. Pressure change at the inlet, 
hl=O, 0=0°. 

Fig. 4-c. Pressure change at the inlet, 
hl=0.5 v. 0=0°. 

4 8 I 2 

Fig. 5-a. Pressure change at the middle 
of the conduit, hl=O, 0=0°. 

4 s 12 

Fig. 5-c. Pressure change at the middle 
of the conduit, hl=0.5 v, 0=0°. 

32 
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4 s )2 

Fig. 4-b. Pressure change at the inlet, 
hl=0.25 v, 0=0°. 

Fig. 4-d. Pressure change at the inlet, 
hl=0.75 v, 0=0°. 

Fig. 5-b. Pressure change at the middle 
of the conduit, hl=0.25 v, 0=0°. 

Fig. 5-d. Pressure change at the middle 
of the conduit, hl=0.75 v, 0=0°. 
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Fig. 6-a. Pressure change at the inlet, 
hl=O, 0=90°. 

Fig. 7-a. Pressure change at the inlet, 
hz=0.5 v2, 0=0°. 

..c 

Fig. 6-b. Pressure change at the middle 
of the conduit, hz=O, 0=90°. 

4 8 12 'C 

Fig. 7-b. Pressure change at the middle 
of the conduit, hz=O.S v2, 0=0°. 

he._. v t" = \ 

II o 

:x:\:x: .......____0 . ..?~: II o 

hmax~ 
-- -~0~=--~--

hmax ~ 
:x:l:x: 

--~---
~ ,_~ 

Q?s 

12~ 

00~ I Q::p--
6 t 
~-

2f 0 

h min 

.75 
h min _, _, 

Fig. 8-a1• Pressure attenuation Fig. 8-a2• Pressure attenuation 
in proportion to v2 of hz, in proportion to v of hz, 
H 0 is constant. H 0 is constant. 
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he=O 

fj,f /~Q25 
::r I \ I\ 0.50 

O I \ I \ 0,75 ..!__ 

\ 1 1 2 \3/ 4 5 6 2f 

\~'1 0.75 
\/ ~0.50 
\~0.25 

0' -1 

t ~ 0.2 

Fig. 8-b1• Pressure attenuation 
in proportion to v2 of hl, 
H 0 is constant. 

IJ: 

~ 0 
I :X: 

::r 

E: 0.2 

Fig. 8-b2• Pressure attenuation 
in proportion to v of hl, 
H 0 is constant. 

0 

Fig. 8-b3• Simple 
illustration 

0 ~----L-~--L-~~L-~_J----~-----L--~- l_ 
0 I \ 3 I 4 5 6 2f 

:X:~ a:: 
:X: 

-1 

-2 

-3 

\ I \ I 
\ I \ I 

' I \ / 

\A~/ ~ \I 
8 

c 

0 

he ... l/' 2 

A =he =0.00 
B =he =025 
c =he =0.50 
0 =he =0.75 

Fig. 9-a. Pressure attenuation in proportion to v of hl, 
HR is constant. 
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0 .! 
0 2f 
' ' ' ' \ 

-1 A 

-2 he- lf 

A he= 0.00 
B he=0.25 
c he= o.so 
D he=0.7S 

-3 

Fig. 9-b. Pressure attenuation in proportion to v2 of hz, 
HR is constant. 

>< 
0 

E 1 
..c 

r---------- he=O 

1--1---------- 0.2 5 

,__ ____________ )o.so 

r-- ___________ }o.75 

(_.!_=2) 
"lf 

0 I 

~-"o __ J:;..;o'--_....;cs...;;..o_--'"9o f 
!===-=-"""-'=....=.==-=-"==--=- 0. 50 

-- -------- 0,75 
..c 

-1 I-

Fig. 10. Relations between maximum pressure rise and 
slope of conduit. 
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