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Vibration of a Visco-elastic Circular Cylinder 

about its Central Axis 
(Received January 22, 1970) 

Fumiki KITO* 

Abstract 

In this paper, we take up the problem of vibration of hollow cylinder of visco

elastic material. Outer surface is attached to rigid wall, with no slip. To inner 

surface is connected, with no slip, a spindle which has fly-wheels at both ends. 

The whole dynamical system is subjected to action of external turning moment 

which varies with time t, in the form of T 0 sin wt. The author discussed the 

solution of this problem of vibration, by using Laplace transformation. For the 

case of steady oscillation, the author has given expression which gives amplitude 

of vibration of this hollow cylinder of visco-elastic material. Some numerical 

values of coefficients appearing in this solution are also given, which may facili

tate evaluation of individual cases. 

I. Introduction 

The author has, in the previous paper enti
tled "On the Vibration of an Elastic Circular 
cylinder about its Central Axis" co, reported 

some results of analysis about small vibrations 
of an elastic circular cylinder which is ar
ranged as shown in Fig. 1. 

As shown in this Fig. 1., we considered an 

elastic hollow circular cylinder, whose inner 

and outer radii are a and b respectively. The 
inner surface of this cylinder is closely at

tached to a circular shaft, while the outside 
surface is connected to a rigid wall. To this 
shaft or spindle of radius a fly-wheels /1 and 
12 are fixed at both ends. The connection of 

the elastic cylinder to outside rigid wall and 

central shaft are assumed to be made up in 

1 
_J 

1 

~ 

/ 

/ 
/ " ' tr 

z 

I 
Fly-Wheel 

Fig. 1. 

*.51! 11l _5t p~ Professor, Faculty of Engineering, Keio University. 

w This PROCEEDINGS, Vol. 21, No. 84, pp 12.-20, 1968. 

(23) 
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such a way that no tangential slip occurs at the contact surfaces. The problem 

studied in author's paperm was the analytical study about forced- and free-vibra

tions of this dynamical systeml for the case of small amplitudes of vibration. It was 

also assumed that the elastic material follows the law of perfect elasticity. 

In the present paper, the author has made an analytical study of quite the same 

problem, only difference being that, in the case of present paper, the material com

posing the elastic cylinder is assumed to obey a very simple law of visco-elasticity. 

The tangential displacement ue only is taken into consideration, which is a function 
of radial distance r and time t. This inference is an approximate one, which holds 

good only when the cylinder is comparatively long, as was already pointed out in 

the previous paper. 

II. Fundamental equation 

In what follows, we shall use the following notations, which are almost the same 

as those in the author's previous paper: 

a, b, L=inner- and outer-radius and length of the hollow visco-elastic cylinder; 

r=radial position of any point in the cylinder; Ib l 2 =moment of inertia of fly

wheel, which is attached to central shaft or spindle; uo(or, briefly u) =tangential 

displacement of small magnitude, p =density of the material composing the cylinder; 
G=modulus of rigidity; Te(t) =bodily acting turning torque. 

The tangential displacement ue is considered to be a function of r and t. The 

modulus of rigidity G, for the case of visco-elastic material, must be regarded as a 

function of time t, corresponding to so called effect of heredity. The equation of 

motion for the case of small oscillation, of our dynamical system of Fig. 1, may be 

written in the following form : 

P a2ua~r, Q + To(t) 
atz 

t 

=_a_{_!_~. r} J G(t- t;) aue(r, t;ldt;. 
ar r ar at; 

0 

(1) 

This equation (1) is not rigorous, but an approximate equation which holds good only 

for a slender cylinder. In the following discussion of this equation (1), further 
simplifications are made as follows : 

(a) We write simply u(r, t), instead of ua(r, t) 

(b) Assuming that no body-force (or moment) is acting, we put 

Ta(t) ~ 0 

(c) We assume that the modulus of rigidity G(t) is given by the formula 

G(t) =a1 +b1 exp(- ,ut) (2) 

where a 1; b1 and ,u are positive constants which are determined by the visco-elastic 

(24) 
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property of the material. The similar argument as given below may be made for 

a more complicated law of visco-elasticity, for example, 

n 

G(t) =a1 + I: b; exp(- Jc;t). 
i= 1 

(d) Restricting ourselves to the case of start (at t =0) from the state of resting. 

we have, at t=O, 

But the solutions for other cases can be treated in the similar way as given below, 
arriving at more complicated results. 

Taking Laplace transforms of both sides of our equation (1), that is, by making 

an operation 

on both sides of equation (1) . we obtain 

p[ -u(r. 0) -su(r, 0) +s2u(r, s)] 

= _aa {_!_~. r}[cco) u(r, s) 
r · r or 

-G(s)u(r, 0) + H(s)u(r, s) J. (3) 

In this equation u(r, s) and G(s) are Laplace transforms of u(r, t) and G(t) re
spectively. H (s) is the Laplace transforms G' (t). 

Taking into account the above mentioned condition (d), and writing for shortness 

h(s) =G(O) +H(s) 

the above equation (3) is reduced into the following form: 

or 

where we have put 

ps2 ii(r, s) = :r {; :r • r}[h (s)u(r, s) J 

_aa f_!_~ • r} z?(r, s) + J.2ii(r, s) =0 
r ~ r or 

(4) 

(5) 

Thus, we see that P=u(r, s), regarded as a function of r, must satisfy the following 
equation, which is the differential equation of Bessel functions: 

(25) 
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Hence, we have 

(6) 

where A and Bare arbitrary constants. Contrary to the case of the author's previous 
paper, we must here regard ). as a complex variable which is connected to the varia
ble s by equation (5). From this view point, it would be natural to represent the 
solution (6) in terms of Hm, H(2) instead of ]b Y1• Nevertheless we choose the 
expression (6) in order to facilitate comparison with the results of the previous paper. 

III. Boundary conditions 

In order to obtain the solution to our dynamical problem, we impose the following 
boundary conditions to the tangentical displacement u or u9 : 

(A) At the outer radius r=b, u=O. According to this condition, we must have 
at r=b, 

P=u(r, s) =0, 

this is 

Aft(A.b) + BY1 (A.b)O. 

Thus, the solution (6) may be written as 

P=A[ft (A.r) -MY1(A.r)] (7) 

where we put 

(B) At the inner radius r =a, the total amount of turning torque exerted by the 
cylinder is considered to be balanced by the turning moment caused by effect of 
inertia of fly-wheels ! 1 and 12 • The turning moment Ta exerted by the cylinder is 

given by 

Ta=2na2L[rro(at r=a)] 

=Zna2L[!t} [au(r, t) _ u(r, t)J (r=a) 
ar r 

where [!l] is an operator giving effect of visco-elasticity. Thus, for a function F(t), 

by [!l] F (t) we mean that 

t 

[!t]·F(t) = .f G(t- 0 a:; d~. 
0 

Thus, we have 

t 

T a(t) = 2na2L .f G(t- ~) aQ~~ ~) d~ 
0 

(26) 
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where we put for shortness 

Q(a, t)=[au~; t) _u(r; t)]Cr=a). 

Taking Laplace-transform of T a (t), we have 

Ta (s) =2na2L [h(s) (J(a, s)-G (s) Q(a 0) J 
where 

Q(a, s) =[au~; s) _ ii(r; s)J (r=a). 

If we confine ourselves to the case of start from the state of resting, we have 

Also, we have, by (7), 

Q(a, 0) =0. 

[
au(r s)- u(r, s)] (r=a) 

ar r 

=A[Jcft'Oa)- ~ftOa)] 

-MA[icYt'(Aa)- ~ Y 1 (J.a)J. 

Thus, the expression for T a C s) becomes 

Ta(s) =2;z:a2Lh(s) A [{ A.Jt' (A a)- ! ]1 (A a)} 

-M{JcYt'Ua)-! Yt(Aa)}J. 

(C) The equation of turning moment at r=a, being given by 

I a2 [ u ( r' t) J ( - ) T - T . t r 7fi2 r r- a - a- 0 Sln w , 

its Laplace-transform is : 

_&[-it(r, 0)-su(r, O)+s2zt(r, s)](r=a) 
a 

_-"()-To Ta S -~+ 2 • s (J) 

(8) 

(9) 

(10) 

Or, taking the case of u(r, 0) =0, u(r, 0) =0, and putting the above expression (8) 
into this equation (10), we obtain 

= [ ~ s 2+2naLh(s) J [11 (Aa) -MY1 (Aa) J 

-2na2LJch(s)[ft'Oa) -MYt'Oa) ]. 

(27) 

(11) 
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From this equation, the unknown constant A is given in the following form: 

A wT0 1 
= s 2 +w~ · (jJ (A) 

where we put for convenience 

</J(A) = [ ~ s 2+2r.:aLh(s) J ·[l1 (Aa) -MY1 ().a) J 
- 2na2L?.h(s) []1' (}.a)- MY1' (A a)]. 

In a special case in which 

that is, in the case of perfect elasticity, we have 

h(s) =Goo, 

Hence, in that case 

i. 2 = _ _ f!___ s2 
Goo ' 

s2=- J.2 Goo. 
p 

+ 2naLG00 [ ).a]1' (}.a)- J1 ().a)]. 

V=l:_Goo ;_zyl(l.a) 
a P 

+2~ZaLG0 o[ ).aY1' (Aa)- Y1 (Aa) ]. 

(12) 

(13) 

Thus, the expression Y 1 ().b) rJJ(/.) corresponds to the determinantal expression D 

given in the author's previous paper. 
Lastly, we remark that for value of G(t) given by (2), we have 

h(s)=G(O)+fi(s) 

We may write, for convenience, 

or 

s 
=a1+-+ bt, s f1-

-s2= Goo pz-k). 
p 

(28) 
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IV. Solution of our problem 

Since the unknown constant A is obtained in the form of (12) . the value of 
u (r, s) is given by the equation (7). Actual displacement u (r, t) is to be obtained 
from u(r, s) by applying so-called inversion formula. If we write, for conven
ience, 

with 

M =ft (2b) !Yt (2b), 

we may write 

(14) 

where the integration is to be carried out about a path of integration which consists 

of a straight line parallel to the imaginary axis of complex s-plane. We note that, 
when the absolute value of complex variable s becomes very great, we have 

I 2al very great, I Arl very great, 

h (s) ---+at +bt =Goo 

;.2= _ _ P __ 5 2. 

at+bt 

Therefore, we have for a very large value of Is I, 

(/)(A) = [.b._ s2 + 2 rr aG00J /--- - 2 rr aL 1~ a v 2a v }.a 

that is, if lr='f:O, 

Thus, we see that for a very large value of Is I , we have 

F(s) =0 [s- 312 v~r] =0 [s-2
], 

while, if Ir=O, we have 

(/) 0) = 0 [ + J = 0 [ J- J 
" ;,a -v s 

F(s) = 0 [ vs )-
5

] =0 [1]. 

In any way, we have 

I F(s) I <a const. as Is! ---+oo. 

(29) 
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From this inference, we remark that we may use Jordan's lemma for the integrand 
of equation (14), and so when R-H:xJ we have, 

where c is a contour line made up of semi-circle of radius R, which lies in the left 

half of the complex plane s, and whose center is situated at the origin. Thus we 
see that the contour integral of eq. (14) can be evaluated by means of calculus of 

residues. 
Poles of the function 

F(s) 
s2+w2 

of a complex variable s are as follows : 
(1) There are two poles 

S= ±iw. 

(2) In the case of bt =0 in the expression (2), that is, in the case of perfectly 

elastic material, we have. as shown in the previous paper, an infinite number of 
roots kb k 2··· of the equation $(k) =0. For the case of the present paper, we observe 
that the function $(),.) is an analytical expression about bt. Therefore. we infer 

that, at least for a sufficiently small value of I btl, there exists an infinite number 
of roots Kb K 2 ••• of the equation 

which approaches to the roots kb k2,. .. , when we make I btl ~o. 

V. Case of steady oscillation 

For the case of steady oscillation under the action of external oscillatory torque of 

T 0 sin wt, 

with the effect of initial conditions being disregarded, we take only two poles 

s= ±iw 

of the function 
F(s) 

sz+w2 

into account. Thus, we arrive at the following expression for u (r, t): 

u(r, t) = -2~ [F(iw) exp (iwt) 
zw 

-F(-iwt) exp (-iwt)]. (15) 

We note also that 

(30) 
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for s=iw .A. a= ). 0a(1 +ic), 

for s=-iw ).a=). 0a(1-ic), 

Ao=v p/Goo w 

t:= _!_1:__b_1_ ~ 
2 w a1 +b1 

Especially, if the value I e I is very small in comparison with unity, we may ap

proximately put 
0 0 

F(iw) =F(A 0a) + (). 0a)F'(). 0a) ei 

F(-iw)=F(-J 0a)+(). 0a)F'(-}. 0a)ei [see Note below]. 

(I) The first parts correspond to the case of perfectly elastic material, and the 
vibration is taking place in phase with the external moment 

T 0 sin wt. 

The second part gives effect of visco-elasticity, and consists of oscillation with 
the amplitude 

). a o 
_o_ FOoa) e 

(JJ 

the vibration taking place, with phase angle lagging by 90° to that of the external 

moment T 0 sin wt. 

NOTE: F(A 0a), F'(A 0a) represent F(iw) and F'(iw), wherein we put ). 0a(1+it:) 

instead of Ja, 
0 0 

F(- .A. 0a) =FOoa) 
0 0 

- (A 0a)F'( -Aoa) = Ooa)F'Ooa). 

Therefore, the result of (15) may also be given in the following form : 

1 0 

u(r, t) = -
2

. [F(A 0a) {exp (iwt) 
f(JJ 

-exp (- iwt)} 
0 

+ Ooa)F'(A 0a) {exp (iwt) 

+exp (- wt)}] 

1 0 • 

=- [FCAoa) sm wt 
(1) 

0 

+ Ooa) F' (). 0a) e cos wt]. (16) 

This solution of (16) shows us that the steady oscillation consists of two parts. The 
first part of amplitude 

(31) 
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1 0 

-FOoa) 
w 

corresponds to oscillation in the case of previous paper. 

VI. Numerical example 

In order to obtain numerical values of amplitude of oscillation, we must know 
numerical values of the function 

Especially, at the inside radius r=a, we have 

Fa(s) = :Jt~ []l().a)-MYl(Aa)] 

and corresponding value of u(a, t) may be obtained by eq. (15), wherein we put 
Fa(iw) instead of F(iw). In other words, we obtain the value of u(a, t) from eq. 
(16) by putting r=a into it. 

Thus, it will be seen that the numerical value of u(a, t) may be obtained easily if 
we know values of the following expression: 

or 
T 0w _ ~(A) 

Fa(s)- ]l(Aa)-MY 1 0a) 

=2naGooL- Goo .b:_ ().2-k) 
P a 

-2na2AGooL{ Jt'Oa) -MYl'(Aa)} 
J1 (Aa) -MY1 (Aa) 

=2naGooL- Goo .b:_ ().2-k) 
P a 

-2r.:aG
00

LJ?-M5_ 
N-M 

where we put, for shortness, 

M =]l(Ab)/Yl(Ab) 

N =!1 (Aa) /Y1 (A a) 

R=]/(Aa)/Yl().a) 

S=Yt' ().a) !Y1().a). 

(17) 

Thus, if we know numerical values of M, N, R and S for given values of a and b, 
it will be an easy mater to obtain numerical values of expression (17) for given val
ues of G00 , L, Ir, etc. 

Some results of numerical estimation of values of M, N, R and S are reported 

(32) 
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below. They correspond to the case .at which we have 

A0 =1.00 

A0a=0.10, 0.20, 0.30, 0.40, 0.50. 

It is assumed that we may put 

Ab= A0b [l+i 8] 

tla= A0a [l+i 8] 

where I 8 I is very small in comparison with unity. In that case we have 

J1 (A b) =J1 Oob) +i 8 Oob)]11 Oob) 

Y1 Ob) =Y 1 Oob) +i 8 Oob) Y 1' Oob) 

h (A a) =J1 Ooa) + i 8 Ooa)]/ 0 0a) 

Y 1 (tla) =Y1 (tl 0a) +i 8 (tl 0a) Y1' (tl 0a) 

]/(A a)=]/ 0 0a) +i 8 Ooa)]t'' 0 0a) 

Y1' (A a) =Yt' (A 0a) +i 8 (A 0a) Y t'' (A 0a). 

We could obtain numerical values by applying known formula below and making 
use of table of Bessel functions. 

!1' (z) = -~- [ fo (z) - !2 (z)] 

ft''(z)= (;2 -l)ft(z)-! l1'(z) 

Yt'(z) = ~ [Y0 (z)- Y2(z)] 

Yt"(z) = ( }z -1) Yt(z)- ! Yt'(z). 

The results obtained are given in Table 1. 

Table 1. 

Values of M, N, R and S 

(A) Value of M 

).0b = 1.00 M = - 0.663- 1 233 (ic) 

(B) Value of N 

J.0a=0.10 N = -0.00757 [1+1.957(ie)] 

0.20 -0.0299 [1 + 1.926(ie)] 

0.30 - 0.0646 [1 + 1.892(ie)] 

0.40 - 0.111 [1 + 1.823(ic)] 

0.50 - 0.1645 [1 + 1.951(ie)] 

(C) Values of R 

J. 0a=0.10 R= -0.0747 [1+0.950(ie)] 

(33) 
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0.20 -0.1482 [1 + 0.903(ez)] 
0.30 -0.2150 [1 + 0.806(i.o)] 
0.40 -0.2643 [1 +0.739(i.o)] 
0.50 - 0.316 [1 + 0.821 ( i.o)] 

(D) Values of S 
.{ 0a=0.10 -9.55 [1-1.053(i.o)] 

0.20 -4.68 [1-1.10 (i.o)] 
0.30 -2.975 [1-1.126(ie)] 
0.40 -2.157 [1-1.107(i.o)] 
0.50 - 2.025 [1- 0. 718(ie) J 

From these values, numerical values of the coefficient 

. R-M 
f=ft+(zs)/2= N-M 

,T 
lOr 

I 

T 81 
lmag Part (f 2 ) 

t 
I 

6 

Q) 

E 

.t> 

4 Cl 

3~ 
til .... 

2 

----(?\a) 
0 _____ _L ____1____ __ ____._ __ 

0 0.10 0.20 0.30 0.40 0."'-

Fig. 2. Value of / 1 and / 2 in coefficient 

f=ft+Cie)f2 

(34) 

which is contained in the formula (17) 
have been estimated, their results being 
shown in Table 2, and also shown as 
graphs in Fig. 2. We also here remark 
that, in the present state, we are to 
take 

where -s2=w2• That is, we are to take 
in the present stage 

)..2-k= _f!_ wz 
Goo 

in the formula (17). 

Table 2. (for A0b= 1.00) 

A0a=0.10 

0.20 

0.30 

0.40 

0.50 

f= -9.77+10.26 (ie) 

- 5.29+5.83 (ie) 

-3.645 + 4.04 (ie) 

-3.085 + 3.36 (ie) 

-3.33+2.1514 (i.o) 


