慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Plastic deformation of a wire with circular section in coiling
Sub Title	
Author	水野，正夫（Mizuno，Masao）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1969
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University（慶応義塾大学藤原記念工学部研究報告）．Vol．22，No． 90 （1969．），p．126（12）－128（14）
JaLC DOI	
Abstract	The deformed shape of the section of circular wire after plastic pure bending is obtained as a epitrocoid，and the degree of the deformation of the contour line of the cross－section of the wire is expressed by $1 / 4 c$ ，where c is spring index．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00220090－ 0012

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Plastic Deformation of a Wire with Circular Section in Coiling

（Received December 15，1969）

Masao MIZUNO＊

Abstract

\section*{Abstract}

The deformed shape of the section of circular wire after plastic pure bend－ ing is obtained as a epitrocoid，and the degree of the deformation of the con－ tour line of the cross－section of the wire is expressed by $1 / 4 c$ ，where c is spring index．

I．Displacement of beam under pure bending

Now，consider a beam under pure bending，and set the origin 0 at any point on the neutral axis and take the coordinate axes as shown in Fig．1．（a），（b）．

Fig．1．（a）

Fig．1．（b）

The strain components in the beam are given as follows ：

$$
\begin{equation*}
\varepsilon_{x}=\varepsilon_{y}=\nu x / R, \quad \varepsilon_{z}=-x / R, \quad \gamma_{y i}=\gamma_{z x}=\gamma_{x y}=0, \tag{1}
\end{equation*}
$$

by the Theory of Simple Bending，where R is radius of curvature of the neutral axis and ν is the Poisson＇s ratio．

By the definition of strain and eq．（1）we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{\nu x}{R}, \frac{\partial w}{\partial z}=--_{-}^{-} \cdot \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}=0 \tag{2}
\end{equation*}
$$

where u, v, w ，are components of displacement．

[^0]By integrating (2), displacements are obtained as follows:

$$
\begin{equation*}
u=\frac{\nu\left(x^{2}-y^{2}\right)}{2 R}+\frac{z^{2}}{2 R}, v=\frac{\nu x y}{R}, w=\frac{-x z}{R} . \tag{3}
\end{equation*}
$$

From (3), it can be seen that the plane $z=$ const. remains as a plane after deformation (Bernoulli's Assumption for the Theory of Simple Bending).
When deformation of the sectional form is in question, it is sufficient to consider only the components of displacement

$$
\begin{equation*}
u=\nu\left(x^{2}-y^{2}\right) / 2 R, \quad v=\nu x y / R . \tag{4}
\end{equation*}
$$

If the elastic deformation is neglected, the plastic deformation of beam under pure bending are obtained by eq. (4), putting $\nu=1 / 2$, which means that the material is incompressible,

$$
\begin{equation*}
u=\left(x^{2}-y^{2}\right) / 4 R, \quad v=x y / 2 R \tag{5}
\end{equation*}
$$

II. Shape of the section

Now, assuming that the contour of the section of wire is circle of r_{0} radius, we have the eq. of the contour line as follows:

$$
x_{0}{ }^{2}+y_{0}{ }^{2}=r_{0}{ }^{2}, \quad x_{0}=r_{0} \cos \theta, \quad y_{0}=r_{0} \sin \theta,
$$

as shown in Fig. 2.
Then the plastic displacement at the contour is

Fig. 2.

$$
\begin{align*}
& u=\left(x^{2}-y^{2}\right) / 4 R=\left(r_{0}^{2} / 4 R\right) \cos 2 \theta, \\
& v=x_{0} y_{0} / 2 R=\left(\boldsymbol{r}_{0}{ }^{2} / 4 R\right) \sin 2 \theta . \tag{b}
\end{align*}
$$

The shape after coiling may be obtained from the next equations

$$
\begin{align*}
& x\left(=x_{0}+u\right)=r_{0} \cos \theta+\left(r_{0}{ }^{2} / 4 R\right) \cos 2 \theta, \\
& y\left(=y_{0}+v\right)=r_{0} \sin \theta+\left(r_{0}{ }^{2} / 4 R\right) \sin 2 \theta . \tag{7}
\end{align*}
$$

These are the equations for Epitrocoid as shown in Fig. 3, and it may be said that the degree of the deformation of the contour line of the wire is expressed by the next value

$$
r_{0} / 4 R=1 / 4 c,
$$

where c is spring index, and R is mean coil radius.

III. Percentage of increase of wire diameter by coiling

From eq. (7), y is max. when θ satisfies the following conditions:

$$
\begin{equation*}
\frac{d y}{d \theta}=\boldsymbol{r}_{0} \cos \theta+\frac{\boldsymbol{r}_{0}^{2}}{4 R} 2 \cos 2 \theta=\boldsymbol{r}_{0}\left(\cos \theta+\frac{1}{2 c} \cos 2 \theta\right)=0, \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& 2 \cos ^{2} \theta+2 c \cdot \cos \theta-1=0 \\
& \cos \theta=-\frac{c}{2}\left[1 \mp \sqrt{1+\frac{2}{c^{2}}}\right]
\end{aligned}
$$

If $c>5 ; \quad \frac{2}{c^{2}} \leqq \frac{1}{12.5}=0.08 \ll 1$;
$\cos \theta \cong-\frac{c}{2}\left[1-1-\frac{1}{c^{2}}\right]=\frac{1}{2 c}, \quad \sin \theta=\sqrt{1-\cos ^{2}} \theta \cong 1-\frac{1}{8 c^{2}}$.
Therfore, $\Delta=\frac{y_{\max }}{r_{0}}-1=\sin \theta+\frac{1}{2 c} \cos \theta \sin \theta-1 \cong \frac{1}{8 c^{2}}$.

Table 1. Percentage of increase Δ and c.

c	4	5	7	10	12	15
$\Delta=1 / 8 c^{2}$	$1 / 128$	$1 / 200$	$1 / 392$	$1 / 800$	$1 / 1,152$	$1 / 1,800$
$\Delta \%$	0.78	0.5	0.255	0.125	0.087	0.056

Fig. 3.

Fig. 4.

Generally, this value of Δ is smaller than the tolerances of wire diameter.

[^0]: 水 野 正 夫 Professor，Faculty of Engineering，Keio University．

