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Nonlinear Oscillation of a Gyroscope 
くReceived October 15， 1969) 

Chikara SATO骨

Abstract 

A di旺erentialequation of an axially symmetrical gyroscope with high center of 

gravity is analyzed when its axis makes a small oscillation around a perpendicu-
lar line. The di旺erentialequation has the following form : 

元-kv-u=μif1くu，u， v， v)， 

診+ku-v=μ12(u， u， v， iJ)， 

Oくμ<1，k>2， 

where functions 11 and 12 are generally nonlinear functions. According to the 

forms of the nonlinear functions， the solutions are: (1) stable (converging to 

zero)， くわ unstable (osci11atory diverging to infinity)， (3) periodic with a limit 

cyde， and (4) almost periodic. Mathematical treatments depend on the linear 

transformation with real parameters and averaging method given by 1. G. Malkin. 

1. Introduction 

Since there are many papers∞ー(6) concerning a gyroscope in the field of physics 

or engineering， the analysis of them is not a new topic in these fields. However， there 

are not many papers which analyze a gyroscope applying the theory of nonlinear 

oscillation in the field of applied mathematics. This paper presents an analysis of 

of gyroscope by solving a nonlinear di百erentialequation with small perturbation 

terms. In order to derive the nonlinear di旺erentialequation in a quasi-linear form、

we start from Euler's equation using a fixed coordinate. We use Euler's equation 

because the other di旺erentialequations of a gyroscope usually involve nonlinear 

functions such as sin θor cos () that cannot be put to () or 1 even when the osci1-

lation is small around an equilibrium line， and thus it is di伍cultto derive the 

nonlinear di百erentialequation in a quasi-linear form from them. 

1. G. Malkin， (7) N. Minorsky，ωand MitropoliskUC9) have studied a gyroscope by 

anlyzing a nonlinear di任erentialequation in a quasi-linear form. Two(7)(S) of the 

papers have presented some analysis and stabi1ity conditions for the equation having 

a special nonliner function. However， the stabi1ity conditions can be applicable for 

a restricted case， and not for a symmetric gyroscope of this paper. Oneωof the 

papers has treated an asymptotic solution， and not a stabi1ity condition. 

In this paper a spining top is considered as a special type ofaxially symmetrical 

普佐藤 力 Professor，Faculty of Engineering， Keio University. 

( 8) 
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gyroscope with high center of gravity. The oscillation behavior and the stability 
conditions of the axially symmetrical spinning top is presented using a linear trans
formation with real parameters and an averaging method. 

II. Fundamental equation 

The main object of this section is to give a fundamental equation of a spinning 
top by using Euler's equation. Two basic assumptions are made: (1) the top is 
axially symmetric, and (2) the motion of the center of gravity is neglected. 

We consider rectangular coordinates (u, v, z). The z-axis coincides with the op
posite direction of gravity. Using this coordinate we describe the movement of a 
top by the following : 

A 
B 
c 
{}lJ 

m 
{}2, {}3 

a moment of inertia around the u-axis, 
a moment of inertia around the v -axis, 
a moment of inertia around the z-axis, 
angles around the u-, v-, z-axis, 
total mass, 
distance between the center of gravity and the sup
porting point, 

e 

r 

By Euler's equation : 

a rotating torque for a top, 
a coefficient of damping, 
time. 

AO/' = (B- C) (}2' (}/ + mgl sin (}1 + p,h*( elJ (}1', e2, (}/), 

B(}2"=(C-A)(}1'(}/+mglsin (}2+fl.h*((}h (}1', e2, (}2'), 

Ce3"= (A-B) (}1'(}2'- /3(}3'-e, 

2 

Fig. 1. 

(1) 

where /1* and /2* are generally nonlinear functions of torque, O<w~l, and (}1' 

= ~~1 • When we consider a small oscillation around the z-axis, the following as

sumption correctly holds, 

(9) 



84 Chikara SA TO 

A=B=const. 

Then from equation (1) we have 

A01"=-(C-A)0/03'+mgl 01+f1.h*(01t 01', 02, 02'), 

(2) 

CO/'=- j303'-e. 

From the third equation of (2) (} 3' is given by the following form under stationary 

condition: 

(} / =const. =-w. 

The first and the second equations of (2) then become 

(} "- C-A 0 '+ mgl 0 + f1 "'*((} 0 , 0 0 ,) 
1 - ---x-- w 2 A- 1 A 11 1t 1t 2. 2 , 

(3) 
(} ,, C-A (} '+ mgl (} + f1 ~"*((} 0 , 0 0 ,) 

2 =----x--w 1 A- 2 -A;2 1t 1t 2, 2. 

We transform variables r-, (} 1 , (} 2 , etc. to new forms as 

(} (} du . 
1=u, 2=v, ([[ =u, etc. 

Using the new variables, the fundamental equation is given by 

u-kv-u=flf1Cu, u, v, v), k>2, 
(4) 

v+ku- v=11!2 (u, u, v, v). O<fl~l. 

So far we have assumed a small oscillation around the z-axis in the process 
from equation (1) to (2). This assumption, however, can be loosened a little if we 

assume that the moments of inertia A and B are functions of 01 and 02 with small 
parameter f1 such as 

A(Olt 02) =Ao+f1A1(01, 02), 

B(01, 02) =Bo+f1B1(01t 02), 

The moment of inertia C is still assumed constant. Thus we have the following 

equation instead of equation (2) 

Ao01"=- (C-Ao)02'(}3'+mgl 01+11.h**(Ob 01', 02, 02') 

Ao02"= (C-Ao)0/0/+mgl 02+flh**(Ob 0/, 02, (}2'), 

(10) 
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where functions/1** ane};** involve not only the functions A1(0 11 02 ) and B1 (0h 02), 

but also the higher order terms in sin 01 =01 - 3\ 01
3+···, and sin 02 =02 -

3
1! 02

3 

+ · ··. The procedure after equations (2) to ( 4) is the same. 
In the subsequent sections fundamental equation (4) will be investigated when 

the functions / 1 and }; have various forms. In the next section the very special 

case h =fz =0 will be dealt with in order to derive a necessary transformation with 
real parameters. Then it will become clear that the condition k>2 is necessary for 
the solution is oscillatory. Generally / 1 and / 2 are arbitrary nonlinear functions, 
and differentiable at least once by each variable. 

III. Basic oscillations with two modes 

We consider the following differential equation, 

u-kv-u=O, 

v+ku-v=O, 

The characteristic equation for (5) is given by 

s•+ (k2-2)S2+1=0, 

where S is a characteristic root. If k> 2, from equation (6) 5 2 is given by 

sz=- k2-;2 ± ~(Ji2~zr -1 <0. 

(5) 

(6) 

(7) 

It is easily shown that the right side of equation (7) is always negative for both 
signs. Thus S is given by 

where }=.v' -1· 

If we define w 1 and w2 by the following 
k _k_2 __ _ 

(1)1 = 2 + ~ ( 2) -1' 

Wz= ~ - ~ ({'f-~-l, 

then the following relations hold, 

Thus four distinct characteristic roots of pure imaginary form are given by 

(11) 

(8) 

(9) 

(10) 

(11) 

(12) 
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(13) 

The condition k>2 in equation (4) and (5) is necessary for all characteristic roots 

to be pure imaginary, otherwise some of the characteristic roots have positive real 
parts, and the solutions of equation (5) become unstable. 

We can now transform variables u and v to the following : 

Using these transformations (14), equation (5) can be written by matrix, 

where 

x= 

x=Ax, 

0 1 

1 0 

0 0 

0 -k 

0 

0 

0 

1 

Here we use the following linear transformation : 

x=Py, 
where 

[tJ 
1 0 1 
0 wl 0 

y= P= 
0 1 0 

-wl 0 -w2 

ll· 

w;]· 

(14~ 

(15) 

(16) 

(17) 

(18) 

Using the transformation (17) and equation (11), equation (15) can be rewritten by 

where 

The matrix p-l exists since 

j=By, 

0 

0 

0 

0 

0 

0 

det P=- (w1-w2) 2 =t=O. 

(19) 

w~]· (20) 

In short using transformation P, equation (5) or (15) can be written by the form 
(19). Equation (19) is equivalent to the form 

Y1 +w12Y1=0, 

ji3+w22Y3=0. 
(21) 

Equations (21) show two simple harmonic motions; one is y 1 with a large angular 
frequency wh while the other is y 3 with a small angular frequency w2, since w1 

>w2 >0. We define "nutation" for an oscillation with mode of w1 and "precession" 

(12) 
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for mode of w2• Matrix P-1 is given by 

The relationship between x and y can be given by scalar forms, 

and 

Equations (21) have the following general solutions 

Y1=A1 cos (w1t+a1), Y3=A2 cos (w2t+a2), 

and 

By relation (24) the original equation (5) has the following solution: 

U=X1 =A1 cos (w1t+ a1) + A2 cos (w2t+a2), 

v=x3=-A1 sin (w1t+a 1)-A2 sin (w2t+a2). 

87 

(22) 

(23) 

(24) 

In this section we have investigated the very special case of /1 = /2 = 0 in order to 
obtain the linear transformation (17). Using this linear transformation (17) the 

general case of fr and h will be treated in the following sections. 

IV. General analysis of the fundamental equation 

In this section the general nonlinear case will be treated. The fundamental equa
tion ( 4) with nonlinear functions fr and j; is given by the matrix form 

x=Ax+pf, O<p<t:1, (25) 

where 

(13) 
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0 

h Cxt. x2, X3, x4) 

0 

Using transform (17), equation (25) is rewritten by Pj=APy+ pf, and then 

j=P- 1 APy+ pP-1/ 

By matrix (20) the following equation holds 

where 

g= 

j=By+ pF(y), 

F(y)=P- 1g, 

0 

gl (yb Y2, Y3, Y4) 

0 

g2CY1> Y2, Y3, Y4) 

gl(Yb Y2, YJ, Y4)=fi(YI+Y3, W1Y2+uhY4, Y2+Yh -w1Y1 -w2Ya), 

(26) 

(27) 

(28) 

(29) 

(30) 
g2CY1> Y2, Y3, Y4) =fz(yl+ Y3, w1Y2+w2y47 Y2+ Y4, -w1Y1 -w2Ya), 

Function g is exactly equal tof if variables x1 , x 27 x 3 , and X4 in fare transformed by 
y 17 y 2, y 3, and Y4· Using equations (22) and (28), function F(y) is given by the 

following: 

-w2 0 0 -1 

!, I 1 0 1 -w2 0 
F(y)=--

0 0 1 wl-w2 wl 

0 -1 (l)l 0 g2 

(31) 

Equation (27) can be written in scalar form as 

(32) 

Equation (32) can be written by the variables y 17 j 17 y 3 , and j 3 as 

(14) 
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(33) 

where function !J2 (Yr, il, y3, _Y3 ) is the time derivative of g2 (Yr, Yh y3, Y4), i.e., 
Uh W2 

ag2 . ag2 . ag2 . ag2 . . h" h _ Y1 . _ _ Y3 d · _ -.... -Yl + -a-Y2 + -a-Y3 + -a-Yh tn w tc Y2--, Y2--w1Yr, Y4--, an Y4-
ayl Y2 Y3 Y4 uJ1 W2 

- w 2y 3 have been substituted after differentiation. If the terms in the orders higher 
than p, i.e. O(p 2), are neglected the following equations are derived: 

where 

We assume that 

Yl+w12Yl=PG1(Y1, Y1, Y3, Y3), 

.Y3+w22Y3=ttG2(Yr, Yr, Y3, Y3), 
(34) 

(35) 

(36) 

where m 1 and m2 are integers. In order to use the averaging method we express 
solutions of the nonlinear equation (34) by 

Y1 =A1 cos (w1t+a1), 

Y1=-w1A1 sin (w1t+a1), 

y 3=A2 cos (w2t+a2), 

jl3=-w2A2 sin (w2t+a2). 

Averaged equations are following, 

A 1=- _!!:_lim T2 fro G1* sin (w1t+al) dt, 
(J)l r~oo 

(37) 

(38) 

where G1* and G2* are given by relations (35), in which relations (37) have been 
substituted. Thus G1* and G2* are not functions of Yh Yr, y3 , y3 , etc., but functions 
of Ar, A 2, ar, a 2, and t. Putting the right sides equal to zero in equation (38), we 

(15) 
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have solutions A 1*, A2*, at*, and a2*· From relation (37), solutions Yt and Y3 can 
be determined. From equation (32), Y2 and y 4 are easily obtained neglecting p or 

higher order terms, since Y2= _!___ Yt +O(p) and Y4= __;__ j 3 +0(p). Thus we have Yh 
Wt w2 

Yt=At* cos (wtt+at*), 

Y2=-At* sin Cwtt+at*), 

Y3=A2* cos (wzt+a2*), 

Y4=-A2* sin (w2t+a2*). 

(39) 

Therefore, using relations (24), the fundamental nonlinear equation (14) or (25) 

has the following solution : 

U=X 1=At* cos (wtt+ at*) +A2* cos (w2t+a2*), 

V=X3=-At* sin (w1t+a1*)-A2* sin (w2t+a2*). 
(40) 

This solution (40) has the same form given in section 2 where h=fz=O, except 
for the fact that parameters Ah A2, ah and a 2 in section 2 are determined by initial 
condition, while parameters A1*, A2*, a1* and a2* in this section are determined by 
the differential equation. Stability of the solution ( 40) can be investigated by equa

tion (38). 

V. A linear symmetric top 

A linear axially symmetric top is dealt with in this section. When spinning top 
has the assumptions of linearity and axial symmetry, the functions ft and fz are 
related with 

ft(u, u, v, v)=fz(v, v, -u, -u), 

and thus they have the forms : 

and 

ft(u, u, v, v)=otu+o2u+o3v+o4v, 

fz(u, u, v, v)=-o3u-o4u+otv+o2v. 

From the fundamental equation (4) and the above relations, we can put o1 = o4 =0 
without loss of generality. Thus we have ft(u, u, v, v)=o 2u+o3v, fz(u, u, v, v)= 

- o3u+ o2iJ. When we use parameters p and b instead of o2 and o3 with the relations 
o2=- pb and o3=p, functions It and fz are given by 

pft (u, u, v, v) =- p(bu- v)' 

pfz(u, u, v, v)=-p(bv+u), 

O<p<€::1, b>O. 

(41) 

We consider the stability problem only under the above mentioned conditions of 
O<p<€::1 and b>O, because, otherwise no stable solutions are given. 

(16) 
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Functions g 1 and g 2 are given by 

g1(Y11 Y2, Y3, Y4)=(1-wlb)y2+(1-w2b)y4, 

g2CY11 Y2, Y3, Y4)=(wlb-l)Yl+(w2b-1)Y3· 

From equation (35), functions G1 and G2 are given by 

Using expression (37), functions G1 * and G2 * are given by 

+2(1-w2b)w2A 2 sin (w2t+a2)]. 

Averaged equations are followings, 

Stability condition of both A1 and A 2 is given by 

1-w1b<0, for A 11 
and 

1- w2b>O, for A 2• 

Hence we have 

Using relation (12), we have 

Using relation (9), we have 

This inequality is equivalent to the following, 

I b=; I <~(-}r-1. 

(17) 

91 

(42) 

(43) 

(44) 

(45) 

(46) 
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Squaring both sides, we have 
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1 k>b+b. (47) 

Thus, condition ( 4 7) gives the necessary and sufficient stability condition of A 1 and 
A2 in equation ( 45). This inequality ( 4 7) is therefore the necessary and sufficient 
condition that the fundamental equation ( 4) with ( 41) has stable solutions u and 
v. The boundary curve from stability to instability is shown on the (k, b) plane 
in Fig. 2, by the critical condition: 

There are three distinct cases where each mode becomes stable or unstable: 

{ 
nutation (mode w1) ~ diverge, 

b<w2: . 
precesston (mode w2) ~ 0, 

b { 
nutation (mode uh) ~ 0, 

uh< <wl: 
precession (mode w2) ~ 0, 

(48) 

b { 
nutation (mode w1) ~ 0, 

wl< : 
precession (mode w2 ) ~ diverge. 

The same stabitity condition as ( 4 7) is given by the stability criterion of Hurwitz. 
Stability regions for distinctive modes are shown in Fig. 2 by condition ( 48). 
Although region 3 for k ~2 in this figure is not. the region of our interest, it is 
easily shown from characteristic roots (8) that the solution is unstable. since one 
of the roots has a positive real part. 

If the condition b>O alone is replaced by b;;i:O using the same condition O<,u~l 
as before, then no stable solution is obtained, because parameter b cannot satisfy 

both b;;i:O and w2<b<w1 since w2 >0. If the conditions 0<,u~1 and b>O are replaced 
by 0<- ,u~1 and b~O, then from equations (45) stability condition is that 1-w1b>0 
for Alt and 1-w2b<O for A 2. However, it is impossiple forb to satisfy both 1/w1>b 

and 1/w2 <b, since 1/w1<1/w2. 
Thus the only form of functions / 1 and j; given by (41) with the conditions O<,u 

~ 1 and b > 0 and with the condition ( 4 7) gives the stable solution when the linearity 
and axial symmetry are satisfied. 

So far the functions (41) with conditions 0<p~1 and b>O are all given from 
mathematical standpoint so that a stable converging solutions are derived. On the 
other hand, from physical standpoint an actual symmetric top satisfys the condition 

(41) with 0<p~1 and b>O if the following physical assumptions are made: (1) the 
top spins on a blunt peg slipping with friction between the blunt peg and a 

supporting plane, (2) the bottom of the peg has a form of sphere whose center is 

located at a lower position than the center of gravity of the whole top, (3) there 

is a positive damping force such as an air damping force. 

(18) 
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b 
6~--------~--------------------~ 

5 

4 

3 

2 

0 

unstable 1 

unstable 3 

4 5 

Fig. 2. Stability regions in equation 

u-kv-u= f.l( -bu+v), 
v+ku-v=p.( -bv-u), 

0<!1<1, b>O 

In the resion 1 pression is unstable, 

while in the region 2 nutation is unstable. 

VI. Some nonlinear example 

93 

In this section a spinning symmetric top with nonlinear perturbation forces will 
be treated. Functions It and / 2 are assumed to be of the form : 

pft(u, it, v, v)=-p[bit-v(u2 +v2
)], 

pj;(u, it, V, v) =-p[bv+u(u2+v2
)], (49) 

O<p~l, b>O. 

Physically speaking, this relation corresponds to a spinning top with a linear damping 

force and a nonlinear frictional force between the peg and the supporting plane. 

The nonlinear frintional force is very small when the oscillation is small, while the 

frictional force becomes larger when the oscillation increases. There are no other 
deep reason for taking this nonlinear form. With Y1 and y 3 in the form (37), we 
use an averaging method. We then have the following two averaged equations for 

A1 and A2: 

A - 2 ( b A 2 + 6w1 + w2 A 2) A 1-11- ----- - (Vl + 1 -2- 2 1 ' 
w1-w2 W1 

(50) 

(19) 
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It is easily shown that equations for a 1 and a 2 are given by a1=0 and a2=0. Hence 

the solutions a1 and a2 are constants. Putting the right side of equation (50) equal 

to zero, we have 

for A2=0: A 2=0 or A12 
A2

2 

2bw22 + bw2 = 1. 

v 

w1 +6w2 

Fig. 3. 

A1 Phase trajectories in the (A1, A2) 

plane for equation (50) when k> 2. 34 

Fig. 4. 

Phase trajectories in the (u, v) 

plane for equation : 

u-kv-u= -.u[bu-v(u2+v2)], 

v+ku- V=- JL[biJ+u(u2+v2)J, 

when k>2.34 

(51) 

(52) 

Equations (51) and (52) correspond to two lines and two ellipses in the (Ah A 2 ) 

plane. We must now compare the radii of the two ellipses in order to know whether 

the two ellipses intersect each other or not. First we compare the two radii of el

lipses (51) and (52) on the A1 axis. The radius of (51) on the A 1 axis is .v'bwl' 
,---2b-

and the radius of (52) on the A1 axis is w2 .I 6 
. Comparing these two, we 

" (1)1 + (1)2 

have the following inequality, 

(20) 
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(53) 

Accordingly the radius of (51) on the A 1 axis is larger than that of (52). Next we 

compare the two radii on the A 2 axis. The radius of ellipse (51) on the A 2 axis is 

w 1 I 2b , and the radius of (52) on the A 2 axis is ,V b-w;. To compare these two, 
'Y 6w1+w2 

we take the difference after squaring ; i.e., 

(w- 3+-Vilw) (w + - 2+-Vnw) 
1 2 2 1 2 2 

=2b----------~--------------
6w1+w2 • 

Since w1>w2>0, we have 

+ -3+-Vii 
wl 2 w2 

2b >0. 6w1+w2 

Therefore we have 

if wl> 
3+f11 

w2 then wl 'V/~~~!~2 > v/Jw;' (54) 

if w1 < 
3+fiT w 2 then w1 ~~-=:!~2 < ,V bw~. (55) 

Thus there are two cases wl:ere one of the radii of (51) and (52) on the A2 axis 

is larger than the other, and vice versa. We consider these two cases separately 

below. 

3+-Vfi The case of wt> --
2

- w2. 

From relation (9) this condition is equivalent to the following: 

k< ~f+-3;711 = 2.340 (56) 

In this case the ellipse (52) is located inside of the ellipse (51). From equation 

(50) there are two kinds of singular points, one is a saddle point, and the other is 

a stable nodal point. That is, 

A1= ±vbw~. A2=0: saddle point, 

A1 =0, A2= ±v'bw2 : stable nodal point. 
(57) 

The phase trajectories of the present system are shown in Fig. 3. In this figure 
the lower half is abbreviated because of the symmetry. Among four averaged 

equations (38). two equations for a1 and a2 have constant or slowly varying solutions 

a 1* and a 2*. Using a 2* the following stable solutions Yt and y3 are obtained: 

(21) 
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(58) 

Thus solutions u and v in the fundamental equation (4) with (49) and (56) are given 

by 

(59) 

The phase trajectories in the (u, v) plane are shown in Fig. 4. According to the 

initial conditions some trajectories converge to a stable limit cycle which is a circle 

with radius .../bw2 , and others diverge to infinity. Although these trajectories must 

be shown in the four dimensional space (u, u, v, iJ), the trajectories in Fig. 4 show 
only a project to the (u, v) plane. Therefore the trajectories in this plane seem to 

cross each other, while the actual trajectories in the four dimensional space never 

cross each other except at the singular points. 

3+.../I1 The case of w1 < 2 Wz 

From relation (9) the above condition yields 

2<k< ~rr3;I1 = 2.340 (60) 

In this case two ellipses (51) and (52) intersect at four points, as shown in Fig.!5. 

Equation (50) has singular points of saddle given by 

A1 = ±.../bwp Az = 0 : saddle point, 

and for singular points given by the intersections of two ellipses (51) and (52) as 

A1=±A1*, Az=±Az*, 

where A 1*, A 2*>0. The character of these singular points depends on the char

cteristic root S given by characteristic equation 

=0. 

The phase trajectories for the averaged equation are shown in Fig. 5. In this figure 

the lower half is abbreviated because of the symmetry. Solutions y 1 and y 3 are 

given by 

Yt=At* COS (wtt+at*), Y3 =Az* COS (w 2t+a2*). 

Thus solutions u and v of the fundamental equation (4) with (49) and (60) are 

given by 

(61) 

(22) 
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The phase trajectories in the (u, v) plane are shown in Fig. 6. Depending on the 

initial conditions some trajectories converge to a region between two circles, and 

others diverge to infinity. Since w1 and w2 are assumed to have no rational relation, 

there is no limit cycle. The solutions u and v are almost periodic solutions. 

Fig. 5. 

Phase trajectories in the (A1, Az) 

plane for equation (50) when 

2<k<2. 34. 

Fig. 6. 

Phase trajectories in the (u, v) 

plane for equation: 

u- kiJ- u=- f..l [bu- v(u2+ v2)], 

v+ku-v= -f..l[biJ+u(u2+v2)], 

when 2<k<2. 34. 

v 

~ 

wzJ- 2 
w1+6w2 

-ft.) .j 2b 
1 6w1 +t.l2 

VII. Collective results with analog computation 

In this section several results by an analog computer are shown, together with all 

the results in the preceding sections. As an example, phase trajectories for the linear 

case when k=4.5 are shown in Fig. 7. Variables u and v are taken as abscissa and 

ordinate respectively. In Fig. 7 (a) the case of pf1=p};=0 is shown. Fig. 7 (b) 

is the case of p/1 =-0.224 it, p};=-0.224 v. The corre£ponding top has a small damp

ing. Here nutation converges to zero, and precession diverges. Figure 7 (c) is the 

case of pf1 =0.25 v, ,u};= -0.25 u. The corresponding top has a frictional force be

tween the peg and supporting plane. Here precession converges to zero, and nutation 

diverges. Figure 7 (d) is the case of ,u/1 =-0.224 u+0.25v, ,u};=-0.224v-0.25u. 

A damping force and a frictional force exist between the peg and supporting plane. 

In this case both precession and nutation converge to zero. From these figures it 

is apparent that the top is stabilized by the combined actions of the damping force 

and the frictional force between the blunt peg and the supporting plane. The damp

ing force suppresses nutation, while the frictional force suppresses precession. 

(23) 
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All the results for both linear and nonlinear cases are listed in Table, together 
with some examples which are omitted in the preceding sections. 

tth.=O. 

(No damping and frictinal forces exist) 

(b) P./1 = -0. 224u, 

(Damping force exists) 

(c) tt/1 = 0. 25v, P./z = - 0. 25u. 

(Frictional force exists) 

(d) tJ-/1=- 0. 224u+O. 25v, ufz=- 0. 224v- 0. 25u. 

(Both damping and frictional forces exist) 

Fig. 7. Phase Trajectories in: the (u, v) plane for 

equation: 

u- kv- u= P./11 

v+kii-V=P./2 
where k=4. 5 

(24) 
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VIII. Conclusion 

An axially symmetric spinning top is analyzed when the axis of the top makes 

a small angle with perpendicular direction. The differential equation is nonlinear 

with small perturbation terms, that is, a quasilinear differential equation. By linear 

transformation the differential equation is separated into two equations with two 

modes ; nutation and precession. Stability and character of solutions for these equa

tions are investigated. According to the results obtained herein, the solutions are: 

(1) stable and converging to zero, (2) unstable and diverging to infinity, (3) pe

riodic with a limit cycle, and ( 4) almost periodic. 
Especially when the spinning top is assumed to be linear and axially symmetric, 

a combination of two forces results in the stabilization of the top. One is a damp

ing force and the other is a frictional force between a blunt peg and supporting 

plane. The damping force suppresses nutation, while the frictional force suppresses 

precession. If either one of these two causes does not take place, stability of the 

top cannot be maintained. There are no other causes (that are mathematically 

different) for the stabilization of a symmetric linear top. 

An example of a nonlinear case with small perturbation terms is used to obtain 
conditions when (1) solution is periodic with a limit cycle, and (2) solution is almost 
periodic. 
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Appendix 

Frictional force between the axis and its supporting plane : 

101 

The following assumptions are made in Section 4 : the axis of the peg rotates 

in the same direction as the top slipping between the bottom of the peg and the 
supporting plane, (2) the bottom of the peg is a sphere, and (3) the center of the 

sphere is located at a lower position than the center of gravity of the whole top. 

Under these assumptions, the frictional force gives a torque around the center of 

gravity. As shown in Fig. 8 (a), the perpendicular axis z and the rotational axis 

make angle r, and the distance between the center of gravity and the supporting 
point is equal to l. The top receives a force F at the contact point. This force F 

has two componets Fu and Fv as shown in Fig. 8 (b). If the angler is small, the 

following relation holds : 

The bottom of the peg has the form of a sphere which is approximately given by 

where h is a constant. In Fig. 8 (d) a tangential line can be drawn, such as 

tan r =2h~. 

Thus the following relation holds : 

The magnitude of the frictional force I F I shown in Fig. 8 (b) is proportional to a 
frictional coefficient B', and also proportional to the velocity at the contact point. 

Thus, 

IFI =B'w~, 

or 

F u = IF I sin o = IF I • I v . . = B
2

h' w v, 
"/u2+v2 

u B'w 
Fv=-IFicos o=-IFI v =- -2h u. u2+vz 

Thus the torque around the center of gravity has two components, 

lFu=flV, lFv=- flU, 

(27) 
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lB'w where p.= 'ill. 

u 

(a) 

{c) 

Chikara SATO 

u 
(b) 

{d) 

Fig. 8. 

(28) 


