慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Limit cycle of a modified van der Pol equation
Sub Title	
Author	佐藤，力（Sato，Chikara） 高橋，恒介（Takahashi，Kosuke）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1969
Jtitle	Proceedings of the Fujiihara Memorial Faculty of Engineering Keio University（慶応義塾大学藤原記念工学部研究報告）．Vol．22，No． 87 （1969．），p．43（43）－46（46）
JaLC DOI	
Abstract	A nonlinear differential equation of the form ：$\ddot{x}-\varepsilon\left(1-2 \beta x-x^{2}\right) \dot{x}+x=0$ is analyzed to form a limit cycle in a phase plane by digital computer．Using Bendixson－Poincare＇s theorem repeatedly the limit cycle is obtained in a narrow ring－shaped domain．The amplitudes and the period of the solution x are obtained．
Notes	折り込み図版
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00220087－ 0043

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Limit Cycle of a Modified van der Pol Equation

（Received May 17，1969）

Chikara SATO＊
Kosuke TAKAHASHI＊＊

Abstract

A nonlinear differential equation of the form： $$
\ddot{x}-\varepsilon\left(1-2 \beta x-x^{2}\right) \dot{x}+x=0
$$ is analyzed to form a limit cycle in a phase plane by digital computer．Using Bendixson－Poincare＇s theorem repeatedly the limit cycle is obtained in a narrow ring－shaped domain．The amplitudes and the period of the solution x are obtained．

In analyzing a negative resistance oscillator it is very common to use the van der Pol equation．${ }^{(1)(2)(3)}$ The characteristics of the negative resistance in the actual os－ cillators，however，is not always symmetrical with respect to the operating point． It seems significant to analyze such an oscillator with asymmetrical negative resist－ ance．The nonlinear differential equation for the oscillator is given by

$$
\begin{equation*}
\ddot{x}-\varepsilon\left(1-2 \beta x-x^{2}\right) \dot{x}+x=0, \quad \varepsilon>0, \tag{1}
\end{equation*}
$$

where $\dot{x}=d x / d t$ ．Equation（1）agrees with the van der Pol equation when $\beta=0$ ． Therefore equation（1）is a modified van der Pol equation．Analysis is made only to form a limit cycle in the phase plane．According to the Bendixson－Poincare＇s the－ orem $^{(4)}$ there exists at least one limit cycle in a ring－shaped domain D if trajectories enter D through the boundary and if there are no singular points in D or on the boundary．It is easily shown that equation（1）has no singular point except at the origin．As shown in Figure 1 the ring－shaped domain D is formed in the（ x, \dot{x} ）plane by two trajectories of equation（1）（one from A_{1} to A_{2} ，the other from B_{1} to B_{2} ）， and two line－segments on the x－axis（ $\overline{A_{1} A_{2}}$ and $\overline{B_{1} B_{2}}$ ）excluding the origin．Two distinct initial points A_{1} and B_{1} are selected on the positive x－axis，such that two trajectories from A_{1} and B_{1} reach the points A_{2} and B_{2} on the positive x－axis respec－ tively with the relation ：

$$
0<A_{1}<A_{2}<B_{2}<B_{1} .
$$

[^0]

Fig. 1. Ring-shaped domain D.

The process of forming the ring-shaped domain is repeated such that
$0<A_{1}<A_{2}<\cdots<A_{n-1}<A_{n}<B_{n}<B_{n-1}<\cdots<B_{2}<B_{1}$.
When the difference $\left|A_{n}-B_{n}\right|$ becomes sufficiently small such that

$$
\left|A_{n}-B_{n}\right| \leqq 10^{-4},
$$

the final narrowest domain is obtained, and at least one limit cycle is located inside of this domain.
The limit cycles of equation (1) are shown in Fig. 2 for $\varepsilon=0.2,0.5,1.0,2.0$, and $2 \beta=0,1,2$. Numerical computation based on Runge-Kutta's method is performed by TOSBAC-3400 computer with the increment $\Delta t=0.002$. The computed values are the positive amplitude $a_{1}\left(=x_{\text {max }}\right)$, the negative amplitude $a_{2}\left(=x_{\min }\right)$, the period T, and the time interval T^{\prime} in which x is positive, as shown in Table 1. The negative time interval in which $x<0$ is eliminated because it can be calculated by $T-T^{\prime}$.
When the parameter $|\beta|$ increases the limit cycle becomes more asymmetrical with respect to the origin. When β approaches to zero the limit cycle becomes symmetrical and agrees with the one obtained for the van der Pol equation. The time interval T^{\prime} in which x is positive increases as β becomes large, while the time interval in which x is negative changes little. The positive amplitude a_{1} charges little as β becomes large, while the negative amplitude $\left|a_{2}\right|$ becomes large as β becomes large. The estimated errors are in the order of 0.01% for both the positive and the negative amplitudes, and 0.1% for the period. The above obtained results cover the case for $\beta<0$ if x is replaced by $-x$ in equation (1). Also equation (1) coincides with the following differential equations by simple transformations,

$$
\begin{aligned}
& \ddot{x}-\varepsilon\left(1-x^{2}\right) \dot{x}+x=A, \quad|A|<1, \\
& \ddot{x}-\varepsilon\left(1-\beta^{\prime} \dot{x}-\dot{x}^{2}\right) \dot{x}+x=0, \\
& \ddot{x}-\varepsilon\left(1-\dot{x}^{2}\right) \dot{x}+x=A t+B .
\end{aligned}
$$

The more detailed limit cycles of the same equation (1) are shown in Figure 3 for $\varepsilon=0.1-2.0$ with step 0.1 and $2 \beta=0.1-2.0$ with step 0.1 . Numerical calculation is performed by NEAC L-2 with the aid of hybrid computer system by courtesy of NEC (Nippon Electric Company). In Figure 3 the values for parameter β are not indicated, because the limit cycles change their configurations continuously, therefore the values of β are easily known by comparing Figure 3 with Figure 2.

The authors wish their thanks deeply to Mr. K. Kagiyama, research manager at Central Research Laboratory of NEC who offered willingly the enormous computer results of Figure 3.

Fig. 2. Limit cycles of equation (1) for $\varepsilon=0.2,0.5,1.0,2.0$ and $2 \beta=0,1,2$.

$$
\begin{aligned}
& 0000 \\
& 000 \theta \\
& 0 \theta 0 \theta \\
& \& \& \& f \\
& A A A \&
\end{aligned}
$$

Table 1. Positive amplitude a_{1}, negative amplitude a_{2}, period T, and positive interval T^{\prime}.

ε	2β	a_{1}	a_{2}	T	T^{\prime}
0.2	0	2.0004	-2.0003	6.30	3.15
	1	2.0003	-2.0287	6.34	3.19
	2	2.0299	-2.6457	6.47	3.29
0.5	0	2.0025	-2.0024	6.38	3.19
	1	1.9944	-2.1635	6.61	3.43
	2	2.0818	-2.6457	7.45	4.08
2.0	0	2.0086	-2.0086	6.66	3.33
	1	1.9416	-2.4253	7.25	4.01
	2	2.0818	-3.4172	9.11	5.62
	0	2.0199	-2.0199	7.63	3.82
	1	1.8540	-2.6336	8.79	5.21
	2	1.9589	-3.7136	12.45	8.37

References

(1) van der Pol, "On relaxation-oscillations," Phil. Mag., vol. 2, pp. 978-992, 1926.
(2) M. Urabe, "Periodic solutions of van der Pol's equation with damping coefficient $\lambda=0-10$," IRE Trans. Circuit Theory, vol. CT-7, pp. 382-386, December 1960.
(3) P. J. Ponzo, N. Wax, "On the periodic solution of the van der Pol equation," IEEE Trans. Circuit Theory, vol. CT-11, pp. 135-136, March 1965.
(4) N. Minorsky, "Nonlinear oscillations," Van Nostrand, p. 84, 1962.

[^0]: ＊佐 藤 力 Professor，Faculty of Engineering，Keio University．
 ＊＊高 橋 恒 介 Nippon Electric Company．

