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Energy of the Spin Wave in an Antiferromagnet 
(Received April 15， 1969) 

Abstract 

Mitsuru FUKUCHI* 

Masaji HARADA糊

The isotropic Heisenberg model for an antiferromagnetic crystal is investi-
gated on the basis of spin wave theory. Theory for the free spin waves are 
developed by the Bogolyubov transformation and by the approach with the use 

of the equatioII of motion. The effects of mutual interaction between spin waves 
in the equation of motion are investigated approximately with the self-consistent 
treatment for the interaction at low temperature. The resulting temperature de-
pendent spin wave energies are examined together with the temperature variation 
of the reduction of sublattice magnetization. Relation to the approach by the 
Green function method are considered brief1y. 

1. Introduction 

The spin wave， namely the elementary excitation near~the magnetic ground state 
is one of the concepts of great value and of considerable importance in the theory 

of magnetism. We can obtain the information about the condition for stabi1ity of 

ground states as well as the knowledge about the excitation spectra. For the forro-
magnetic Heisenberg model， we have the famous Dyson's theory on spin waves and 
their interactionsY A spin wave quantum is a well defined quasi-partic1e near the 

ground state， which can be interpreted qualitatively by so cal1ed free spin wave 
Hami1tonian. This Hami1tonian is expressed within the second order terms in spin 

wave annihi1ation and creation operators. The higher order Hami1tonian consists of 

interaction terms between spin waves， one of the direct physical consequences of 

which seems to be the temperature variation of elementary excitation energies. 

In our伊・esentwork we consider an antiferromagnet in Heisenberg model treating 

the e妊ectsof interaction self.consistently using the linearization approach of the 

equation of motion， although we have studied a ferromagnet in a localized model in 

greater detai1 by means of Green function approach in our previous work.2
) As for 

the starting antiferromagnetic spin Hami1tonian we take， 

%=2IJI L: Sl・Sm-gμBH(i: S~ + ~ S:;.) ， (1-1) 
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where Sz and Sm refer to spin operators at lattice site l and m respectively and H 
represents the externally applied magnetic field, which is assumed to be along +z
direction. The subscript (l, m) under the summation symbo1 means that land mare 
restricted to nearest neighbor pairs and the summation is carried out over the set of 
pairs. We use the symbol f-1-n for the Bohr magneton, and g for the Lande g-factor 
of a magnetic atom in a crystal. We take the usual two sublattice model for an anti
ferromagnet, that is, a lattice site l belongs to sublattice A and a lattice site m belongs 
to sublattice B respectively. We assume that the nearest neighbors of the A (or B) 

site are the members of the B (or A) sublattice and the nearest neighbor antiferro
magnetic coupling of strength ], which is assumed to be negative. We consider that 
our crystal contains 2N magnetic atoms in all. In the Hamiltonian (1-1) we neglect 
any anisotropic field which is of importance in a real antiferromagnetic crystal. In 

other words we consider the limiting case in which the anisotropic field becomes 
infinitely small. We have main interests with the behaviour of an antiferromagnet 
with no anisotropy, and further we assume the applied field H to be very weak and 
do not treat the problem of instability for a strong field or for the direction of field 

in the present work. 
The Neel state, which we denote as the ordered antiparallel spin state and which 

is not an exact eigen state of our Hamiltonian (1-1) is assumed to be an approximate 
ground state. Thus each spin in the A-sublattice is in a state of Szz= +S, and each 
spin in the B-sublattice is in a state of Smz= -S, respectively. Starting from the Neel 
state above mentioned, we express the spin operators in terms of Boson operators 
az, at+, bm + and bm 3) as follows, 

Sz+=v2S (1- a~~z )az 

Sz-=v2S az+ 

Snt+=v2Sbm+(1- b'2~~) 

Sm-=v2S bm 

(1-2) 

where az and az+ refer to the spin deviation of lattice site lin the A-sublattice and 
bm + and bm refer to that of lattice site m in the B-sublattice respectively. Oper
ators az, az+, bm + and bm obey the well-known commutation relations. 

Other commutators are zero. (1-3) 

We obtain the Hamiltonian of idealized spin-type0 using the transformation (1-2) as 
follows, 

(32) 
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;ro=-2zifiNS2 

+gfl-sH{ ~ at+at- L: bm+bm}+2ifiS ~ {at+a,+bm+bm+atbm+at+bm+} 
l 1/l (1,111) 

-If! ~ {at+alatbm+at+bm +bm +bm+2at+albm +bm}. 
(l,m) 

33 

(1-4) 

This Hamiltonian is expressed in terms of localized spin deviation operators at, at+, 

bm + and bm. In order to change the representation into the wave number space we 
introduce the spin wave operators with wave vector ,., namely a., a,+, b. and b,+ 

defined as follows, 

(1-5) 

The different choice for the sign of the exponent corresponds to the different choice 
of the annihilation and creation operators for s- and s+ in the equations (1-2). 

Then we obtain the required spin wave Hamiltonian. 

K= -2zifiNS2+g!1-BH ~ (a,+a,-b,+b.) 
K 

+21]1 Sz ~ (a. +a.+b. +b.+Y.a.b.+Y.a,+b. +) 
K 

(1-6) 

and (1-7) 

where the summation over the vector o is carried out only for the z-vectors that 

connect an atom with its z-neighbors. 
Our transformed Hamiltonian (1-4) or (1-6) equivalently contains unphysical state~ 

as well as physical ones. This makes the problem essentially difficult when we treat 
it at arbitrary temperature. We consider, however, the behaviour in low temperature 
region only, where the contribution of unphysical states to various physical quan
tities at temperature T°K is vanishingly small with the factor propo!tional to 

exp (- k~) , owing to the fact that we may have a finite energy gap L1 between the 

lowest physical and the lowest unphysical eigenstates of our Hamiltonian (1-6). 

II. Treatment of the Hamiltonian for the free spin waves 

In this paragraph we treat the second order part of the Hamiltonian (1-6), 

in which modes of different wave vectors do not interact with each other. Thus 

(33) 
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we may consider the following part refering to wave vector " in the Hamiltonian 
(1-6), 

~II (K) = S 1 (K )a. +a.+ S 2 (K )b. +b.+ r (K) (a.b.,+a., +b.,+) 

and omit the wave number vector " for a while. We notice, 

and 

s1(") =2zl] I S+gp.BH, 

r C") = 2z I J I Y C") . 

s2(K) =2zlf I S-gp.BH 

(2-1) 

(2-2) 

Usually the terms of pair-creation and annihilation operators are eliminated by 
the Bogolyubov transformation4), in which operators a's and b's are expressed in 
terms of new Boson operators a's and {3's, 

a=ea+sf3+ 

b=sa++ef3 

a+=ea++sf3 

b=sa+ef3+. (2-3) 

In order that new operators a's and {3's should represent Boson operators, that is, 
they should satisfy the same type of commutation relations as the equations (1-3), 

the coefficients e and s which are assumed to be real numbers here, must satisfy 
the following relation, 

(2-4) 

The new Hamiltonian expressed in terms of a and {3 should have the vanishing 
coefficients for the terms a{3 and a+ [3+, thus we obtain the following condition, 

( s 1 + s 2) es + r ( e2 + s 2) = 0. (2-5) 

Equations (2-4) and (2-5) determine the coefficients of Bogolyubov transformation e 

and s together with the requirement that a should tend to a and {3 to b for small r, 

_L 

2es=- ~l-"(+)', 

and 

where we have introduced the quantity s that is defined by 

Thus we obtain the following Hamiltonian in terms of a's and {3' s, 

~II (K) =Eo+ ela+a+ e2{3+ {3 

where 

(34) 

(2-6) 

(2-7) 

(2-8) 

(2-9) 
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(2-10) 

and 

(2-11) 

Now we will treat the same problem along the view-point of the equation of motion 

approach. In order to examine the time-rate of change of a and b+ quantum 
mechanically, we must take commutators a and b+ with ~rr, to get 

[a, ~II]= c1a+ rb+ 

and [b+, ~''] =- ra- s 2b+. (2-12) 

Equations (2-12) show that coordinate a couples with coordinate b+ and that the 
normal coordinate should be a linear combination of a and b+. Thus we seek the 
normal coordinate in the form, a=ea-sb+ with the requirement that [a, ~II] equals 
to + s1a. The coefficients e and s, and the energy of normal mode i.e., energy of 
elementary excitation s 1 should coincide with the equations (2-6) and (2-10) respec
tively, which we shall show now. Above requirement gives the following equation, 

(.s1-s1)e+rs=O 

re+ ( .s2+ s1)s=0. (2-13) 

Equations (2-13) should have the nontrivial solution for e and s, so we obtain the 

following secular equation for s 1 , 

=0' (2-14) 

which can be solved as, 

(2-14') 

The upper sign gives the same result as that for the equation (2-10). In the limiting 
case with vahishing r, this tends to .s 1 correctly. Then the coefficients e and s are 
determined from the equations (2-13) with substitution (2-10) into .s~t which can be 

shown to be identical to the equations (2-6) if they are normalized by the equation 
(2-4). The lower sign corresponds to another normal mode, f3+= -sa+eb+, thus for 
the solution ~ ( .s 1- .s 2) -v .s 2- r2 we should put it equal to - s 2 • Of course this can 

be obtained directly from the requirement, f3+=eb+ -sa should satisfy the condition 
of normal coordinate, that is, 

which gives the following secular equation for f3+ and s2 , 

(s2-s2)e+rs=O 

re+(s1+s2)s=O 

(35) 

(2-15) 
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and 

=0. (2-16) 

One of the solutions of the above equations gives exactly the same result as the 
solution (2-11). 

Before proceeding to treat the effects of spin wave interaction, we present here the 
results of theory of free spin waves in an antiferromagnet. The Hamiltonian is 
diagonal in the representation of a's and f3's, 

+I: el(~r)ac+ac+ I: e2(~r)f3c+f3c, (2-17) 
c c 

where 

(2-18) 

and 

e2(~r)=2z If IS ~1-.:rK2 -gf-lBH. (2-18') 

Equations (2-18) and (2-18') give the energies of free spin wave quantum inde
pendent on temperature. They are proportional to wave number 1r for long wave 
length like acoustic phonons in contrast with the ~r 2-proportionality for magnons in 
a ferromagnet. This satisfies the requirement of rotational invariance of the problem. 
The second term in the bracket { } in the equation (2-17) represents the correction 
to the ground state energy. This gives the measure of deviation of the ground state 
from the Neel state. The numerical value has been computed by P.W. Anderson5) 

for a simple cubic lattice, 

~ ~ (1-~1-Yc2)=0.097. (2-19) 

Another interesting quantity is the reduction of the average z-component of spins 
from their saturated magnitude S in the Neel state. 

1 1 
(i5Stz)= N ~ (S-(Stz))= N 2f (at+at) 

= ~ ~ (ac+ac) (2-20) 

This can be expressed in terms of variables a's and {3's together with the coeffi
cients given by the equations (2-6). 

(i5Stz)= 1 ~ Sc
2+ ~ ~ ec2(ac+ac)+ ~ ~ Sc2 (f3c+f3,) (2-21) 

The first term in the equation (2-21) is the reduction of z-component of spins 

(36) 
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which remains at T=0°K. We denote this with llS, 

llS= __!__ L: s~2 = __!__ L: _!_ ( 1 -1) =0.078 
N ~ N ~ 2 v1-y~z 

(2-22) 

for a simple cubic lattice. s> The second and third terms in the equation (2-21) give 
the variation of sublattice magnetization with temperature, because in thermal equi
librium (aK +a~) and <!3~ + {3K) are given by the distribution function for Bosons, 

and (2-23) 

When the external field H vanishes, both e1 (...-) and e2 (...-) coincide with e (...-) 
given by 

e ( ...-) = 2z I J I S v 1-Y K 2 • (2-24) 

This degeneracy reflects the equivalence property of A- and B- sublattices to each 
other in zero applied magnetic fields. 

Explicit calculation of ( i5St 2
) including the temperature variation is straight for

ward. We can put the sum over wave number vectors ...- into the integral 

and further in low temperature we can perform the integration easily with the use 

of expansion for small ...-, because we have the factor exp ( e ~;2.) in denominator 

and the trouble of integration-limits disappears for temperature dependent terms. 
Thus we get the following expression in zero applied magnetic field for a simple cubic 
lattice, 

(oSt 2 )=llS+ ,V~3- C:(2)r2 + 
3 
~ 

3 
n 2 C:(4)r4 + 

416 
+ 9v_3_ n'C:(6)r6+······, 

where we used the abbreviation, 

r=kT /(Bn I J IS) 
and 

(37) 

(2-25) 

(2-26) 

(2-27) 
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III. Effects of spin wave interaction 

We proceed to treat our Hamiltonin (1-6) including the interaction terms be
tween spin waves. Our approach goes along the method of equation of motion 
previously described. Taking the commutator of a. with our Hamiltonian (1-6) 

we obtain, 

[a., Jr'] = (gpBH +2z I] I S)a.+2z I] I Sb.+ 

(3-1) 

The first and second terms come from the second order part of the Hamiltonian. 
The last term which is third order in Boson operators represent the effects of mu
tual interaction between spin waves. These third order terms may have real third 
order effects which can not be taken into account by the self-consistent averaging 
procedure. In low temperature region, however, we expect that these real third 
order processes may be neglected. Thus we replace the quadratic part in Boson 
operators with the mean value taken at thermal equilibrium. 

(3-2) 

In this procedure, we neglect the terms such as <a.a/), <b.bc') and <a.bc'+) from 
the above mentioned view-point. The terms <a.b.) and <a.+b,+) in addition to such 
terms as <a.+a.) and <b.+b,) have to be included in the theory, because the normal 

modes which we seek are expressible in the linear combination of a. and b.+. 

Thus we get the approximate equation of motion for a., 

(3-3) 

where 

(3-4) 

and 

(3-5) 

In a similar way, we can obtain the equation of motion for b.+, 

[b,+,Jr'] =(gpBH-2z I] I S)b,+-2z I] I Sa. 

+ N1 
Z I] I ~ o (Kl- K2- K3 + K) {..r.a.l +a,2ac3-/-Y,1a•1+b,2 +b,3 + 

.tl,K2,.c3 

(3-6) 

The third order terms in this equation are replaced by the following expressions. 

(38) 
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Thus the equation (3-6) may be approximated by 

[bK+,2'] = -T2(1C )aK-E2(1C )bK+, 

where 

and 

39 

(3-2') 

(3-7) 

(3-8) 

(3-9) 

From the equations (3-3) and (3-7), we can determine the energy of spin waves 
taking into account the effect of mutual interactions self-consistently. In the following 
we consider the energy of spin waves in zero external magnetic field for simplicity. 
We may expect 

(3-10) 
and 

(3-11) 

from the consideration of the equivalence of A- and B-sublattices, in zero magnetic 
field and the properties of transformations (2-3). Further in performing the }.. 
summation in the equations (3-5) and (3-9), Yc-l may be decomposed into YEY, 

from the consideration of crystal symmetry. Thus we may have 

(3-12) 

and 
T1 (K) =T2(K )~F (K) = r (K) (1 +LI) (3-12) 

where 

(3-14) 

The secular equation for. E(K) i.e., the spin wave energy which contains the effects 
of mutual interactions is expressed as follows, 

(E(K) -E(K))e'c+T(K)S'K=O 

r(,.)e'K+ (E(K) +E(K))s'K=O. 

The solution for the equation (3-15) is obtained with use of s (K), 

il c,.) = s c,.) C1 + Ll) 

(3-15) 

(3-16) 

where the effects of mutual interaction is condensed into the factor (1+LI). We no
tice, however, the mixing coefficients in a-(or f3+-) mode are identical with those 
obtained in the paragraph II. This means that the new normal mode a' K remains 

(39) 
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invariant and equal to aK in free spin waves, whereas their energy E(!C) undergoes 
the change due to the effects of mutual interaction. The factor L1 is expressed in 
terms of the above-mentioned normal coordinates, i.e~., the mixing coefficients eK and 
sc, and with the distribution function for Bosons, N c· 

(3-17) 

We denote here with L10 the temperature independent part in L1, that is, the part 
due to the interaction effects in the ground state. 

L1o =- .Js ~ (Sc 2+Ycecsc) 

= 2~5 ~ (1-v1-Yc2) = 2~ x0.097 (for a simple cubic lattice) (3-18) 

The second term in L1 is expressed in terms of the renormalized Boson distribution 
function N c with the new energy E ("). 

(3-19) 

and (3-20) 

The sum over the wave number vector " in the equation (3-19) is carried out in a 
similar way done in the paragraph II for <BStz). Thus we get 

L1- L1 _ 1 [ 16 2 ( ) r
4 1280 4 r 6 

- 0 s 3vf n C 4 (1+L1)• + 27v3- n CC6) (1+L1) 6 

which can be solved with the use of successive approximation. 

(3-21) 

For the reduction of the magnitude of the sublattice magnetization the influence 
of mutual interaction makes a contribution through the effects of renormalization of 
spin wave energies, but L1S given by the equation (2-22) is not modified because of 
the independence on temperature of the normal mode coefficients, 

416 4 r
6 J 

+ 9,V3- n C(6) (l+J)6 + ... ' 

(40) 
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which is solved using the result (3-21), 

[ 
2 r 2 16 2 r 4 

(oStz)=LlS+ -vf3_ C(2) (l+L1o) 2 + 3v'3 7r C(4) (l+L1o)4 

+ ( 9~63_ rr4C(6)+ ~~ rr2C(2)C(4) 1~L1J (l:~o)6 + ... ]. (3-22) 

VI. Discussions and cone I usion 

We have investigated the effects of mutual interaction between spin waves for the 
energy of elementary excitation and the reduction of sublattice magnetization by 
an approach along the self-consistent linearization for the equation of motion. 

We compare the spin wave energy (3-16) in which L1 is expressed by the equations 
(3-18) and (3-21) with the corresponding one (2-24). We see that E(K) is larger 
than e (") by the factor (1 + L10) at 0°K, and both of them are proportional to the 

magnitude of wave vector " for long wave-length magnons. The factor (1+L10) 

means the improvement achieved with the introduction of mutual interaction in the 
ground state for the velocity of magnons. This seems to be along the right direction 
for an antiferromagnet in a three dimensional lattice, although we have an exact 
solution only for a linear chain problem. 6) In this one dimension a] problem the exact 
theory gives the larger magnon velocity than that in P. W. Anderson's theory. The 
temperature dependence of spin wave energy is seen to appear in the leading term 
proportional to T 4• We compare this temperature dependence with the T2~dependence 

which is obtained by the approximation due to Tyablikov-decoupling in the Green 
function theory.7) The method of Tyablikov-decoupling has the merit that the be
haviour in wider temperature range is well approximated but we notice that the 
temperature dependence for the excitation energy is a qualitative one, as we see for 
a Heisenberg ferromagnet in our previous work. 2) We expect that we may obtain 
the knowledge about the life time of spin wave quantum when we take into account 
higher order effects which are not contained in our approximation and are neglected 

in the present treatment. 
Next, the equation (3-22) should be compared with the corresponding one, namely 

the equation (2-25) for the reduction of sublattice magnetization. We notice LIS is 
not modified by mutual interactions between spin waves. This is due to the fact 
that the coefficients of the Bogolyubov-transformation are identical with those with
out interactions in our approximation. The normal modes in free spin wave theory 
have rather unexpected sound basis. The origin of the temperature variation of 
their energies does not consist in the change of their own character but consists in 
the change of the environment into which magnons are created and in the variation 

of the mutual interaction which magnons feel. The modification is introduced 
through the renormalization of spin wave energies. These effects are seen to be the 

replacement of r in the equation (2-25) by r I (1 + L10) and further the modifications in 

(41) 
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the coefficients in r appear for terms higher than r- 6-terms. We cite here the corre· 
sponding expression due to the method of Tyablikov-decoupling approximation, 

and that for the energy of elementary excitation which has the T 2-dependence, 

E(JC)ryab. =2zlfl SV'l-.r.,2 (1-2(oSlz) ). 

Our approximation represented by the replacements (3-2) and (3-2') corresponds 
to Hartree-Fock type decoupling approximation in the Green function theory.2> In the 
Green function theory, we set up the equation of motion for the Green function to 
get the new higher order Green function, which are expressed with the decoupling 
approximation introducing the statistical parameter. We determine this statistical 
parameter with the requirement of self-consistency. We have used the equation of 
motion approach in order to gain the insight for the wave function as well as the 
energy of elementary excitation, because in the Green function theory we devote 
our attention to the elementary excitation energies only. 

Finally we shall mention briefly the effect of externally applied field. In real crys· 
tals we have to consider the effects of anisotropic fields in addition to the applied 
field. If they are not included properly in the expression for E(JC), we may obtain 
the negative spin wave energies for some values of JC. This represents the problem 
of instability, which we do not consider at present. 

The authors wish to express their sincere thanks to Mr. K. Shiiki for his valuable 
discussions and comments. 
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