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On the Synthesis of an Optimal Control System 

for Lateral-directional Motion of Airplanes 
(Received ~arch 20,1969) 

Hiroto SAEKI* 

Abstract 

The dynamic system which expresses lateral-directional motion of an airplane 
constructs a typical multivariable system, so-called P-canonical structure in which 

each of the outputs is expressed as explicitly and wholly dependent upon all of 

the inputs. 

In this study, an reference model was introduced to the dynamic system and the 

method of variational calculus was applied under condition such as the accumulated 

quantity of error signal between the model and the practical airplane dynamics 

would be restricted. 

The control actions were based on the error signals and their derivatives, so 

that the optimal control system was synthesized. And further, it was shown that 

the realization of such a control would be possible under condition of comparative
ly small acceleration without making increment of the settling time. 

At the end of this study, a numerical example was shown, in which the difference 

of responses was illustrated between the cases that the dynamic system would be 

carried out an ordinary feedback control and such as the optimal control. 

I. Introduction 

In such a case as the optimal control techniques are applied to a multivariable system 
in which the interactions arise between the internal signals, generally it will be nec
essary that either the non-interacted system is constructed in advance or the optimal 
controller is synthesized under consideration of the effect of interactions. 

The synthesis of the optimal control system for lateral-directional motion of air
planes is one of the most typical example for this kind of problem. In either case 
as to be stated above, the dynamic characteristics of the airplane must be considered, 
however, in this study, it was attempted to realize the optimal control by means of 
rather utilizing the effect of interaction without making non-interaction in advance. 

In order to linearize the equations of motion which describe the lateral-directional 
behaviour of the airplane in the neighbourhood of any equilibrium state of the mo
tion, it was assumed that the flight-path angle would be comparatively small, D and 
particularly in the equations of aerodynamic forces or moments, the terms not less 
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2 Hiroto SAEKI 

than second order were neglected2) as to be sufficiently small. 
From the practical condition, a restriction was made to the accumulated quanti

ty of error signal between the reference model and the airplane dynamics. 
Further, the synthesis of optimal controller was advanced on the supposition that 

the effect of rudder would be less than the effect of aileron in the side-force equation. 
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II. Notation 

rolling-moment coefficient 
yawing-moment coefficient 
side-force coefficient 
moment of inertia about the X, Y and Z axes 
product of inertia 
wing area 
wing span 
weight of airplane 
mass of airplane 
acceleration due to gravity 
time 
the operator ...... djdt 

velocity 
angle of attack 
flight-path angle 
angle of bank 
angle of yaw 
side-slip angle 
rolling velocity 
yawing velocity 
aileron deflection 
rudder deflection 
dynamic pressure 

oCt 
o(Pb/2V) 

oCt 
o(rbj2V) 

oCt 
a/3 

oCn 

o(rbj2V) 

oCn 
of3 

(2) 
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III. Equations of lateral-directional motion for airplanes 

The axes 

The equations of motion generally 
used in airplane dynamics are de
scribed on a system of axes fixed in 
the airplane in which the X axis is 

the intersection of the plane of the 
symmetry and a plane perpendicular 
to the symmetry that contains the 
relative wind vector. 

But, it can be regarded as the X 

axis coincides with the reference axis X 

of the airplane, when the angle of z 

3 

attack is not so large. Fig. 1. Three axes fixed in the airplane and 
In this study, the equations of mo

tion are described with respect to the 
the direction of rotation. 

three axes that they are perpendicular each other to the reference axis, as to be shown 
in Fig. 1. 

The rolling moment equation 

Motions of the airplane which we are concerned to analyze are governed by the 
balance of three different kind of forces and moments, such as inertia forces or mo
ments, gravity forces and aerodynamic forces or moments. 

In this case, rolling moments due to inertia are represented by the following e

quation. 

(3 ·1-1) 

The gravity force produces no moment, because it acts through the origin of axes. 
Aerodynamic rolling moments are represented by a Taylor series as 

L =-aL!J.Q+aL!Jr+§L!J.P+-aL !J.o +aL !J.o 
a • a [j JJ a r a p a oa a a or r (3·1-2) 

These different rolling moments are summed up and set equal to zero, then the 
resulting equation is reduced to the following form. 

(3 ·1-3) 

(3) 
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In the above equation, the coefficients are defined as 

r X= .!_:r:z 
fx 

q Sb2 
Lr=--0 -Ctr 

2Vlx 

where C1p is generally a negative number representing moments tending to resist 
rolling rotation and Ctr is a cross derivative that couples yawing and rolling motion 
that is sometimes (subsonic) positive and sometimes (supersonic) negative, further 

Ct~ may be either positive or negative. 

The yawing moment equation 

In this case, inertia moments are 

(3·2-1) 

The moment produced by gravity is zero because the axis of moments is taken 
through the centre of gravity of the airplane. 

Aerodynamic yawing moments are similarly represented by Taylor series expansion 

as previous manner. 

~(3·2-2) 

According to Newton's Laws, all kinds of yawing moments are added up and set 
equal to zero so that the resulting equation could be as follows. 

( -rzD2 -Nz~D)!1cp+ (D2 -NrD)!1¢-Np/1{3=Nsat1oa+Nsrt1or 

In the above equation, the coefficients are defined as 

f:cz rz=-
lz 

q Sb2 
Nr=- 0--Cnr 

2Vfz 

(3·2-3) 

where Gnp is a cross derivative tending to couple rolling and yawing motions that 
is a negative number for subsonic configurations and Cnr is a negative number cor
responding to yawing moments against yaw rate, further Cn~ is a measure of the 
tendency of the airplane to aline itself in side slip with the relative wind. 

The side force equation 

Side slip motion is fully governed by the three kind of forces, that is, inertia force, 
gravity force and aerodynamic force. 

Inertia force is given by 

(3·3-1) 

(4) 
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Gravity force with respect to stability axis is 

Yu= (Wcosr)Jcp+(Wsin r)J<jJ (3·3-2) 

Aerodynamic side force is 

(3 ·3-3) 

These different forces are summed and equated to zero in the side force equation, 
which may easily be put in the following form. 

(-Wcosr)Jcp+(mVD- Wsin r)+(mVD-q0SCyp)Jfi 

=q0SCysadoa+q0SCysri10r 

Dividing the previous equation by mV, it is reduced as 

where 
-KtJcp+ (D-K2)L1o/+(D- Yp)Jj3 = Y.sadoa+Ysrilor 

K _ Wcosr 
1 - mV 

K _ Wsinr 
2 - mV 

(3·3-4) 

(3·3-5) 

In the above coefficients, Cyp is a negative numer representing cross-wind force. 

IV. Derivation of optimal conditions 

Consider that the functional 

tz 

J = f f(t, xh x2, ...... , Xn, xh Xz, ...... , Xn) dt 
tr 

(4·1) 

, in which the functions x1 = rp 1 (t), x2 = rp 2 (t), ...... , Xn = f/Jn (t) and their first order deriv-
atives are included, could be the extreme value under conditions such as 

at 

at 

are satisfied and 

tz 

H = f g(t, xh[xz, ...... , Xrt, xh x-2, ...... , Xn) dt=const. (4·2) 
tr 

Now, we introduce any functions ~ 1 (t), ~ 2 (t), ...... , ~n(t) whichsatisfythefollow-
ing conditions. 

Taking any small positive numbers s h s 2, •••••• , s n and defining the variations with 
respect to xh x2, ...... , Xn as 

( 5) 
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the total variations for] and H could be represented as 

tz 

11]= f [tct,xl+el.;l(t), ...... , Xn+en.;n(t), xl+el~l(t), ...... , Xn+en~n(t)) 
It 

(4·3) 

tz 

f1H= f [ g(t, xl+e1.;1(t), ...... , Xn+en.;n(t), i1+e1~1(t), ....... Xn+en~n(t)) 
it 

(4·4) 

respectively. 
In the equations (4·3) and (4·4), if all x1, xh······' Xn, .;1(t), .;2(t), ...... , .;n(t) could 

be determined, since they are the functions with respect to t, either 11] and 11H 

would be the functions with respect to only e 1 , e 2 , •••••• en, that is, 

Therefore, putting 

f/J(e1, e2, ...... , en, A)=F(eh e2·······- en)+AG(eh e2 ...... ,en) (4·5) 

()(/) ()$ a--e; =o, ...... , as: =o, (4·6) 

when e I = 0' e 2 = 0' ...... ' e n = 0' A = A 0 

On the other hand,deriving oF/oeh oF/oe 2 , •••••• : oF/oen and oG/oeh oG/oe 2,. •• 

•.. , ac;a en from the equations (4·3). (4·4) and substituting them into equation (4·6), 
we may obtain the set of equations 

since all the equations of (4·6) except of/Jjo A could be 

af/J = oF +Ao ac =O 
~e 1 Oe 1 Oe 1 

_af/J = aF +Ao ac =O 
Oen Oen Oen 

at e 1 =0, e 2 =0, ...... , en=O respectively, while 

(6) 

(4·7) 

(4·8) 

(4·9) 

( 4·10) 
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Since, 

from the equation ( 4 · 9) 

Consequently, we obtain the following equation as the Euler's Equation. 

o(f+ A.og) - _!!:__ [ o(f+ A.og) J =0 
oxl dt oxl 

Similarly, for x 2 ... ••• Xn, we may represent them as follows. 

o(f+ A.og) - _!!:__ [ o(f+ A.og) J =0 
oxn dt oxn 

7 

( 4·11) 

(4·12) 

(4·13) 

(4·14) 

The optimal conditions for the original dynamic system would be satisfied by the 
solution of them. 

V. Optimal conditions of the control system 

For the sake of convenience, let's substitute <p, ¢ and {3 for Ll<p, Ll¢ and L1{3. 

Now, we define such error signals as 

(5·1) 

(5·2) 

They would establish the exciting functions for which a integral error would be min
imized as oa=X1 and or=X2. In the above equations, <pm and ¢mare the outputs of 
the desired models so that they are optimum responses for the system. 

Suppose that f, the variational integrand in equation ( 4 ·1). is chosen to be some 
function of the error signals with respect to <p, ¢ and their time derivatives. From 
equations (5·1) and (5·2), we may obtain the following relations as the effect of 
aileron and rudder deflections. 

(7) 

ae"' _ a<P 
oor -- oor 

ae"' __ a¢ 
oor - oor 

(5·3) 

(5·4) 
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On the other hand, from the original equations of motion. the effect of <p. cp and ;p 
due to the aileron and the rudder deflections could be derived as follows. 

a;p _ Alla 
aoa - 1-r.x.rz 

acp _ Alla 
aoa -- LP+rxNP 

acp _ Alla 
aoa -- K1 (L.-,+-r-xN~r)-

a;p _ Aar 
aor - 1-rxrz 

K1 (L,+rxNr) 

In the equations from (5·5) to (5·10). Aaa and Asr are 

Aoa=Lsa+rxNoa+ Yaa(L,+rxNr) 
Aar=Lar+rxNar+ Ya,(L,+rxNr) 

(5·5) 

(5·6) 

(5·7) 

(5·8) 

(5·9) 

(5·10) 

Similarly, the effect of ¢, ¢ and ¢ due to the aileron and the rudder deflections 
are represented by the following equations, that is, 

a;p _ B,l'1. 
aoa - K 1 (1-r.r:rz)- (Np+rzLv) (5·11) 

a¢ __ Baa. 
ao-;;- Kl(Nr+rzL,) -K2 (Np+rzLP) (5·12) 

a¢ _ Aaa 
(flf;:-- K2(L,+r:1·NJ (5·13) 

a;p _ Bar 
aTr- K1(1-rxrz)- (Nv+rzL--;;) (5 ·14) 

_!_ck_ = _ Bar 
oor Kl(Nr+rzLr) -K2(Np+rzLP) (5·15) 

a¢ _ A.,. 
a or - -7(2 (L,+r".N~) 

(5·16) 

where, Baa=Kl(Naa+rzLaa) 

Bar=Kl (Nor+rzLar) 

Further, the effect of time derivatives of error signals due to aileron and rudder 
deflections would be calculated as follows. 

(8) 

ae'P _ a;p 
a or -- a or 

ae'P _ a;p 
ao,. -- aor 

(5·17) 

(5·18) 
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Then, in order to synthesize the control system based on the error signals and 
their derivatives, let's choose a function described by the following form as a var

iational integrand. 

(5·19) 

where, 

and L1i5a, L1or are the displacements of aileron and rudder which must be shifted at 

the time t. 
Consequently, if the function g is specified, the Euler's equations for this kind of 

variational problem subject to the integral constraint would be represented by the 
following equations. 

and 

a (f+ A0g) d a(J+ i-og) =0 
aJoa -- dt aJaa 

a(J+?.og) d a(j+Aog) =0 
aLlor -dt aJar 

t 

f g(t, e'P, e,p, elf, e¢) dt=const. 
0 

From the equation (5·19). 

_j[_ =0 
aLia a 

and 

Further, the partial derivative of g with respect to J a a is represented as 

in which 

therefore, 

and 

~g-=0 
a!laa 

But the other side, the partial derivative of g with respect to L1Jr is to be 

(9) 

(5 ·20) 

(5·21) 

(5·22) 

(5·23) 
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in which 

ocj; _ (Np+rzLp)Yar 
aJar - Kl(Nr+rzLr) -K2(Np+rzLv) 

and if Yor~O 

then, (5·24) 

Similar]y, since tne partial derivatives for f and g with respect to .Joa and .Jor 

are to be 

aYoa = 2 [ al(a1Joa+a2dor) + j31 (j31Joa + j32.Jor) J 

aYor = 2 [ a2 (al.Joa+a2.1or) + j32 (j31Joa+ j32.Jor) J 

_1g_= ag ~+j_g_ ae'P =-~ ag _ _j}L ag 
a.Joa ae'f' ().:loa ae'P o.doa o.doa ae'P o.Joa ae'f' 

= Aaa [ 1 og - 1 3JL] 
(Lp+rxNP) oe'P (1-rxrz) oe'P 

_jg_=_§_g_~+ ag aecp __ __!j_ ag _ a;p ag 
o.dor oey, ()!lor ae", ()Jar - ().Jar oey, a.Jor oecp 

=Bar [ 
1 

Kl(Nr+rzLr) -K2(Np+rzLv) ae<P 

1 ag J 
K 1 (1-rxrz) -K2(Nv+rzLv) oe<P 

(5·25) 

(5·26) 

(5·27) 

(5·28) 

substituting the equations from (5·25) to (5·28) into the equations (5·20) and (5·21), 
we may obtain the following relations. 

2 [ a 1 (a 1doa+ a2dor) + j31 (j31doa+ j32dor) J 

+ A.oAaa [ 1 og - 1 og] =0 
(Lp+r.rNP) oe'~' (1-rxrz) oe'P 

(5·29) 

2 [ a2 (a 1doa+ a2:1or) + j32(j31doa+ j3 2flor) J 

(5·30) 

(10) 
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Therefore, .:loa and .:lor could be derived as 

.:loa=-~ Catf32~~2j3l):i[Ca~+J3DP-Q] (5·31) 

dor = ~ (a1 j3 2 ~0a2 j3 1) 2 [ Ca1a2+j31j32)P- (a~+ j3i) Q J (5·32) 

where P and Q are represented by equations (5·27) and (5·28) respectively. 
If the function g is given to be 

(5·33) 

the partial derivatives of g with respect to e'f, e'f, e¢ and e¢ are represented as fol
lows. 

Substituting previous four relations into equations (5·31) and (5·32), then we may 
obtain the following two equations as .:loa and Jor • 

.:loa=- (alj32~a2j31) 1Aoa(a;+J3D(e'f+e~") [(Lp+~xNp) 

-
1 J- Bar(e¢+e¢) [ 

1 
(1-rxrz) Kt(Nr+rxLr) -K2(Np+rzLp) 

- K 1 (1-rxrz) ~ (Np+rxLp) ]} (5·34) 

.:lor= (a1 j3 2 ~a2 j3 1 ) { Aaa(ata2+j31j32) (e 10 +e10 ) [(LP+~xNp) 

- (1-1rxrz) J -Bar(a~+ J3D (e¢+e¢) [ ~-1 "'"'Tr~r--:--;--"7" 
Kl(Nr+rxLr) -K2(NP+rzLp) 

(5·35) 

VI. Transfer functions and matrix for lateral-directional motion 

As to be derived in previous section, the fundamental equations of lateral-direc
tional motion for an airplane may be represented by the equations (3 ·1-3), (3 ·2-3) 

.and (3·3-5). 

For convenience, let's describe the three equations of motion by the following 
form. 

a 11 cp (s) + a12¢(s) -a13j3 (s) =d11 oa (s) +d12 or (s) 

a21cp(s) +a22¢(s) -a23j3(s) =d2loa(s) +d22 or(s) 

-a3lcp (s) +a32¢(s) +a33j3 (s) =d31 oa (s) +d32 o r(s) 

(11) 

(6·1) 

(6·2) 

(6·3) 
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Applying the Cramer's rule for the above equations, the characteristic equation .:1 
may be formed by expanding the major determinant of them as 

where 

C3=LP' -N/ -Y,s(l-rxrz) 

C2= (Nr' -Lp')Y,9+ (LpNr-NpLr) +N/ 

C1= -(LPNr-NpLr)Yfl+ (LflNp-NflLp) -K1L/-K2N/ 

Co=-Kl(LrNfl-N1L,s) -K2(LflNp-NflLP) 

(6·4) 

In the above equations which represent the coefficients of the characteristic equa
tion, primed notations are expressed as follows. 

Lp'=Lp+rxNp 

L/=L~+rxNfl N/=Nfl+rzLfl 

Further, the equations formed numerators of each transfer functions may be readi· 
ly calculated as follows. 

The Rolling Motion ; 

where 

Prpa=D3S3+D2S2 +D1S+Do 

D3=La+rxNa 

D2= -La(Yfl+Nr) +Na(Lr-rxYfl) +YaL/ 

Dl=La(NrY,s+Nfl) -Na(Lfl+LrYfl) + Ya(LrNfl-NrL,s) 

Do=K2(NaLp-NflLa) 

(6·5) 

The Yawing Motion ; 

where 

The Side Slip ; 

where 

P<P• =E353 + E2S2 + E1S +Eo 

E3=Na+rzLa 

E2= -Na(L11 +Yfl)+La(Np-rzYfl) + YaN/ 

E1 =NaLPYfl-LaN pY ,s+ Ya (LflN p-NflLp) 

Eo=Kl(LaNfl-NaLfl) 

Ppa=S (F3S3+ F2S2+ F1S+ Fo) 

F3= Ya(l-rxrz) 

F2= -Ya(Nr'+Lp') -Larz-NIJ 

(6·6) 

(6·7) 

F1= Yo(L,Nr-NpLr) -La(Np-rzK2-Kl) +NaCrxK1+Lp+K2) 

F o =K 1 (N aLr-LaNr) + K2 (LaN p-N aLP) 

(12) 
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Utilizing the equations from (6·4) to (6·7), the transfer functions which express 

the lateral-directional motion of an airplane may be written as following form. 

p (S) _ /Jrplta rpita ---
L1 

(6·8) 

P'fitr(S) = /Jrpltr 
L1 

(6·9) 

p (S) _ /Jq,lta ¢ita --L1- (6·10) 

P.p~tr(S) = /Jq,ar 
L1 

(6·11) 

Ppaa(S) = /Jp~ta 
L1 

(6·12) 

P pitr ( S) = /Jpitr 
L1 

(6·13) 

where P;i generally expresses the transfer function for the i-th response due to the 
j-th excitation. 

Therefore, the transfer matrix for this kind of system may be represented as fol
lows. 

Prpitr 

P.pitr 

Ppita Ppar 

(6·14) 

As to be obvious from the above matrix (6·14), this system constructs a multi
variable system which consists of two-inputs and three-outputs, and according to the 
Mesarovic's theory, 3) it is the multi variable system which is the P-canonical structure. 

VII. Construction of the optimal control system 

Let's construct the optimal control system for lateral-directional motion of an air
plane, as to be based on the manner discussed previously. 

As to be shown in Fig. 2, the control system may be consisted of a reference mod
el, an optimal controller, servo-actuators and some detectors. 

The reference inputs are imposed on the model which yields the optimal responses 
subject to the specification determined in advance. 

The angular velocities and accelerations for the rolling and yawing rotations are 
picked up as the optimum responses of the model. The model outputs are compared 
with the actual airplane outputs, and they are subsequently supplied into the con
troller in which the signals to execute the optimal control will be decided utilizing 
the relations of equations (5·34) and (5·35). 

In this case, as to be shown in Fig. 3, the optimal controller consists of the com
bination of four proportional gain constants. 

(13) 
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~--------------------~ D ~--------~ 

Sr 

----------------------~ D 

Fig. 2. Optimal control system. 

The correction signals. which the controller yields, 
are supplied to the servo-actuators, and further the 
outputs of those actuators operate the aileron and the 
rudder respectively. 

A I R PLANE f---L.-;-

VIII. Numerical example Fig. 3. Optimal controller. 

In this section, we illustrate a numerical example 
based on the result of this study. 

As to be apparent previously, the fundamental task to synthesize the control system 
is to be decided the four gain constants of the optimal controller. 

The parameters used in this example are shown in Table 1 and they were orig
inated from the literature1

) refered on the end of this paper. 

Table 1. Parameters used in this example. 

v ft/sec 778 Cnp par rad -0.0120 

s sq ft 287.9 Czr par rad 0.108 

b ft 37.1 Cnr par rad -0.197 

Qo 1b/sq ft 222.5 Ctor par rad 0.0155 

fxz slug-ft -83 Cnor par rad -0.0742 

Czf3 per rad -0.741 Cyor par rad 0.160 

Cnf3 per rad 0.1273 Czoa par rad 0.111 
Cyf3 per rad -0.733 Cniia par rad 0.0081 

Czp per rad -0.385 Cyoa par rad 0.004 

Calculating the equations (5·34) and (5·35) with these parameters, Lloa and Llor 

may be written as equations (8 ·1) and (8 · 2) respectively, 

L1oa=4.317(e\P+e\P) -2.754(ef+ey;) 

L1or=0.197(e\P+e\P) +3.106(ef+ef) 

where Ke11 =4.317. Ke 12 = -2.754, Ke21 =0.197 and Kt22=3.106. 

(8·1) 

(8·2) 

Consequently, the optimal control system may be performed through the estimation 
of such values as e\P, e\P, e"' and e"'. 

(14) 
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Now, let's illustrate the result of simulation by the analogue computer. As the 
control inputs, triangular signals were used instead of pure impulse signals as to be 
shown in Figs. 4 and 5. It will be recognized that the responses of non-controlled 
system be rather stable as to be shown in Figs. 6 and 7. 

Fig. 4. Triangular input used 
for the aileron deflection. 

Fig. 5. Triangular input used 
for the rudder deflection. 

Fig. 6. The responses of non-controlled system, 
due to the aileron deflection. 

Fig. 7. The responses of non-controlled system, 
due to the rudder deflection. 

Further. the responses in the case that the controlled object would be controlled 
through the optimal control system were compared with the responses in the case 

(15) 
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that the controlled object would be controlled through the simple]feedback control 
system. 

Fig. 8. The rolling rate. 

Fig. 9. The yawing rate. 

In Figs. 8, 9 and 10, the behaviours of the output signals for such:cases as to be 
stated above are illustrated. 

In these figures, curves indicated by the symbol "A" are the responses in]the~case 
that the optimal control be applied, while curves indicated by the symbol "B" are 

the responses in the case that the ordinary simple feedback control be applied. 

Fig. 10. The side-slip angle. 

(16) 
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·IX. Conclusion 

In a case that the controlled object is the multivariable dynamic system as to be 
treated in this study, if it is tried to carry out the optimal control for the system, 
there is such a possibility as one of the loops included in the control system is opti
mized, the other loops escape from the optimal condition. For this reason, when 
the optimal control techniques are applied to the dynamic system of this kind, it is 
necessary either that the dynamic system is made a non-interacted system in ad
vance and the optimal control techniques are applied to each of the loops, or that 
the control system is synthesized under consideration of the effect caused by the in
teraction between the signals produced in the dynamic system. 

In this study, as to be stated at the begining of this paper, the latter method was. 
preferred, and it was tried to synthesize the control system in order to perform the 
optimal control for lateral-directional motion of an airplane which is the dynamic 

system described by P-canonical structure. 
In this method, it was shown that if the side-force coefficient is nearly constant 

to the rudder deflection, the optimal control may be performed through only the four 

proportional gain constants of the optimal controller, and the synthesis of the optimal 
control system will be comparatively easy. 

From the restlt of simulation for this problem, since all the responses of the sys
tem with the optimal controller obviously approach to the optimum behaviours for 
the triangular inputs, the acceleration and the deceleration in the rolling and yawing 
rotations are _ performed more smoothly comared with the case of simple feedback 
control, 4) especially in the early period of the responses, the rapid ascent of the rol
ling and yawing rates is not observed. 

Further, it is also recognized that the settling time of the responses is shortened 

compared with the case of simple feedback control, and the follow-up characteristics 
of the control system has been improved. 

On the other hand, the maximum magnitudes of the rolling and yawing rates are 

rather large compared with the case of simple feedback control and also the side
slip angle become larger than the case of simple feedback control. 

But, since the difference between the response of the optimal control system and 
the response of the ordinary simple feedback control system is not so remarkable,. 
they seem to be more advatageous to lighten the rapid ascent of the rotational rates 
and to shorten the settling time of the responses. 

Consequently, from the matters discussed in this study, it would be concluded that 
the optimal control system could be synthesized by the introduction of a reference 
model without making a non-interacted system. 

(17) 
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