Paper converting by polymer particles

児玉, 靖 (Kodama, Yasushi)

慶応義塾大学藤原記念工学部

Proceedings of the Fujihara Memorial Faculty of Engineering Keio University (慶応義塾大学藤原記念工学部研究報告). Vol.21, No.86 (1968.), p.189(61)-189(61)

Summaries of Doctor and Master Theses

Departmental Bulletin Paper

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.
The coalescence of polymer particles, which were larger than those of the polymer latex (below 1 μ), was investigated. And film formation mechanism was discussed.

Polymer particles used were the copolymer of methyl-methacrylate (MMA) and ethylacrylate (EA). They were prepared by suspension polymerization with anionic surfactant and poly-(sodium acrylate) as stabilizer. The particle sizes (L) were controlled by the sorts of surfactants. Particles of two different sizes, average 25 μ and 12 μ, were used. The compositions of the copolymers were as follows: EA/MMA=3/7, 2/8, 1/9, 0/10.

In order to determine the softening temperature (T_s), the tensile strength of films, made from copolymer solution in acetone, were measured at various temperatures. T_s was defined as the temperature at which the yield point in the stress-strain curve disappeared.

These polymer particles were spread on the filter paper and treated at various temperatures. At the temperature of T_1, which is slightly higher than T_s, particles begin to coalesce, but they do not deform and the tensile strength of the treated paper is the same as the original paper. At the temperature of T_2, which is higher than T_1, particles begin to deform and the strength of the treated paper increase. In the case of particles with EA/MMA=3/7, L=25 μ, the following results were obtained.

\[T_s=50^\circ\text{C}, \quad T_1=60^\circ\text{C}, \quad T_2=120^\circ\text{C}. \]

With decrease of particle size, T_1 is lowered but T_s does not change. When the particles were treated in wet state, T_1 is lower than that in the case of dry state.

It may be assumed that T_1 corresponds to minimum film formation temperature (MFT) of polymer latex and that T_s corresponds to the treating temperature at which latex films have the maximum strength.