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On Vibration of Two Circular Cylinders which

are Immersed in a Water Region
(Received April 17, 1967)

Fumiki KITO*

Abstract

We consider infinitesimally small vibration of two circular cylinders, which are
immersed in a water region of infinite extent. Assuming the water to be an
incompressible non-viscous fluid, and treating the problem, as a two-dimensional
potential problem, the author estimated analytically the effect of water (in form
of “virtual mass”) upon the vibration of two circular cylinders. It is noticed that
the acceleration of No.1 cylinder affects the acceleration of No.2 cylinder, thus
causing an effect very much like the phenomenon of ‘‘mutual inductance” in
theory of coupled electric circuits.

I. Introduction

Let us consider two circular cylinders which are immersed in a water region of
infinite extent. Our aim is to study the effect of surrounding water upon the vibra-
tion of these two circular cylinders. For that purpose, we take firstly, the case in
which one of these two cylinders is making small oscillatory motion, while the
other cylinder is kept at stand still. Assuming the water to be an ideal fluid,
and regarding our problem as one of two-dimentional fluid motion, the author has
made an analytical calculation about this fluid motion. Then, the amount of
effective force acting on each cylinder due to the fluid motion was obtained.

Secondly, we apply the above mentioned result to the study of the case in which
two cylinders make vibratory motion. It is pointed out that, in this case, an effect
which behaves very much like the mutual inductance for a coupled electric circuit,
can be shown to exist.

The method of analysis is based on the use of bipolar coordinates, for the case
of two-dimensional fluid motion, about which we do not claim the originality.

II. Notations

The following notations will be used throughout the present paper:— x, y=rec-
tangular coordinate of a point on the xy plane; &, »=bipolar coodinate of the same
point ; z=x-+iy; h=factor of lirear element ; p=velocity potential of the (vibratory)
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28 Fumiki KITO

motion set up in the fluid ; R=radius of the cylindrical body ; E=central distance
of ditto; #=angular position of a point on the periphery of the circular cylinder;
2C=distance between the radial centers.

In order to indicate to which one of the two cylinders we are referring, suffixes
1 and 2 will be used, thus R,, E,, etc.

Other constants, such as a., b, 1, ¢, etc., will be used, by defining them at the
place where they make first appearance.

III. Preliminary discussions

Referring to Fig. 1, two points (+C, 0), (—C, 0) lying on the real axis are taken
as radial centers, and we define a system of bipolar coordinates (&, 7), by means
of the relation

£ =0
Fig. 1.
§+iv=log%, 1)

where we have z=x+iy. From this eq. (1) we obtain,

csh ¢ _ csiny
Y ChEfcos g @)

x=ch$+cos77 ’

The line-element ds is found to be given by,
(ds)?=(dx)*+ (dy)?*=h[ (d&)*+(dn)?], 3)

where we have,

_ c
h*ch Edcosn” ®

Therefore, the Laplacian A¢ of the function ¢ is given by,

0%, 9% _ 1/09%% , 9%¢ -
A¢“'a?+'a?*h2(a§’+ar;2) and A¢é=0. (%)

The origin of the (x, ¥)-plane is transformed into the point (£=0, »=0). On the
other hand, the point at infinity in the (x, y)-plane is transformed into the point

(28)
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(¢=0, n=+r). The two circles £¢=¢, and &=¢,, as shown in Fig. 1, are taken
as boundary surfaces of two circular cylinders, which are immersed in a water
region extending to infinity.
This water region of infinite extent (outside of two circular boundaries) corre-
spond, in the (&, 7)-plane, to the inside of a rectangular region as shown in Fig. 2.
Our problem reduces to that of finding a potential :

function ¢, which satisfies the Laplace equation (5), ﬁ
and which takes prescribed values of its normal deriv- 7-47
atives 9¢/dv, along the two circumferences of circular / 4
boundaries. This problem, in turn, can be regarded Ind.
as a boundary value problem for the potential function "
6(& 1), the domain being a rectangle as shown in " — %
Fig. 2. It will be seen that, this function ¢(&, 7) must e 0 Ao
. - . . . Wa
be a periodic function of period 2z, with regard to the Q{_
independent variable 7.
Along the circumference of one circle for which [ 7=—1
&=¢,, we have, ) Fig. 2.
0= iy E,=cSh&itisiny
Rie®=x+iy—E, ‘Ch +Feos 7 E,,
so that we have,
e SHE
R, cos ‘R E Fos 7 E,, ©
in@=c__SN7
R, sin Cch &,+cos 7

Next, we observe that, the* values

R, cos @ R, sin 8
ch &, +cos 7 and ch &,+cos 7’

are periodic functions (of period 2z) with regard to the variable 7.
Thus, we may assume the following form: of Fourier series, for these quantities ;

R,cos & . \}

chétcosT —Zan sin n71+L‘ b, cos ny, -
R,sin 0 _ .
m—Z%smnn-}-Zdncosmy.

Actual values of Fourier coefficients a., b., c., d» are to be found by usual method,
viz., by putting the expressions (6) into (7), and by multiplication by sinzny or
cos ny, and by integration from n=-—=z to =+=. It is deduced that, in the pres-
ent case, the evaluation of a,, b,, etc., can be reduced to the integration of difinite
integrals of following form ;

4
1 cos mn+1 sin my

2z J [A+cos 7 n,

(29)
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and
+r
1 sin » [cos mn+1 sin my ]
27 f [A+cos ¢ .

wherein we have put,
A=ch &, s=1, or 2.
The evaluation of these definite integrals can, in turn, be reduced to the eval-
uation of contour integrals (in the complex z-plane) of following forms : —
For s=1,

I=-L1 " dz
27ni 1 1 z
e [+ g (e )]
1 2zm
=5 dz
SR ey
For s=2,
1 4zm+1
I,=5— 0 dz,
T (are) (e )
—¢ being a root of quadratic equation
224-22z41=0,
such that 0<¢ <1, we have
g = .__1_7__.
A+ 22—1
In these expressions I, and I,, m are positive integers 1, 2, 3, ------ . The contour

C of integration is to be understood as a whole circle z=¢7 (of radius 1, and center
at the origin) of the complex z-plane. The result of calculation may be summarized
as follows : —

By putting (for m=0, 1, 2, ------ s

. .
w_ 1 cos my
K, 2 :[: (chel-i—cosr))‘d’?’

®
S%=r | @t yarm i
we have
K=,

(30)
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Ko = (=)™4(m+-1)em™*2 | (—)mBemd
" —ey A=y

S(:L) =0’ (s:l’ 2’ ...... )

Using these values, the Fourier coefficients a., b., etc., in the expression (7) are
written in the following form :—

by=c/72=1 K® —E, K9
b.=2c4/ 221 K® —2E, K® 9
cn=cK?_, —cK%,,

where n=1, 2, --...- , and other coefficients a., d,, d, being equal to zero.

Lastly, we observe that the values of R, and E, can be derived from the general
formula (2), and we obtain,

_cshé&chg,

'7 (che)i—1

—_cshg,
' (ché))i—1

(10)

The value of b, is actually equal to zero, as we see in the calculation in Appendix A.

IV. Velocity potential ¢ for the vibratory motion of No. 1 cylinder,
while No. 2 cylinder is kept stand still

The velocity potential ¢ of the fluid motion must satisfy the Laplace equation
(5). A solution of this equation which is a periodic function of » with period 27,
may be written ;

6= z [chné+A, shne]-[ Ba cos ny+F, sin ny]-f () (11)

An.. Ba, F, are arbitrary constants which are to be determined later. f(¢) is a
function of time ¢, which is introduced to represent the vibratory motion set up in
the fluid. In this section, we shall treat the case in which the No. 1 circular
cylinder is vibrating, while the No. 2 circular cylinder is kept at stand-still.
The normal velocity of fluid motion, being given by,

Vo= o

for any one of cylindrical surfaces, the above-mentioned conditions may be expressed

as follows : —

(a). for ¢=¢, (since ¢ decreases outwardly)

- -}l_g_g = [cos ¢, cos 6 4sin g, sin 07 F'(2) (12)

(3D



32 Fumiki KITO

where ¢, represents the direction of vibratory motion of No. 1 cylinder.
(b). for £=¢,

104 _
R T (13)

This condition (11) is satisfied, if we take,
A.=—tanhné¢,. (14)
It is noted that &, has a negative value, while &, is positive.

(¢). for n=xtr, we have h—oo,
So that the fluid motion represented by the velocity potential ¢ will be such that,
at infinity of the (x, y)-plane, the fluid is at rest.

Lastly, in order that condition (12) is satisfied, we must have;
— i nlshneé+A.chng]-[ B.cosny+F, sin ny]
n=1

_ c(cos ¢, cos 6 +sin ¢, sinb) 15)
(ch &+cos 1)

This condition (14) is satisfied, according to what we have obtained in equations
(7) and (9), if we take the coefficients B,, F., as follows;

By=— £ bn

R, nG, €S %0,
c o . (16)
Fn=—~§inén$nwm
where we have put, for convenience,
G.=shng,+A.chné,, an

and, we take n=1, 2, ------ .

V. Estimation of hydraulic forces acting upon two cylinders

For a given value of the velocity potential ¢, the values of hydraulic pressure is

given by,
=8¢ L L ((38)\, (94)*, (08)*

p= ”[at+2{(ax>+(ay)+(ﬁ)}] s
When the velocity of motion of the fluid is infinitesimally small, we can take app-
roximately, as follows : —

——, 09
p=—p 3 (19)

For our solution (11), we have, therefore,

(32)
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=—p 3 [chné+ A, shne]-[ B, cos ny+F, sin ny] f"(2) (20)
n=1

The force acts upon two circular cylinders, whose amounts are estimated in the
following manner,

—Fa= [ pcos0-hdo,

(1)

—Fy,= [ psin0-hdo,

—Fa:z= fPCOS 02'h2 dﬁz ,

(22)
—Fy= fpsin 0,-h,db,,

where (F.,, F,;) are the components of force acting upon cylinder No. 1, while

(Fz3, Fy,) are those acting on the cylinder No. 2. Notations with suffixes *‘2’’ are

understood as quantities referring to No. 2 cylinder.

The actual values of these forces are estimated as shown below : —
(A). On the surface £=¢,, of No. 1 circular cylinder, we have,

—fpcosﬁ-hdv

= [ of'®] & (chne,+Anshney)

ccos 0 dy

X (Bn COos 7 +Fn Sin n77> X (?m'

=pcf"(t) i (ch né& + Ansh {-‘,n) X —I%Bnbn

= pc (t) Rl ”§=‘Han bn
— o2 f T y 1
=pctf (t)Tf COS ¥, ”L ” Ja(bn)?.

— fp sin 0-hdy

=fpf”(t) [Z(chnentA,, shnel)

n=1

X(B,. cos ny+ F, sin nv)x(ch%%mdv

oo

=of"(t) %Z (ch ne,+A, sh nsl) (Fncn)

n=1

=—pctf' (%) 77;—,- Z%]n(cn)’ sin ¢, .
1

n=1

(3%)
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(B). On the surface £=¢,, of No. 2 circular cylinder, we obtain in similar man-
ner as (A);

—-fpcos 0<hdy

=pf" () f[z (ch néy,+ A, shnSz)

X <Bn cos nn+F,sh ngz)

ccos @

(ch &;,4cos 7) ~dn

X
=pcf'() ) & G/’ B,

=pcfn(t)_’;;.2 % Gy Ba by
n=1

oo

—_ 1" T 1
== 06f () g ), cos o Juku (B)?
where we have written G,/, b,’, for values of quantities referring to No. 2 cylinder,
‘which correspond to G,, b, of No. 1 cylinder. Also we have put (for n=1. 2, ----- )
— Gn, bn,
BT @

— ch n$2+An sh n$2 . b,
chng +A.shng, b,

-1 b
h(E—Eon b (23)

——fpsinﬁ-hdn

=—pctf’(1) ;z Z% kn(€n)? Ja sin @, .
2n 1

Tt will be observed that, if ¢,=—¢&;, we have
bnl/bn=1y Cu’/Cn=1.

(C). Summing up these results of (A) and (B), we conclude that, components of
forces exerted on No. 1 and No. 2 cylinders, caused by the vibratory motion of
No. 1 cylinder, while No. 2 cylinder stands still, can be expressed in the following
manner : —

(34)
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F_tl:—f”(t) ‘0 Cos Do TZ'Rg er
) } (24)
Fyi=—f"(t) p sin ¢, 7R} Q1
Fyp= —fi/ @ e C?S ¥o 7 R} Qg } (25)
Fyy=—f"(t) p sin 9, 7 R @y
In these formulae (24) and (25), Quy, - , Qy; are numerical constants, which

depend upon the values of ¢, and &,. It is also to be noted that formulae (24) and
(25) give values of forces per unit length of each circular cylinders.
(D). Special Cases. The above formulae give values of hydraulic forces referred
to unit length (or the length perpendicular to x, y plane), for general value of angle
¢, (direction of vibraton of No. 1 cylinder). Therefore, we deduce the following spe-
cial cases.
(a). If ¢,=0, the vibration is taking place in the direction of x-axis. For this
case, we have
For=—2x"() 07 Qun
Fy,,=0
Fiy=—x,"(8) p 7 Qs
Fy,=0

(26)

where we have written x,”(¢) instead of f”(¢).

(b). If ¢,=r/2, the vibration is taking place in the direction of y-axis. For this
case, we have,

11—

Fyu=—y")p T RiQy,
Fap=0 @n

Fyp=—y"(t) 07 R}Q,,

where we have written y,”(¢), instead of f"'(¢).

VI. The case in which both No. 1 and No. 2 circular cylinders
are vibrating simultaneously

We can obtain, in similar manner, expressions for the case in which No. 2 circular
cylinder is vibrating, while the No. 1 cylinder is kept at stand still. Writing, for
shortness, the coefficients, which correspond to Q.i, Q.;, @, Q.. for the previous
case, as Su1, Szz, Sy1, Sys, hydraulic forces exerted upon two cylinders, respectively,
may be shown to be expressed in the following form, corresponding to equations (26)
and (27), thus:—

(35)
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Fay=—xy"(t) ot RiSx
Fy=0
F.rz= —xz”(t) 14 ﬂR;sz
Fy=0

s : (28)

:r1=0
Fy=—3,"(t) pn RiSy
F1'2=0
Fyp=—y,"(t) pn R3Sy,

When both cylinders are vibrating simultaneously, the resulting effect of fluid
motion will be obtained by superposition of above-mentioned two cases.

What interests us is the fact that the acceleration of vibratory motion of No. 1
cylinder x,”(¢) exerts a hydraulic force upon No. 2 cylinder, whose amount is pro-
portional to x,”(¢). On the other hand, acceleration of No. 2 cylinder x,”(¢) will
produce, upon No. 1 cylinder a hydraulic force of value proportional to x,”(x).
Thus, if two circular cylinder of elastic material are placed in a water region,
and made to vibrate, one cylinder will affect the vibratory motion of the other.
We may say that, the effect of surrounding water is very much like that of ‘‘mu-
tual impedance’’ in the theory of electric circuits.

! (29)

VII. Numerical example

In order to illustrate the above mentioned theoretical results, some numerical
calculation has been made. Here we take up values of &, as follows,

&1=log.2=0.693

£&;=log.4=1.386

&1=log6=1.792
For these three cases, values of 2, ¢, R,/c, E;/c have been estimated and obtained
values as shown in Table 1.
For these three cases of &,, values of

Table 1. . .
coefficients b, and ¢, have been evaluated
&1 0.693 | 1.386 | 1.792 as shown in Table 2.
A=ch§&, 1.248 | 2.132 | 3.107 From this table 2, we observe that val-

ues of b, and ¢, decrease with increasing
values of integer 7, but slowly for the case
of £,=0.693. But, for the case of £,=1.386
Ey/c 1.68 | 1.13 |1.05 and 1.792, b, and c, decrease fairly rap-
idly as » increases.

Let us take up the case of &,=--1.386 and ¢&,=—¢,=—1.386. This means that
two cylinders of the same radius R,=0.530 ¢ are placed, at a distance of 2E;=2.26¢
apart. In this case, we shall have b,’=b., c¢./=c, and k,=1. The values of inertia
coefficients have been calculated by (26) and (27). The results are as follows : —

Vi i=shé& |[0.748 |1.88 |[2.94

R,/c 1.34 0.530 | 0.338

(36)
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Table 2.
bi/c —2.18 | —0.300 | —0.118
by/c +1.98 | +0.144 | +0,00066
be/c ~1.428 | —0.0533 | —0.0116
byfc +0.936 | +0.0178 | +0.0021
bs/c —0.582 | —0.00547 | —0.0000872
efe | +1.49 | +0.282 | +0.118
cofc ‘ ~1.63 | —0.14 | —0.038
csfc +1.26 | +0.0523 | +0.00298
cfe | —0.850 | —0.0173 | —0.00213
es/c Ji +0.534 | +0.00543 | +0.000427
_ ()Y Lo (Bu)?
=t (Rl) Zl n \c
R Z Ju (&)
VIR, n\cC
n=1
Quy= (L)‘ Z k"fn(ﬁ)z
2T\R;, L n\c/”
(< 4ikn]n(cn)z
Qv ( R, ) Ln \c)”
and obtained, for our case,
Qx1=l.32, Qy1=1-18,
Quy=0.572, Q,,=0.504.

37

When a single circular cylinder is immersed in a water region of infinite extent,
and is vibrating, it is known that the amount of ‘‘virtual mass’’ is just equal to
the amount of mass of water displaced by the cylinder itself. The above numerical
example shows us that, in our case of two cylinders, the ‘‘virtual mass’’ of vibrating

cylinder itself is 1.32 or 1.18 times the mass of displaced water.

On the other

hand, vibrating cylinder makes an influence upon the another cylinder, as is rep-
In our present example in which two circular

resented by the factors Q., and Q,..
cylinders have the equal radius, we have

Sa:z= Qn 3’
Sy2= le ’

(37
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APPENDIX
In our preliminary discussion of section 3, one root of quadratic equation
224+22z2+1=0
was written as —e. So that we have,
e=A— /121, 1+e2=2%.
Using these values, we have

E 1 YES14_ 3

V-1 JE_1 £-1 ®B-1

-

Ko® _2:(Q+e®)_ 422 _ 2
KO- Q-8 Ie-De B-1’

Thus, we see that b,=0,as we mentioned in the text.

(38)



