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Collisional Damping of Transverse Oscillation 

ln a Plasma 
(Received October 19， 1966) 

Masatada OGASA W ARA * 

Abstract 

High-frequency conductivity and dispersion relation for transverse oscillation 

in a homogeneous plasma are derived on the basis of Fokker-Planck equation. 

Damping coefficient ωi is given by 

i=一市消み[1+ωずみ(去y(2十半-#p)]，

ωp， kD and νc being the plasma frequency， Debye's characteristic constant and the 
3、，r2

electron collision frequency. The term containing一一一一 inthe bracket arises 
5 

from electron-electron coIlision， and the remaining terms in the bracket are due 

to electron-ion collision. 

1. In trod uction 

Transverse high田frequencyconductivity in a plasma was calculated quantum 

mechanically by Gilinsky and DuBois 1). Their result， however， contains only 

electron-electron collision. Berk 2) also calculated the same quantity with use of 

the model of Dawson and Oberman 3). But by this model we cannot take into 

account of electron-ion collision. Thourson and Lewis 4) solved approximately the 

BBGKY equation and gave the transverse high-frequency conductivity including 

both the electron-electron and the electron-ion collisions. 

Recently Buti and Jain 5) calculate the dispersion relation for the transverse oscil-

lation with use of the Fokker-Planck equation. But their result disagrees with the 

present author's 6) which is obtained bya generalization of the method developped 

in obtaining the dispersion relation for plasma oscillations with use of the Boltzmann 

普小笠原正忠 AssociateProfessor， Faculty of Engineering， Keio University. 
1) V. Gilinsky and D. G. DuBois; The RAND Corporation， RM・4109・PRJune 1964. 

2) H. L. Berk; Phys. Fluids 7 (1964) 257. 

3) J. Dawson and C. Oberman; Phys. Fluids 5 (1962) 517， ibid. 6 (1963) 394. 

4) T. L. Thourson and M. B. Lewis; Phys. Fluids 8 (1965) 1119. 

5) B. Buti and R. K. Jain; Phys. Fluids 8 (1965) 2080. 

6) M. Ogasawara; Not yet published. 
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equation 7). Our result agrees with those obtained by Thourson and Lewis, and 
by Berk. It seems that Buti and Jain make mistakes in the course of calculation. 
So in the present paper we will recalculate the dispersion relation based on the 
Fokker-Planck equation in a slightly different way from Buti and Jain's. 

In Section II general expressions of the high-frequency conductivity and the dis

persion relation are derived. In Sections III and IV the collision integrals involved 
in the general expressions derived in Section II are evaluated and compared with 

the results of Buti and Jain. In V the high-frequency conductivity is written down 
and compared with other works. The dispersion relation in the long wavelength 
limit is presented. 

II. High-Frequency Conductivity and Dispersion Relation 

This section is mainly devoted to the derivation of a general expression of high
frequency conductivity. Once this is obtained dispersion relation is easily written 

down. 
In the absence of an electric field, electrons and ions obey Maxwellian velocity 

distributions : 

( 
1 ) 3. _ v2 

foe= n 2nvo2 :J e 2vo2' 

(2.1) 

( 
1 ).3 _ v2 

/oi = n 2nV02 
2 e 2Vo2

, 

where v0
2 =T/m, V 0

2 =T/M, n is the number density, T the temperature in energy 
unit, m and M masses of an electron and an ion respectively. 

When an electric field E is applied, linearized equation which the electrons must 

obey is given by 

(2. 2) 

where f (x, v, t) is the perturbed electron velocity distribution. 
(2. 2) represents the collision term that are given by s) 

The right side of 

7) M. Ogasawara; Proc. Fac. Eng. Keio Univ. 17 (1964) 1, J. Phys. Soc. Japan 18 

(1963) 1066. 

8) M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd; Phyg. Rev. 107 (1957) 1. 

(14) 

(2. 3) 

(2. 4) 

(2. 5) 
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<.4> i = (1+ m) nr ~jdv' /oi(v') 0 M ov lv-v'l ' 

<.4.4>oi,e = nr a:~vf dv'/oi,e Cv') 1 v-v'l, 

<.4> = 2nT j_jdv' foe(v') 
oe ov Jv-v'l' 

.4 _ r a J , f C v') < >- 2n av dv lv-v'l ' 

<.4.4> = nr a:~vf dv' t Cv') 1 v-v'J. 

r is the coulomb logarithm and given by 
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(2. 6) 

(2. 7) 

(2. 8) 

(2. 9) 

(2. 10) 

(2. 11) 

where An= (T/4rrne2) 112 and b0 =2e2/3T being the Debye length and 90°-scattering 
impact parameter, respectively. We are concerned with the phenomena whose 

wavelength is much longer than the Debye length. Hence the use of the coulcmb 
logarithm of the form (2.11) is justified. We take the electric field which varies 
in space and time as 

E(x, t) =E0 (k, w) ei(k·x-wt), (2. 12) 

and the response of the electrons to the electric field as 

f (x, v, t) = f' (k, v, w) e i (k·x-wt). (2. 13) 

Then from eq. (2.2) we have 

(-iw+ik·v)f'-!!_Eo. ofoe ="(of') . 
m ov LJ ot cj 

(2. 14) 

In order to solve this equation it is convenient to introduce the Fourier transform 
in velocity space defined by 

F (k, 0', w) = J dv e-ia·v f' (k, v, w). (2. 15) 

Then we can rewrite (2.14) as 

( . a ) ine _Cavo)
2 "(oF) -uv-k · (Jq F(k, 0', w)--m Eo· ae 2 = LJ (Jf cj. (2. 16) 

j 

The transformed collision term is represented by 

(2. 17) 

where 

(15) 
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(2.18) 

(2. 19) 

(2. 20) 

CTz iwaz' 

Let us take the wave vector k to be along the z axis. Operating J d rr z' e k 

on both sides of (2.16), we obtain 

F(u) =F0 (u) -!!:..fe-·3
az jzdaz' e·3rrz' f d7JK(u', '1)) F(1J), (2.21) 

where 

(2. 22) 

J
CTz (a'vo)z+a' I 

p (u) = daz' e- 2 , ~ z u, (2. 23) 

u' = (u _1, az'), 

If we restrict ourselves to the case of few collisions, we can solve (2.21) by the 
method of iteration. The solution is given by 

(2. 24) 

This is valid to the first order in the ratio of the wavelength to the mean free path. 
Now that the velocity distribution function is obtained we can calculate the 

electrical current j (k, w) as 

j(k, w)=-e J dvvf'(k, v, w) 

=-ie[aa F(k,u,w)J . 
u a=o 

(2. 25) 

As we are concerned with the transverse conductivity, we take the direction of 
Eo to be along the x axis. Then we have 

(2. 26) 

where 

(2. 27) 

(16) 
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From (2.24)- (2.27) we can calculate the current 

jx(k, w) = -ie [J-F(k, q, w)] 
U a.c G=O 

where 

I= L lj= [] daz' f d1) "l}x erf ("IJ+) e _r,L22vo_2+p(az'-r;z) [ iJKja<:~' 7J) J G=o' 

j j 0 

and 

"IJ+ = ,v\ ( "IJzVo--~0 ). 

Thus we obtain the electrical conductivity ax (k, w) defined by 

jx (k, w) =ax (k, w) Eo.c (k, w), 

where 

iw {3 a=--=---
kv0 Vo ' 

In (2. 32) we have introduced the electron collision frequency defined by 

nr 
11,!= Vo3. 
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(2. 28) 

(2. 29) 

(2. 30) 

(2. 31) 

(2. 32) 

(2. 33) 

(2. 34) 

The dispersion relation for the transverse wave is given in terms of the electrical 
conductivity as (see Appendix) 

(2. 35) 

where c is the velocity of light. From (2.32) and (2.35) we can rewrite the dis

persion relation 

(2. 36) 

where 

(2. 37) 

has been introduced. The dispersion relation obtained here agrees with ( 44) of 

Buti and Jain that was derived by slightly different method. Our next task is to 

evaluate 1/s. The following two sections are devoted to this. 

(17) 
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III. Evaluation of / 3 

Differentiating K 3 (o', 7J) given by (2.20) with respect to a.c and then putting 
o=O, we have 

X [Vo2YJzaz' (1- az'r;z) + _!_ _ az'r;z]. 
r;2 2r;2 r;2 r;4 

Substitution of this into (2.29) yields 

13 = ;2! daz' f d1) r;.1;2 erf (YJ+) e-avo(rrz'-r,z) -vo2(r,.L2+'~2+a~2-rrz'r,.l) 
0 

(3. 1) 

(3. 2) 

The expression (47) of Buti and Jain is almost same as (3.2). The difference lies 
a'r; a'r; in the last term in the bracket. They give 
2
z 

4 
z in place of ~. Perhaps they 

r; r; 
made mistake in differentiating K 3 (a', 1J). 

After making az'-integration, we employ the cylindrical coordinates (7J 1., 8, YJz). 
Performing 0-integration and putting 

'YJz = z, (3. 3) 

we have 

2 00 00 

v 2 1rv0l 3 = 2e~ J dz erf (7J+) erf (r; _) J dy e-vo
2
Y y~z2 A 

-oo 0 

(3. 4) 

where 

(3. 5) 

B _ VoZ _!_(.V 2 Z2 r; _ _ ~) _1_ 
- 2 + 2 2 V 0 y+z2 • 

(3. 6) 

In order to make y-integration we define integrals IA and IB by 

( 3. 7) 

By substituting (3.5) and (3.6) into (3.7) and using the following formulae 

(18) 
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f d -vozy- 1 ye --v 2 ' 
0 0 

00 

f d -vozy _1_ - - voZzZ E'. (- 2 2) y e 
2

- e , v0 z , 
Y-1-Z 

0 

f d -vo2
Y 1 -l , 2 vo 2z2 E'. (- :t 2) ye (y-t-z2)2- z2 -r-Vo e ~, VoZ' 

0 

we have 

with 

IA 1 =(2+50 2+8 4)-(48+20 3) a-t-02a2, 

L 2 = eoz Ei( -82)[ (58 2 +60'+ 8 6)- (28+60 3 +20 5) a+ (0 2 + 04) a2], 

IB1 =(48+8 3)-02a, 

IB2 = e02 Ei (- 02) [ (28 + 58 3 + 05)- ( 0 2 + 0 4
) a], 
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(3. 8) 

(3. 9) 

(3. 10) 

where 8 =v0z and Ei ( -x) is the exponential integral. By taking account of the 
asymptotic expansion of the error function, i.e., 

(3. 11} 
JzJ >> 1, 

we obtain 

aZ _az -fJZ 

2e2erf(r;+)erf(r;_)=e 2 P.t(O), (3. 12) 

(3. 13) 

with 

(3. 14) 

(3. 15) 

With use of (3.4)- (3.15) we can rewrite 13 as 

(3. 16) 

where 

Q !"" d -o2 (P I p I ) f""d -o2( 2 + 802-4) 2-v' r.: 1= J€ A At+ B Rt = J€ af ~ =-r' (3. 17) 

(19) 
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(3. 18) 

In evaluating Q2 we have used the formula 

(3. 19) 

Combining (3.16), (3.17) and (3.18) we have 

(3. 20) 

This differs from the corresponding expression of Buti and Jain as it should. 

IV. Evaluations of /1 and /2 

Differentiating K 1 (a', 7J) with respect to ax and then introducing e and p which 
are defined by 

we have, from (2.29), 

where 

and 

m+M 
p= mM' (4. 1) 

(4. 2) 

(4. 3) 

(4. 4) 

In the above expression the cylindrical coordinates have been introduced. The ex
pression (4 2) corresponds to (63) of Buti and Jain. They give a4= -az2 ~l· in place 
of -4az2 ~z2 • It seems that they made mistake in the differentiation of K 1 (a', 7J). 

(20) 
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Putting c; z = z, c; _1
2 = y and making integration with respect to {), we have 

(4. 5) 

where 

co 

](az, z) = J dye-by y~z2 [ ao + y;z2 + (y~4z2)2]. 
0 

(4. 6) 

If we define Ln by 

(4. 7) 

the following relations hold 

(n > 1), (4. 8) 

and 

(4. 9) 

By making use of these relations it follows that 

(4.10) 

where 

(4. 11) 

( 4. 12) 

With the help of (4.10), the expression (4.5) is rewritten as 

co 

/1 = 4\: J daz (So+Sl), ( 4. 13) 
0 

where 

(4. 14) 

(4. 15) 

(21) 
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From the asymptotic expansion of the error function 

j2 

erf (-.J-) = e- 2 f ( -1)n (2n-1) !! 
V 2 V 2 W J2n+l ' 

n=O 

(J » 1)' 

we can easily obtain 

where 

t = z- VoX 
2b ' 

t = z-VoX 
2bv' 

- v 2 

g= 1-2bv' 

In deriving (4.18) we have used the relation 

h =a+gx, 

- -
h=a+gx, 

L 1 = -ebz2 Ei ( -bz2 ) = f ~v e-Cv-D bz2
, 

1 

(4. 16) 

(4.17) 

(4.18) 

(4.19) 

which follows from (3.19). Substitutions of (4.3) and (4.19) into (4.11) and (4;12) 

yield 

(4. 20) 

- --= ko + k1t + k2t2 + k3t 3 + k4t4
• (4~ 21) 

Now we define Hnm by 

"' 
H f dt -bt2 tm 

nm= -oo e (h-vot)n. (4; 22) 

In case of v0/h « 1, Hnm becomes 

H _ _!_ ~ F(n+i) (.E2.)i(_!_)11't~i±lr(m+i+l)l+(-I)m+i 
nm- hn wF(n)F(i+l) h b 2 2 

i=O 

(4. 23) 

(22) 
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By making use of (4.20), (4.21) and (4.22) we obtain 

(4. 24) 

(4. 25) 

- -where H nm is obtained by replacing b and h by b ),1 and h, respectively, in the ex-

pression of Hnm· From (4.23) it follows that up to the order h-6 

L ( -1)n(2n-1)!! Hzn+hn= (! )k r ( ~) [ k - ~ + ~5 (3-
3~02 + !~~·)], (4. 26) 

n=O 

\' ( 1) n (2 1) If H _ ( 1 )! r( 3) [ Vo 3gv0] f..J. - n- . . 2n+hl- b 2 h2 --,z;-. 
n=O 

[C-1)n(2n-1)!! Hzn+h2=(!)~r(~)[k + ~3 (
3
;l-1) 

n=O 

+ l_ (3 - 9v0
2 + 15v0

4)l 
h5 b 4b2 J' 

L ( -1)n(2n-1)!! Hzn+h3= (! )& r( ~) [~~- %~ (3-
5;b2

)], 

n=O 

L (-1)n(2n-1)!! Hzn+h4= (! )fr r( ~) [ k + ~3 ( 
5
;f-1) 

n=O 

By making use of (4.26)- (4.30), we can write (4.24) as 

S ( ) _ / 1r _az -ax _g_~2 [ 1 (k kz ) 1 k1Vo 
o x - 'V 2b e 2 2 h o + 26 + h2 ?1i 

+ l{-gk + kz (3vl)
2 _ 1)}--~ 3gv0 

h3 0 2b 2b h4 2b 

+ l.{k (3 -~£_!_~~)+~_:_ (3 -~v£+ 15v0
4
)}] 

h5 O b I 4b2 2b b 4b2 • 

(4. 27) 

(4. 28) 

( 4. 29) 

(4.30) 

( 4. 31) 

For the purpose of simplifying the notation we write the expression (4.31) by 

taking into account of (4.20) as 

(23) 
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(4. 32) 

Now let us define an integral 

!
co xm -ax _gx2 

Tmn= dx(a+gx)ne 2. (4. 33) 
0 

The leading term of the asymptotic expansion of this integral is easily obtained to 
become 

1 !co r(m+1) 
~- m -ax-T mn~ an dxx e - am+n+l . (4. 34) 

0 

Using (4.33), we can write 

+ r2T23+ r4T43+ o1Tl4+ o3T34+ soTos+ s2T2s+ s4T4s]. (4. 35) 

When we neglect terms 0 ( ~6 ), it follows from (4.33) and (4.34) that 

1 2g 
To1 = ---a2 a4 ' 

2 T21=a4' 

and other T mn's which appear in (4.35) are higher order. Then we have 

(4. 36) 

(4. 37) 

The coefficients a0, a2, !31 and ro are obtained from (4.31), (4.32) and (4.20) to be 

(4. 38) 

Substituting these values into (4.37), we have 

"" _a2 

_!_ J da S (x) = e 2 . [- mp + _!_ {- __!_ + 3mp-4- 3mpvo2 ~]. 
4n z 

0 4 .../2nb v0 ba2 a4 V0
2 b b2 J 

0 

(4; 39) 

(24) 
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Similar calculations as above give 

Then we find 
a2 

e- 2 [ 2mp 1 { 4 2 4mp 2V0
2 6 mpv0

2
}] 

11 =4v2nbv
0 

-3ba2 + a4 -3vo2 +g{J+-b--3Vo2 b_5_b~ · 

In the limiting case of m/M =0 and Vo-2/v0
2 =0, 

mp = 1, 

hence the expression ( 4.41) reduces to 

If we put V 0
2 =V0

2 , M =m in (4.41) we have 

V. Results and Discussion 

181 

(4. 41) 

( 4. 42) 

( 4. 43) 

The collision integrals 11 and 12+13 are due to electron-ion and electron-electron 
collisions respectively. From (3.20) (4.42) and (4.43) it follows that 

(5.1) 

(5. 2) 

Absence of a-2 term in the expression lz+l3 is due to the conservation of momentum 
in the electron-electron collision. 

Substitutions of the asymptotic expansion of the error function, i.e., 

erf c/~2')=: 2~ a (1- ~2 + ...... ), 

and (5.1) and (5.2) into (2.32) yield the transverse high-frequency conductivity 

Ux(k, w) ; 

with 

3 v
1 

2 
Kua = 2+-

5
-, 

(25) 

(5. 3) 

(5. 4) 
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2 4nne2 (J)p=-m· 
where kn and wp Deby's characteristic constant and the electron plasma frequency. 
The same result is derived with use of the Boltzmann equation 6). Based on the 
BBGKY theory Thourson and Lewis also give aJ.(k w) which agrees with (5.3) 
except for the argument of the coulomb logarithm. They simplify greatly the 

BBGKY equation by dropping several terms which involve the screening effect and 
by introducing the cut off into the coulomp potential. Berk employs Dawson and 
Oberman's model to calculate ax(k, (V) But the electron-electron collision cannot 
oe taken into account in his theory. As far as the electron-ion collision concerns 

Berk's result agrees with (5.3). 
The dispersion relation for the transverse oscillation is obtained by substituting 

the expression (5. 3) into (2. 36) : 

We have made several assumptions for the purpose of obtaining (5.5). 

have assumed 

wav~leng...!!!_ « 1 
mean tree path ' 

to obtain (2.24). This is equivalent to 

since 

A 1 
!2 « ' 

A ~ v~ _ v0/w _ wavelength 
!J ~"(;-Vol vc- mean free path · 

Second we have made asymptotic expansion assuming 

!al»l. 

By taking into account of (2. 33) we have 

I a J2 = ._w.:__ = (!!!.._ Wp _!_) 2 = ( fJ ) 2. 
k2v0

2 wp v0 k K 

Hence (5.9) is expressed by 

Considering (5.7), (5.11), we can deduce from (5.5) that 

!)2 ;s 1. 

(26) 

(5. 5) 

First we 

(5. 6) 

(5. 7) 

(5. 8) 

(5. 9) 

(5. 10) 

(5. 11) 

(5. 12) 
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Thus we will solve (5.5) in the limit 

.1 << 1, 

To the zeroth order we have 

The second term in this expression is taken as 0 (1) due to ( ~J 
2 
>> 1. 

To the first order in small quantities we have 

2- 2 ( K ) 2 iA 
Ql - Qo + Qo2 - f)o2 . 

Next we have to the order of K 2 A 

2- a 2 (K )2 iA iAK2 !22 - --o + Q - n- 7fT Koa. 
1 J.:l 0 

Substituting (5.15) into (5.16), we obtain 

. (K)2 iA i1K 2
( 3) 

Q2=Qo2+ () -Q- Q 3 Koa-2n 2 • 
• o o o uo 

In order to obtain the real and the imaginary parts Qr and Qi of Q, we put 

I Qi 1<<1, 
Qr 

then 

From (5.17) we can obtain 

Qi=- 2~(tz (1- 2;J:4) [ 1 + ~:2 (Koa- 2h02 ) J 

=- 2~~ 2 [1+ t1
2

2 (Koa- (; 2)] • 
•• 0 • 0 ... 0 

Thus we can write down the results 

with 

3v2 
Koa= 2+-

5
-. 

(27) 

183 

(5. 13) 

(5. 14) 

(5. 15) 

(5. 16) 

(5. 17) 

(5. 18} 

(5. 19) 

(5 20) 

(5.21) 

(5.22) 

(5. 23) 
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This is rearranged as 

Wi = We-e+ We-i , (5. 24) 

(5. 25) 

(5. 26) 

where we-e and we-i are the damping coefficients due to the electron-electron and 
electron-ion collisions, respectively. 

From (81)- (86) of Buti and Jain we have 

(5. 17) 

with 

83 41-V 2 
Kn./=40+~- (5. 25) 

Aside from the difference of KBJ from Koa, Buti and Jain's result disagrees with 
(5.22). 

Appendix- Dispersion Relation in Terms of the Electrical Conductivity 

From Maxwell's equations given by 

with 

we have 

If we put 

rot E = _.1_ ~ 1!. 
c at 

rot H = ! ( 4 nit + aa ~) , 

it= -e J vfdv, 

rot rotE= grad div E-JE=- ; 2 -a~ ( 4njt +~a~). 

it = io ei(k·x-wt), 

we can rewrite (A.4) as 

Taking the direction of the propagation vector k in z axis and then putting 

Eo= E.r + Ez, 

(28) 

(A.1) 

(A.2) 

(A 3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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we have, from (A.6) and (A.7), 

(A.8) 

The x and y components of (A.8) give the dispersion relations of the transverse 
and longitudinal oscillations, respectively. Thus the dispersion relations are rep

resented by 

w2 - c2k 2 = - 4n:iwax for transverse oscillation, 

w2 = - 4n:iwaz for longitudinal oscillation. 

(29) 

(A.9) 

(A.lO) 


