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Wave Pictures of Three Coupled Waves on 
Electron Beams and Slow Wave Circuits 

(Received May 25， 1966) 

Hiroichi FU JITA * 

Tomoo FUJIOKA ** 

Abstract 

The dispersion equation for three coupled waves is analysed by numerical method 
and ω-s diagrams are given. They show occasionally very different features from 
two waves case， details of which are discussed in this paper， and some examples of 
application are proposed. 

1. Introduction 

The amplification mechanism of traveling-wave type tubes， such as traveling wave 

tubes and double-stream amplifiers among many micro wave tubes， are illustrated 

by the so-called coupled mode theoryl)-4). Two kinds of longitudinal space charge 

waves， fast wave and slow wave， exist in a one-dimentional electron beam， the 

former carrying positive power and the latter carrying negative power5)刈. The 

amplification phenomenon of the traveling-wave tube can be understood by the 

mutual interaction resulting in the distributed coupling between the electromagnetic 

wave on slow wave circuit and the slow wave in an electron beam， while the double-

stream amplifier depends on the mutual interaction between the fast wave on 

one of the two beams and the slow wave on the other beam. Thus， the active 

coupling， the coupling between a wave carrying n~gative power and the other one 

carrying positive power， makes growing wave， while passive coupling， coupling 

*藤田広一， Associate Professor， Faculty of Engineering， Keio University. 
** 藤岡知夫， Instructor， Faculty of Engineering， Keio University. 
1) J. R. Pierce;“Traveling Wave Tube "， van Nostrand， (1950)・
2) J. R Pierce;“Coupling of Modes of Propagation ペJour.Appl. Phys.， vol. 25， 
p. 179， (Feb. 1954). 
3) J. R. Pierce;“The Wave Pictures of Microwave TubesペB.S.T，J.， vol. 33， p・
1343， (Nov. 1954). 
4) M. C. Pease;“Generalized Coupled Mode TheoryぺJour. Appl. Phys. vol. 32， 
p. 1736， (Sep. 1961). 
5) W. C. Hahn;“Small Signal Theory of Velocity-Modulated Electron BeamsぺG.E.
Rev.， vol. 42， p. 258， (June 1939). 
6) S. Ramo;“Space Charge and Field Waves in an Electron BeamぺPhys.Rev.， 
vol. 56， p. 276， (Aug. 1939). 
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122 Hiroichi FUJITA and Tomoo FUJIOKA 

between two waves both carrying power of the same sign, produces two propagating 

waves. 

In the latter case, power is transferred from one wave to the other in a half 

beat wave cycle. The phenomenon called Kompfner dip is understood by this 

concept. These coupling phenomena between two waves are easily understood by 

"(J)-(3 diagram". Fig. 1 is the case of active coupling, and it shows that propaga­

tion constants, (3's, afthr coupling become a set of conjugate complex numbers in 

the neighbourhood of a point ((J)o, (3o), which is the intersectional point of (31 and 

(32, the propagation constants of two waves prior to coupling. Fig. 2 is the case 

of passive coupling and shows two propagating waves, of which phase constants 

differ slightly ih the neighbourhood of a point ((J)o, (3o). 

I 
I 
I 
I 
I 
I 
I 
I 
I 

imaginary 1 

I 

w 
Fig. 1. The signs of blow power of two 

waves are opposite. 

w 
Fig. 2. The signs of blow power of two 

waves are same. 

In this way the distributed interaction phenomenon between two waves is under­

stood. However, what will happen when more waves than two make distributed 

interaction simultaneously. If we confine the problem within traveling wave tube, 

Pierce has treated it in his earlier work1>. Solymar has treated a case in which 

there is no interaction between a set of three waves, which is the same for travel­

ling wave tube, and considered the region in which growing wave exists7>. 

The general dispersion equations for n coupled waves has already been given8>, 

which determins eigen values of (3' s. 

In this paper the authors will analyse by numerical method the case of coupling 

7) L. Solymar; "Some Properties of Three Coupled Waves", IRE, MTT-8, p. 284, 
(May 1960). 

8) N. Saito; "Electro Magnetic Circuit Theory of Electron Beams", Ohmu sha, 
(1960). 

( 12 ) 
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among three waves, of which ~ cross at a point on the w- ~ diagram prior to 

coupling, and discuss the singular properties of wave pictures. 

II. Analysis and calculation 

The following assumptions underlie the analysis: 

(1) Waves are represented by one-dimentional electromagnetic equations. 

(2) Wave amplitude is so small that small signal theory can be applied. 

(3) When wave propagates, there is no loss on transmission lines. It is supposed 

that the straight-lines on thew-~ diagram give approximate values for the behavior 

of three waves and they meet at one point (wo, ~o), as Fig. 3. Straight-lines give 

good approximations for any waves in a small region. These straight-lines can be 

described by the following equations: 

w 
Fig. 3. The waves prior to coupling. 

~1-~o=a(w-wo) , ) 

,82-~o=b(w-wo) , 

~s-~o=c(w-wo). 

Here a, b and c are the gradients. 

( 1) 

To calculate the distributed interaction between three waves, we consider a new 

coordinate system, whose origin is (wo, ~o) and weose abscissa is ~a. That is, 

,81' = ~1- ~a=a' w' , ) 

~2'=~2-{ja=b'w', 

a' =a-c, b' =b-e, w' =w-wo . 

(2) 

( 13 ) 



124 Hiroichi FUJITA and Tomoo FUJIOKA 

We can write the equations of the distributed interaction between three waves 

as follows: 

d!1 =-j{3tEt+CuE2+CtaEa, 

~~2 
=C21E1-j{32E2+C2aEa, 

d!a =CatE1+Ca2E2-j{3sEa. 

( 3) 

Here E1, E2 and Ea are the amplitudes of three waves and Cik is the coupling factor 

per unit length from k wave to i wave, satisfying the condition 

( 4) 

where * is a symbol denoting conjugate number, and (-) indicates the case when 

both i and k waves carry the powers of the same sign, while ( +) indicates when 

they carry the powers of opposite sign. Thus, when wave 3 is taken as a standard, 

it is enough for us to calculate only four cases as indicated in Table 1. 

Table 1. Combination of the sign of flow power. 
S and 0 indicate the direction of flow power is 
same as and opposite to wave 3, respectively. 

Wave Ca~ I II III IV 

Wave 1 s s 0 0 

Wave 2 s 0 0 s 

When E1, E2 and Ea are written in the form 

and substituted into (3), we find the following dispersion equation determining the 

eigen values of r, 

Cu 

r-jf32 =0. ( 5) 

Cat Ca2 r-j{3s 

We express Cik as follows, 

C12= 1Culej912, C2a= IC2alej62a, Cat= 1Catlej6al ( 6) 

For lossless transmission line, values for 81, 82 and Ba are given in Table 2. Then 

from (7) and Table 2, we have 

( 14 ) 
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Table 2. Value of Oik· 

The sign of flow power 

i 

+ 

+ 

As (2), we rewrite r as follows: 

k 

+ 

7r 
w=+--2. 

T=j(r+f3s). 

2 

2 

2 

2 

Now, from (2), (6) and (7), (5) reduces to the following: 

r3-(a' w' +b' w')rLH(a' o/)(b' o/)+ IC12!2+ 1Czal2+ !Call 2}r±a' w' !C2a!l~±b' w' !Ca1l 2 

( 8) 

(9) 

-21C12!!CzaiiCad sin so=O . (10) 

Where upper sign indidates the case when the power of k and i waves are of the 

same signs, and lower sign when they are of the opposite signs. According to (8), 

we have 

sin ((J=±1. 

If we substitute -r and -w' for r and w' respectively into the result obtained by 

the calculation of equation (10) for sin so= -1, we can obtain also the result for 

sin so= 1. The calculation of one of the two cases is enough, so we now consider 

the case sin so= -1. 

To calculate the equation (10), we normalize it by the greatest value, !Ciklest, 

among ICikl's. 

a'w' 
---=x, 
ICiklest 

_L-=y, b' k ICi'k'l ----; = , =a1, a2 . 
I Cik I est a I Cik I est 

In virtue of (11) we may also write (10) as 

IC12I is maximum: a _ IC2al a _ !Ca1l A- +a 2+ka 2 
1

- IC12I' 2- IC12I' -- 1 
-

2 
• 

( 15 ) 
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(12) 
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ICzsl is maximum: !Cui !Cad a---
az= !Czsl' 1

- ICzsl' 
A=± 1±kaz2 

• (14) 

!Call is maximum: IC12I ICzal a--- a---1
- !Cad' z- !Cad' 

III. Results and discussions 

Case I. 

This is the case when the transmission powers of three waves are all of the same 

sign. In this case, if it is assumed that at=az=1, namely, all the coupling factors 

are equal, (is) is written as 

(16) 

Two examples of calculation results of (16) are shown in Figs. 4 and 5. From 

the results of calculations, the following conclusions are obtained: 

i) Since there exists no wave which transmits power of opposite sign, r's are 

never complex numbers. Accordingly, three propagating waves occur in general, 

and three waves after coupiing are written as 
3 

E1(z)=eif3sz ~ A1nei'Ynz, 
1 

3 
Ez(z)=eif3a~ ~ Aznei'Yn z, 

1 

3 

Ea(z) =eif3sz ~ Aanei'Ynz , 
1 

(17) 

Where Yn's are the roots of (16) and real numbers, and Amn's are in general 

constants of complex numbers which are determined by (3) and initial conditions. 

ii) For k~o, one of roots of y becomes unity for any value of x. This can be 

shown as follows: When k~o in (16), (y-1){y2-(x-1)y-(x+2)}=0. Thus, y be­

comes unity. 

For k~ 1, one of roots of y becomes (x+ 1) on the diagram. This can be shown 

also as follows: When k~ 1 in (16), we obtain {y-(x+ 1)}{y2-(x-l)y-2}=0. 

iii) When both a1 and az are not unity, the results are essentially the same and 

the same wave pictures are obtained. 

Case II. 
This is the case when the power of wave 1 and wave 3 are of the same sign, 

and wave 2 of the opposite sign. In this case, the following equations to be solved 

are obtained from (12) to (15). 

!Ctzl is max.: y 3-(1 +k)xy2 +(kx2+a12 -az2+ 1)y+(kaz2-at2)x+2ataz=O . (18) 

!Czsl is max.: f-(1 +k)xy2+(kx2+a12-az2+ l)y+(kaz2 -1)x+2ataz=O . (19) 

( 16 ) 



Wave Pictures of Three Coupled Waves on Electron Beams and Slow Wave Circuits 127 

ICad is max.: y8ー (1+k)xy2+(kx2+α12+α22-1)y+(k-α22)X+2α1的 =0. (20) 

Examples calculation results are shown in Figs. 6 to 19. From the results， the 

following conclusions are obtained: 

i) In general there is a set of conjugate complex number roots of y in the 

neighbourhood of x=O. Accordinglya growing wave occurs in the coupled waves. 

In this case three waves after coupling can be written as 

E処(z)=eis3Z~ A叫明eiYmz• 1 
悦 =1 L (21) 

T怖=YmICiklest，Ym=(Ym)real+j(y怖 )jmaginary. ) 

where Ym'S are the roots of (12) and Amn's are determined by (13) and initial 

conditions， as in Case 1. 

The Growing wave is not always an increasing wave and it can be an evanescent 

wave9) ，10). But we are not interested here in distinguishing the growing waves. 

ii) As indicated in Fig. 6 and 7， the region where x gives complex roots to Y 

spreads toー∞ ask→O. The limit of k=O seems to correspond to the result 

obtained by Pierce for the case where space charge parameter QC of traveling-wave 

tube equals zer01). Also as seen in Figs. 6 and 8， the region spreads to +∞ as 
h→1. Mathematically， for the caseα1=的=1 this can be shown as follows; If we 

substitute α1=的=1 into (18)， (19) and (20)， we obtain 

y3ー (1十k)xy2+(kx2+l)y一(1-k)x+2=0. (22) 

2 
And if we substitute y=O into (22)， we obtain x=一一一， which we again substitute 

l-k 
f. 1+k¥2 

into (22)， obtaining y{ y-一一一1=0. At the point where the imaginary part of the 
¥"' 1-k I 

root becomes zero， (22) has equal roots. Accordingly， it is ascertained that， for 

zくーと，y has complex root. On the other hand， if we substitute (l-k) for k 
1一h

刈 p卯ut)円 i凶nt叫巾to飢 we g伊etx炉=τ A凶心W油he印nw附es釦ω吋uゆ伽bst批i抗tu閃ex炉x=-一一す intωO α 2 

we getかか(川ヒO. Thus恥 aboveobt山 dr叫 syield a白 gionwhere 
the growing wave takes place， -~く X く 2k ~.. ~l-k' 

When α1，αzキ0，we will get the same results as obtained in the preceding cal-

culation. But it is di伍cultto get mathematically the exact region where complex 

root occurs. 30 we anticipate the region from obtained diagrams. For example， 

the region when IC8d is maximum is 

9) P. A. Sturrock; ，‘Kinematics of Growing Waves"， Phy. Rev.， vo1. 112， p. 1488， 
(Dec. 1958). 
10) Y. Sawayama;“Studies on Growihg Waves"， Report of Microwave Tube Com-
mittees， I.E.C.E. of Japan， (Jan. 1962). 

( 17 ) 
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iii) There is only a little change in the wave picture when a1 and az are not 

equal to unity nor zero. Figs. 9 and 10 show the examples when k=0.5. 

iv) When !C12I=O, the wave picture shows a singular form. That is, the imaginary 

part of y changes according to the relation between !Csd and ICzsl, i.e., when 

!Cad= !Czsl, the imaginary part is separated into two parts, which are tangent 

to each other at the origin, as indcitated in Fig. 11; when ICsd < ICzal. the two 

parts blend and imaginary part shows an ordinary pattern as indicated in Fig. 12; 

when ICali>ICzal, y has no complex root and there are three propagating waves, 

as indicated in Fig. 13. 

Mathematically, these matters are shown as follows: when !Czal > !Ca1l, we 

substitute a1=0 and x=O into (17) and get ya+(1+az2)y=O. 

Accordingly, for x=O, y has two imaginaryroots. when ICzai<ICall,wesubstitute 

a1=l and x=O in (18) and get ya-(l-az2)y=O. 

Since 1-az2 >0, y has three real roots and no imaginary term occures. 

v) The result for !Czai=O equals the above (iv), i.e., when 

IC121=1Ca1l, the imaginary part is separated into two parts at the origin; when 

IC12I >I Cad, two parts blend and shows ordinary pattern; when 

IC12I < !Ca1l, there is no imaginary part. (Figs. 14, 15, 16) 

vi) Wave pictures for ICad=O differ entirely from those of iv) and v). y has 

always complex roots in the neighbourhood of the origin. (Figs. 17, 18 and 19) 

For k-)1 or k---70, the region for imaginary part spreads. (Fig. 19) 

Case III. 

This is the case when the power of wave 1 and wave 2 are of the same sign 

and wave 3 is of the opposite sign. In this case, the equations to be solved are 

as follows: 

!C12! is max.: y3-(l +k)xy2 +(kx2 +al2 +az2 -1)y-(al2 +kaz2)x+2alaz=O. (23) 

!Czal is max.: y3-(1 +k)xy2 +(kx2-al2 +az2 + 1)y-(kaz2 + 1)x+2alaz=O . (24) 

ICsd is max.: y3-(l +k)xy2+(kx2-al2 +az2+ l)y-(k+az2)x+2alaz=O . (25) 

i) In general, in the region of the neighbourhood of x=O, y has a set of conjugate 

complex roots and a growing wave occurs in the coupling wave. In this case, 

each wave after coupling is written as (21), as in Case II. The different point of 

wave picture, however, from Case II is that the curve of imaginary part is separated 

into two parts, as in Figs. 20 and 25. 

ii) For k---71, the region where y has complex root spreads to x=±co. For k---71, 

the region becomes narrower. Figs. 20, 21, and 22 show the examples for a1=az=l. 

Mathematically, this is shown as follows: if we substitute a1=az=l into (23), we 

( 18 ) 
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obtain 

(26) 

When we substitute x=2 into (26), we get (y-2k)(y-1) 2=0. Now, it has been 

shown that the imaginary part becomes zero at x=2, andy has equal roots. Since 

we can see from figures that another root of y is given by the value of x when 

y=x, the point where the imaginary part is zero is obtained by substituting y=x 

into (26), resulting in x= ~ , which we substitute again into (26) and obtain 

(y- ! )(y-1)2 =0. Accordingly, the region where y has complex root is written 

2 
as 2<x<k. 

Let us find the value of x where the imaginary part becomes zero for x<O. 

It is difficult to find this value exactly, but it may be said that this value is greater 

than -( 2+ ! ). This is shown as follows; we substitute x= -( 2+ ! ) into (26), 

. ( 2k2+3k+2 2k2 +6k+2) . . we obtam (y-1) y2 : k Y+ k =0. It can be easily venfied that 

this equation has three real roots for O~k~l. Accordingly the region is 

- ( 2+ ~ )<x<2. If we substitute k-..,0 in these two inequalities, the region of x 

spreads to ± co. For k-.., 1, the region becomes narrower. 

iii) The imaginary part changes according to the sign of IC12!-IC2al, i.e., when 

I C12l =I C2a I, two imaginary parts occur, which are tangent to each other, as indicated 

in Figs. 20 to 23; when !C12I > ICzsl, two parts are separated, as in Fig. 24; when 

IC12l < ICzsl, two parts blend, as in Figs. 25 and 26. 

iv) For !Cal =0, one imaginary part occurs in the neighbourhood of x=O, as in 

Fig. 26. 

v) For !Czal =0, wave picture is similar to iii); when IC12! =!Cad, the two imaginary 

parts occur, which are tangent to each other, as in Fig. 27; when !C12l>IC31!, two 

parts are separated into two independent parts, as in Fig. 28; when !C12I < !Ca2l, two 

parts blend to become one part. 

vi) For !Czsl =0, the wave picture is the same as in iv). The imaginary parts, 

which are tangent to each other when IC1zi=ICzal, are separated into two in­

dependent parts when !C12l > !Czsl, and inversely blend to one part again when 

!C12l < !C231, as indicated in Figs. 30 to 32. 

Case IV 

This is the case when the powers of wave 2 and wave 3 are of the same sign 

and the power of wave 1 is of the opposite sign. In this case, the equations to 

be solved are, from (12) to (15), as follows: 

( 19 ) 
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ICzal is max.: y3 -(1+k)xy2 +(kx2 +a12+az2-1)y+(1-kaz2)x+2ala2=0. (28) 

!Cad is max.: y3-(1+k)xy2+(kx2+a12-az2 + l)y+(k-az2)x+2a1az=O. (29) 

Now we substitute (y+x) for y, (1-k) fork and (-x) for x in (23), (24) and (25), 

we obtain (27), (28) and (29). Thus we can find entirely the wave pictures of 

Case IV from the results of Case III. The characteristics in the following are the 

same as in Case III. 

i) The imaginary parts of y consist, in general, of two parts, 

ii) When a1=az=l, the region where complex roots appear is, from the same 
discussion in Case III, 

--
2
-<x<-2 and -2<x<2_~_-2_ 

1-k I 1-k' 

Thus, for k----,).1, the region spreads and for k----,).0, the region becomes narrower. 

This results can be applied also when a1~l and az~l. 

iii) When IC12I<IC2al, two imaginary parts occur and when !Cud> iCzal, they blend. 

iv) For IC12I=O, the imaginary part is separated when ICzai~ICad and blends 

when ICzal <!Cad. 

v) For I Cad =0, we have similar wave pictures as in iv), i.e., the imaginary part 

is separated when IC1zi<IC2sl, and blends when IC1zi>IC2al. 

vi) When I Czal = 0, the imaginary part consists of one part and shows the ordinary 

type. 

IV. Some Examples of application 

I. Application for coupled helices11l 

Calculation in this paper is partly intended in preparations for some experiments, 

that the authors are planning, to measure noise parameter in electron beam by 

using coupled helices. The results in this paper give useful information for using 

coupled helices. 

II. Super wide-band traveling wave tube 

Since the region of x where y has complex conjugate roots spreads to x=±oo 
when k----,).0 or k----,).1 in Case II, the possibility of traveling wave tube with super 

wide-band range of frequency tuning is suggested. This will be realized by 

coupling of slow wave circuit with double electron streams. However, the effect 

of space-charge wave harmonics and the wide-band matching at the ends of the 

slow wave circuit will be the problems. 

III. Active filter with two pass bands. 

There exist two frequency tuning regions, which yield growing waves, in such 

11) J, S. Cook, R. Kompfner and C. F. Quate; "Coupled Helices", B.S.T-J., vol. 35, 
p. 127, (Jan. 1956). 

( 20 ) 
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wave pictures as Figs. 28 and 31. Accordingly, it is possible to use this effect as 

active filter with two pass bands. This can be realized by double structure helices, 

one of which couples with the slow-wave of an electron beam. 
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Fig. 4. Case I. 
The signs of flow power of three waves 
are all same. 

~. 

6 

-5 

-6 

Fig. 6. Case II. 
The sign of wave 2 is opposite to the 
oters. 
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Fig. 5. Case I. 
The signs of flow power of three waves 
are all same. 

1 
k=4, a1=a2=l. 

6 

5 

Fig. 7. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 
k=4, IC12I = IC2sl = ICs1l· 
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Fig. 8. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

3 
k=4, !C12! = !Czsl =!Cat!· 

Fig. 10. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 1 k=-z· /C12l = !C2al = "';-z-ICstl-

( 22 ) 

/ 

~ 
6 

5 

-6 

Fig. 9. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 1 k=-z· !Ct2/ =!Cat!= .v-zlC2al· 

Fig. 11. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 k=-z· /Ct2!=0, 1Catl=IC2sl· 
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-6 

Fig. 12. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 
k==-z· IC12l =0, !Czal =v'21Call· 

fl 

ra 

r, 

Fig. 14. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 k=2• JCzal =0, JC1zl =!Call· 

;:c 

( 23 ) 

6 

5 

±~ 
16 

Fig. 13. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 1 
k=-z· IC1zl =0, ICzal = .v-.ziCall· 

~ 
6 

~~ 5 

4 
~z 

3 

-6 4 5 6 :xf, 

Fig. 15. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 k=-z· ICzai=O, !Clzl=v'21Call· 



134 Hiroichi FUJITA and Tomoo FUJIOKA 

Fig. 16. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 1 
k=-z· !C2si=O, !C12!= -vz-!Csll· 

~ 
6 

,, 
5 

rz 

~ 

-6 

Fig. 18. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 
k=-z· !Csd=O, !C2sl =.V2!C311· 

(24) 

-6 

Fig. 17. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 
k=-z· IC:ni=O, !Cd=IC2s·!. 

) 
ji / 4 

]3 / 
/, 

-3 

-4 

-5 

-6 

Fig. 19. Case II. 
The sign of flow power of wave 2 is 
opposite to the others. 

1 
k=4· !Csd=O, !C12l = !C2sl· 
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Fig. 20. Case II. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 
k=-z, IC12I = IC23I = !C31I· 
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Fig. 22. Case I_II. 
The sign of flow power of wave 3 is 
opposite to the others. 

3 k=4, iCd=IC2si=ICa1l· 

( 25 ) 
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Fig. 21. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 
k=4, !Cd = IC2al = !C31I· 

6 

-6 

Fig. 23. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 k=-z, IC12I = !C&sl =vZICad· 
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Fig. 24. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 1 
k=2· JC2al=ICa1l = ";-2-IC12l-
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Fig. 26. Case III. 

/~ 
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The sign of flow power of wave 3 is 
opposite to the others. 

1 k=2· !Cui =0, IC2al = ICs1l. 

( 26 ) 
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Fig. 25. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 1 
lc=2· !C12I = !Ca1l = .y-z-IC2al· 
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Fig. 27. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 k=2· IC2al =0, IC12I =!Cad· 
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Fig. 28. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 k=-z· IC2sl =0, ICd = v'Zicsd· 
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Fig. 30. Case III. 

~ 

The sign of flow power of wave 3 is 
opposite to the others. 

1 k=-z· ICsd=O, IC12I=ICzsl· 

( 27 ) 
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Fig. 29. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 1 k=-z· ICni=O, IC1zl=.v 2 !Csd. 
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Fig. 31. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 k=-z· ICsd =0, IC12I = v'ZIC2sl· 
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6 

Fig. 32. Case III. 
The sign of flow power of wave 3 is 
opposite to the others. 

1 1 k=-z· !Ca1l =0, !C1zl = .v-ilCzal. 

( 28 ) 


