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E妊'ectsof Collision on the Propagation of 
Electromagnetic Wave in a Plasma 

-11. Propagation along Homogeneous Static Magnetic Field-

(Received Apri1 15， 1966) 

Abstraet 

Masatada OGASA W ARA * 

Yoshiji KUBO** 

Toshihiro KAJIURA * * * 

In the lossy p]asma electromagnetic wave with any value of frequency is shown 
to be able to propagate， but the wave is necessari1y accompanied by attenuation. 
Group velocity differs from velocity of energy transfer and even becomes negative 
and infinite in the stop band of the case of absence of collision. The velocity of 
energy transfer varies as the wave propagates through the lossy plasma. 

1. Introduction 

1n the previous paper1) (hereafter refered to as the paper 1) propagation of elec-

tromagnetic wave through a homogeneous isotropic plasma is investigated with 

consideration of the effects of collision. 1n the present paper we will treat the 

case of propagation along a homogeneous static magnetic field externally applied 

to a plasma. 

Originally linearly polar包edelectromagnetic wave is decomposed into two counter-

rotating modes in a magnetically biased plasma. Propagation and attenuation 

constants etc. for the two modes are calculated and discussed in sections II1 and 

1V. 1n the lossless plasma there is a range of frequencies where the electromagnetic 

wave cannot propagate (stop band). 1n the lossy plasma， however， the wave can 

propagate with any value of the frequency but the wave is always accompanied 

by attenuation. 

1n the last chapter V， velocity of energy transfer is shown to vary as the wave 

*小笠原正忠 AssociateProfessor， Faculty of Engineering， Keio University. 
**久保芳二 InstrumentationDepartment， Japan Gasoline Co.， Ltd， Minami・ku，

Yokohama， Japan. 
*本*梶浦敏弘 Instrumentationand Control Laboratory， Kanegafuchi Spinning 

Co.， Ltd， Miyakojima， Osaka， Japan. 
1) M. Ogasawara， T. Kajiura and Y. Kubo; This Proceedings 19 (1966) 1. 
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travels through the lossy plasma. Group velocity differs from the velocity of energy 

transfer in the presence of collision and becomes even negative and infinite in the 

region of stop band of the case of v=O, v being the collision frequency. 

Section II is devoted, as preliminaries, to the evaluations of the electrical con­

ductivity and the dielectric constant of the plasma in a homogeneous static magnetic 

field. 

II. Constitutive Parameters of a Plasma in the Presence of Magnetic Field 

In order to investigate electromagnetic wave propagation in a lossy plasma, we 

must know the constitutive parameters of a plasma, i.e., electrical conductivity and 

dielectric constant. In this section we will calculate these parameters. 

Equation of motion for an electron in an electric field E and a static magnetic 

field Ho is given by 

dv 
m dt +vmv=-e(E+vxHo), (2.1) 

where m, -e, and v are mass, charge and velocity of an electron and v is the 

collision frequency between an electron and other heavy particles in the plasma. 

As we confine ourselves to the special case of propagation along the static magnetic 

field Ho which is parallel to the z direction, the wave electric and magnetic fields 

E and H are expected to be in the x-y plane. For an oscillating electric field 

varying with time as eiwt, the equation (2.1) is explicitly given by 

where 

(iw+v)vx+WcVy=-~Ez, 
m 

-WcVx+(iw+v)Vy=-~EY, 
m 

eHo 
We=-. 

m 

) (2.2) 

In these expressions subscripts x and y mean x and y components respectively, 

and we is the cyclotron frequency. From the x-y symmetry of (2.2), it will be 

convenient to use the rotating coordinate rather than the cartesian one, 

(2.3) 

where e+ and e_ are the rotating unit vectors and ex and ey are the unit vectors 

in the cartesian coordinate. In the +component, the y-component is equal in 

magnitude to the x-component and proceeds it by rr/2. Thus as time goes on the 

+vector rotates in a left-handed sense about the z axis and the -vector in the 

( 13 ) 
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opposite sense. 

With use of the rotating coordinate we can write v and E as 

(2.4) 

and 
(2.5) 

that is, formally V± and Ho are parallel e,ach other. With the aid of (2.4) and (2.5), 

we can solve the equation of motion (2.1) 

e 1 
V±=--- . E±. 

m v+z(w±wc) 

Using this, we have the total current Jt 

Jt=-en(v+e++v_e_)=f+e++ J_e_, 

J-ew 2 1 E 
±-

0 
P v+i(w±wc) ± ' 

ne2 

Wp2=-' 
meo 

(2.6) 

(2.7) 

where n, wp and eo are respectively number density of the electrons, electron 

plasma frequency and dielectric constant of the vacuum. The total current Jt is 

a sum of the conduction current J=tJE, tJ being the electrical conductivity, and 

the current due to polarization ap;at, p being the polarization2
l 

Jt=J+ ap =tJE+iw(e-eo)E, at (2.8) 

where tJ and e are both real, e being the dielectric constant of the plasma. From 

(2.7) and (2.8), we have 

tJ -e w 2 ___ v __ 
±-

0 
P v2 +(w±wc)2 ' 

e± = 1 Wp
2(w±wc) 

eo w[v2 +(w±wc)2] • 

III. Dispersion Relation 

1 
f 

(2.9) 

In this section we will solve Maxwell's equations and give the expression of 

dispersion relation. 

As we consider the electromagnetic wave which propagates along the z-direction, 

the direction of Ho, the oscillating electric field E and magnetic field His assumed 

to vary with time and space as 

2) V. L. Ginzburg; The Propagation of Electromagnetic Waves in Plasmas. Tran­
slated by ]. B. Sykes and R. ]. Tayler (1964), Pergamon Press, New York. 
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E±, H± oc exp (iwt-r ±Z). (3.1) 

Here r ± is the complex propagation constant which is written as 

(3.2) 

here a± and f3± mean the attenuation constant and the propagation constant, res­

pectively. The real and imaginary parts of refractive index of the plasma which 

are written as nr± and ni±, are connected with f3± and a± by 

cf3± 
nr±=-;;;- ' (3.3) 

c is the velocity of light. 

Maxwell's equations for the magnetically biased homogeneous plasma are given by 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where we have taken the magnetic peameability of the plasma to be equal to that 

of the vacuum flo. For the circularly polarized fields, rotE± is evaluated as 

Using (3.4), (3.5) and (3.8), we have 

(3.8) 

(3.9) 

(3.10) 

Multiplying ±r± on both sides of (3.9), and using (3.10), we have the dispersion 

relation for circularly polarized waves; 

(3.11) 

From (3.2), (3.3) and (3.11) we have 

_ I 1 [e± l(e± )2 ( 0 ± )2] nr±-V- -+-y - + - , 
2 eo eo eow 

f 
(3.12) 

I 1 [ e± l(e± )2 ( 0 ± )2] ni±=V- --+-y - + -- , 
2 eo eo eow 

(3.13) 

These expressions are formally similar to those of a homogeneous isotropic plasma ll. 

The difference between them lies only in the constitutive parameters of plasmas. 

( 15 ) 
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IV. Results of Numerical Evaluation of the Dispersion Relation 

In this section we will investigate the dispersion relation based on numerical 

evaluation. 

If the collisions are absent, i.e., v=O, we have, from (3.13) and (2.9) 

e± = 1 
eo w(w±wc) • 

(4.1) 

(4.2) 

When e±feo is positive, the propagation constant fi± is positive and the attenuation 

constant a± vanishes. In this case the electromagnetic wave can propagate through 

plasma without attenuation. On the other hand when e±/eo is negative, fi± vanishes 

and a± has positive value, so the wave does not propagate. Thus the regions of 

frequencies are called "pass band" or "stop band" depending on whether e±/eo is 

positive or negative for the regions of frequencies. With the aid of (4.2) the pass 

band is explicitly represented as 

for +wave, (4.3) 

for -wave, (4.4) 

where 

) (4.5) 

wr and wn are called the cut off frequencies for + and -waves, respectively. For 

lower frequencies than the cut off both + and -waves cannot propagate as shown 

in (4.3) and (4.4). The propagation constants fi± and the real parts of refractive 

index nr± vanish at the corresponding cut off frequencies. At the electron cyclotron 

frequency we, the right-handed (-sign) wave which rotates in the sense of electron 

gyration has infinite values of the propagation and attenuation constants (electron 

cyclotron resonance). The left-handed (+sign) wave, which rotates in an opposite 

sense to electron gyration, shows no resonance at the electron cyclotron frequency 

as it should. 

Thus the +wave can propagate in the region I, II and III of w-wc plane which 

is shown in Fig. 1. In the region I, III and V the -wave can propagate. Neither 

+ nor -wave can propagate in the region IV. From the definitions of the real 

( 16 ) 
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0 1.0 2.0 

Fig. 1. Regions of propagation of the electromagnetic wave. The frequencies 
wr and wu are the cut off frequencies for left-handed and right-handed 
circularly polarized wave, we is the electron cyclotron frequency. The 
right-handed wave can propagate in Ill, V and I; and the left-handed wave 
in I, II and III. 

1.0 

0 1.0 

Fig. 2. Real part of refractive index nr+ for the left-handed wave in 
case of no collision. 
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parts of refractive indexes nr± which are given by (3.13), (4.1) and (4.2), it follows 

readily that 

1 
<1 for w1<w; region I, II and III. 

nr+= 
0 otherwise; region IV and V, 

{

>1 for w<wc; region III and V, 

nr-= <1 for wn<w; region I, 

0 otherwise; region II and IV. 

These are shown graphycally in Figs. 2 and 3. 

2.0 

nr-< 1 

nr- =0 

nr- > 1 

0 1.0 
Fig. 3. Real part of refractive index nr- for the right-handed wave in case 

of no collision. 

When we take account of the collisions, the electrical conductivity tT± which 

contains the collision frequency v does not vanish. In this case as is readily 

seen from (3.12) and (3.13), nr±, ni±, fi± and a± are positive for any values of wand 

we. This fact means that the electromagnetic wave can propagate in the whole 

region of w-wc plane, but necessarily accompanied by attenuation as it travels 

through the plasma. 

In order to illustrate an effect of the co11ision, let us consider the following 

equation; 

( 18 ) 
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1-nr:~:=(positive definite function of w, me and l.I)A, 

w(w±mc) ' 

Fig. 4. Real part of refractive index nr+ for the left-handed 
wave in case of presence of collision. In the regions under 
the curves, nr+ > 1. 

nr- > 1 

0 1.0 

Fig. 5. Real part of refractive index nr- for the right-handed wave 
in case of presence of collision. 

( 19 ) 
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where use has been made of the definition of nr± which is given by (3.12). From 

(4.7) it follows that in the pass band for + wave nr+<1, on account of e+feo>O. 

On the other hand for -wave it follows that 

n;_= l <1 in the region I, ·: (e_feo)v=o>O, 

>1 in the region III and V, ·: w<wc, 

from (4.6) and (4.7). These are not necessary conditions but sufficient ones. Thus 

we can conclude that even in the presence of collision, the inequalities nr±<1 or 

1 <nr± hold at least in the regions where the corresponding inequalities hold when 

JJ=O. The boundaries nr±=1 when 1.1::;t:O are given in Fig. 4 and 5 based on numerical 

computation. 

In Figs. 6 and 7 normalized propagation and attenuation constants fi± * and a±* 

are given as functions of wfwp for wcfwp=0.5. Here the normalized quantities are 

defined by 

2.0 

Fig. 6. Normalized attenuation constant a_ *=_Q_a_ (dotted curves) and pro­
Wp 

pagation ~onstant [3_ *=_Q_/3- (solid curves) for right-handed wave as functions 
Wp 

of wfwp when wcfwp=0.5. 
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1.0 

)7 .. 0.001 

Fig. 7. Normalized attenuation constant a+ *=_Q_a+ 
Wp 

(dotted curves) 

and propagation constant f3+*=_Q_f3+ (solid curves) for left-handed 
Wp 

wave as functions of w/wp when wc/wp=0.5. 

2.0 

1.0 

0 

' \~ 
...... \ 
~~ 

\ "" ... \ , ..... , 
\' ........ , 
'...... -
'- ....... :. ................................ ----------........ __ .:::: =-=----=== == = 

1.0 2.0 

Fig. 8. Normalized attenuation constant a-* and propagation constant f3-* res­
pectively by dotted curves and solid curves as functions of wc/wp when 
w/wp=0.5. 
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c 
fi±*=-fi±' 

Wp 

the normalizing factor Wp/C is nearly the inverse of the distance that light travels 

in a period of plasma oscillation. For other choices of wcfwp, qualitative features 

of a±* and fi±* do not change from Figs. 6 and 7. The attenuation constant a_* 

and the propagation constant fj_ * of the -wave are represented as functions of 

wcfwp for wfwp=0.5 in Fig. 8. From the above graphs we can see the following 

characteristics. 

1) For -wave as the collision frequency increases, heights of the resonance peaks 

of the propagation and attenuation constants decrease and their curves are 

broadened. 

2) The stop band vanishes as a result of the collision. Hence the electromagnetic 

wave with any value of w can propagate through the lossy plasma, but simul­

taneously accompanied by attenuation. 

3) In the region that corresponds to the pass band of the case v=O, the larger the 

value of v, the larger the attenuation. 
4) In the region of the stop band of the case v=O, on the other hand, the less 

the value of v, the larger the attenuation. 

5) Derivative of fi± with respect to w can vanish at two points of w within the 

frequency range that corresponds to stop band of the case v=O. At these 

points group velocity of the electromagnetic wave becomes infinite. Between 

the two points the group velocity becomes negative. This does not occur in 

case of v=O. 

Physically these properties arise from the randomization effect due to the collision. 

We have evaluated the values of a±*, fi± *, nr±, ni± and Ve± the velocity of energy 

transfer on the electronic computer TOSBAC 3400 for wc/wp=0.1"'2.0, wfwp=0.1"'2.0 

and vfwp=0.1"'0.5. 

V. Group Velocity and Velocity of Energy Transfer 

In this section we will calculate two velocities, group velocity and velocity of 

energy transfer, and discuss the relation between them. 

(a) Group Velocity 

The group velocity Vg is defined by 

-(dfi±)-l Vg±- ·-
dw 

With use of the relation fi±=!!!__nr±, we have 
c 

( 22 ) 
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dfi±=_1_[4n~± + w d(2n;±) J (5.2) 
dw 4nr±C dw 

From (3.12) and (2.9) it follows that 

(5.3) 

e± = 1 Wp 2(w±wc) 
n;± -n~± , 

eo w[v2 +(w±wc)2
] 

(]± Wp2lJ 
2nr±ni±, 

eow w[v2 +(w±wc)2
] 

(5.4) 

J(e± )2 ( a± )2 2 2 'V -· + - =nr± +ni± . 
eo eow 

Differentiating 2n;±, e±feo ond a±fweo with respect to w and using (5.4), we have 

where prime means to make differentiation with respect to w. 

(5.5), (5.6) and (5. 7) into (5.2) yields 

Thus we have, from (5.1), expression of the group velocity 

Vg± 

where we have introduced 

l 

(5.5) 

(5.6) 

(5.7) 

Substitution of 

(5.8) 

(5.9) 

If A±-B±=O, Vo± becomes infinite as was noted in 5) of the preceding section. 

In order to see the situation a little more precisely, let us see the following 

expression 

( 23 ) 
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and 

where a* is the dimensionless attenuation constant. In the absence of collision, 

as can be seen in Figs. 6 and 7, a±*=O in the pass band, so B±=O and Vg± is 

positive, while in the stop band the group velocity has no meaning because the 

wave cannot propagate. In the presence of collision, 1>4a±*2
, so Vg± is positive 

in the pass band of the case of v=O. In the region of stop band, however, 1~ 

4a±*2, so the group velocity can be negative and infinite. 

(b) Velocity of Energy Transfer 

From (3.1) and (3.5) it follows that 

H _ 7± E _ a±+if3±E ±=+- ±=+--- ±o 
Wflo Wflo 

(5.10) 

By making use of this expression, time averaged pointing vector S is given by 

as follows 

8= ~ Re(ExH*)= ~ Re[(E++E-)x(H+*+H-*)] 

1 
= 2 Re[E+xH+*+E-XH-*+E+XH-*+E-XH+*]=S.,.+S-, (5.11) 

The 3 rd and 4th terms in the bracket of (5.11) vanish because of vector product 

of the same vector. Component pointing vectors S± are evaluated as 

S±= ~ Re [(e:~:±iey)X(ez+iey)( +a±~:f3±)]1E±I 2 

=~IE±I 2ez = 2nr±c~IE±I 2ez . 
Wflo 2 

(5.11') 

Time averaged energy density W is represented by 

(5.12) 

where Wm and WH are the energy densities due to electric and magnetic fields 

respectively, and WK kinetic energy of the electrons. They are given by 

(5.13) 

(24) 
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The expression WFJ= WFJ++ WFJ- is justified because the real parts of E+·E-* and 

E- · E+ * vanish. Similarly it follows that 

WH=P~ Re(H·H*)=WH++ WH-, l 
WH±=Po Re(H±· H±*) =Po IH±I2 

4 2 . 

Using (5.10) and (3.3), we have 

By taking account of (2.6), the solution of the equation of motion, we have 

Nm 
WK=-Re(v·v*)= WK++ WK-, 

4 

where N is the number density of the electrons. 

Time averaged velocity of energy transfer Ve which is defined by 

Ve=S/W, 

(5.14) 

(5.14') 

(5.15) 

(5.15') 

(5.16) 

is easily obtained as follows. Substitutions of (5.13'), (5.14') and (5.15) into (5.12) 

yield 

(5.17) 

where 

(5.18) 

which was introduced in (5.9). Substituting (5.11), (5.11') and (5.17) into (5.16), we 

have the velocity of energy transfer 

W+Ve++ W-Ve­
W++W-

(5.19) 

where we have introduced component velocities of energy transfer Ve± and fractions 

P± of component energy densities which are defined by 

( 25 ) 
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(5.20) 

Thus the velocity of energy transfer Ve is expressed as a weighted sum of the 

component velocities Ve+ and Ve-. The weights P+ and P- are functions of position 

as can be seen from (5.20). Therefore the velocity of energy transfer Ve varies as 

the wave propagates. On the other hand the component velocities Ve+ and Ve- do 

not vary in the whole space of plasma. 

As a matter of cource Ve does not exceed the velocity of light c. This is shown 

by proving the inequality; 

(5.21) 

This is easily shown by directly substituting (5.11'), (5.17) and (5.18) into (5.21) 

W +W--5++5-=[(1-n )2 +n~ + Wp

2 

]~IE 12 

+ C r+ H l.l2 +(w+wc)2 2 + 

+ [C1-nr-)
2 + nL + "'2 +(:~wc)2 J ~ IE-1 2 >0. 

(c) Group Velocity and Velocity of Energy Transfer 

In order to compare Vu± with Ve±, we summalize their expressions here 

- ~!! 2 2 B±-4 2 ni±(1 +nr± + ni±) . 
Wp 

The ratio of Vu± to Ve± is given by 

(5.22) 

From this expression we can see that Vu±>Ve± in so far as Vu±>O, and Vu±=Ve± only 

when ni±=O. In the pass band of the case 1.1=0, Vu± is positive. Thus we can 

conclude that in the presence of collision the velocity of energy transfer cannot 

exceed the group velocity, Vu±>Ve±, for the frequency, which lies in the region 

which corresponds to the pass band in case of 1.1=0, and only in the absence of 

the collision the relation Vu±=Ve± holds. 

( 26 ) 


