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are on the same equi-potential line)
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Tsuneyo ANDO*

Abstract

Two-dimensional jet flow into an unequal pressure field through a convergent
nozzle with straight walls is analized here. kAlthough the analysis is carried out
with the object of getting fundamental data to the performance of annular jet
type GEM, the existence of the ground is neglected here, because of tremendous
difficulty in calculus, which arises by taking the ground into account from the
outset. It is also assumed, for mathematical simplicity, that the convergent angle
of the nozzle is a moderate one, so that there is neither positive pressure gra-
dient along the nozzle walls, nor inflexion point along the free stream lines, and
that the nozzle wall ends are situated on the same equi-potential line of flow.

The calculation is pursued by expansion of power function, making use of the
relation y (the nozzle convergent angle)<z. As the results, geometric patterns
of flow, volumetric flow and power are obtained.

The results obtained here, are of ideal character, especially so in neglecting
the existence of the ground. Nevertheless, they will serve as criterions for the
actual effect of jet in annular jet type GEM, and the procedure of approximation
developed here may be extended to the cases in which above assumptions are
not set up, and further to the cases in which the ground exists.

I. Introduction

In the annular jet type GEM, sometimes it happens that the air flow separates
at the inner side (high pressure side) nozzle wall, if a parallel nozzle is used, and
the performance is injured. This phenomenon is understood, as shown in Fig. 1,
that the flow in the nozzle becomes non-uniform, because of unequality of pressures
in both sides of jet, and there occurs positive pressure gradient along the inside
wall, so air particles cannot go through. As a remedy to this, it is often done to

give some convergent angle to the nozzle, as shown in Fig. 2.
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An Analysis on the Two-dimensional Jet Flow into an Unequal Pressure Field 15

As theoretical studies on annular jet type GEM, we can find several analyses on
two dimensional jet flow,into an unequal pressure field,?»%% but it seems that they
are cofined to the case in which the nozzle is a parallel one. If the nozzle is con-
vergent, the analysis may become extremely difficult.

When we imagine two-dimensional jet flow into an unequal pressure field, from
a nozzle with straight walls, disregarding the existence of the ground, it will be,
as shown in Fig. 3, of some unactual character. It may be, nevertheless, an in-
teresting object from a theoretical standpoint, and also may serve as one of the
criterions to actual phenomena. The author tried to make some analysis on this
type of flow.

Flows of this type are devided into three cases, according to the pressure gradi-
ent on the nozzle wall and shape of free stream line, namely

a) positive pressure gradient exists (Fig. 4)

b) positive pressure gradient does not exist and free stream line has no inflex-

ion point (Fig. 5)
c) positive pressure grandient does not exist and free stream line has an in-
flexion point (Fig. 6.).

Here, the case b) is treated, with the condition that both nozzle wall ends are

situated on the same equi-potential line.

II. Fundamental relations

When a flow is assumed to be two-dimensional and potential one, we have well
known relation

TTT 7T 7777777778 T7T7T77

Fig. 1. Fig. 2.

1) H. R. Chaplin; David Taylor Model Basin, Rep. 1373, Aero Report 923,
July 1957.

2) R. W. Pinnes; NAVAER Research Division, Rep. DR—1958, April 1959.

3) T.Strand; General Dynamics Corp. Convair Div. ERR—SD—002, Aerody-
namics, 27, Nov. 1959.

4) F. F Ehrich; J. of the Aerospace Sciences, Vol. 28 No. 12, 1961, p. 855.
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16 Tsuneyo ANDO

Fig. 3.

Fig. 5. Fig. 6.

where y=0+:7 is complex velocity potential, z=x-+zy stands for coordinates on
physical plane where the flow actually occurs, and w=u—iv is complex velocity.
Rearranging we have |

_ 1
dz—%—dx. )

Then, if it is possible to express w and y as functions of the same complex vari-
able #, the flow pattern is to be got integrating

1 r
dz= o) dx (). @)
III. Mapping relations in differetial form

We introduce here a new complex variable
2=log (g;/w) =log (¢;/ @) +16 3)
where
g;=normal jet speed (real, positive constant)
g=speed of flow (=a/u?typ?)
6 =direction angle of flow (=tan~![v/u]).

(16)



An Analysis on the Two-dimensional Jet Flow into an Unequal Pressure Field 17

In the case of two-dimensional flow, on which we are to study here, z-, w-, £-, and
x-plane are such as shown in Fig. 7 to Fig. 10.

The inner domains of the images on £- and x-plane can be mapped onto the
upper half of the ¢ plane, as shown in Fig. 11. Here «, b, j, b stand for points
themselves corresponding to A, B, J, B, and, at the same time, denote the nu-
merical values of coordinates of them. We confine that a=0, j=oo for convenience.
Thus the flow is mapped onto the ¢ plane as a radial flow. Further we assume that
both wall ends of the nozzle are on the same equi-potential line, by which we get
|&'| =b.

; [ u
bl & Jj

Fig. 7. z-plane Fig. 8. w=u—w

4 \ ¥,

> A Fig. 10. y=0+¥
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Fig. 9. 2=log % + i

/

b a b
Fig. 11. ¢-plane
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Relations 2~¢ and x~t¢ in differential form are

do=

! 7L ’ T L
M/ t—b d _Mdt—bdt

M

S —a)Ji—b  tWi+b

M

From the conditions which must be satisfied when t—a(=0), we get

M'=iy/z,
M=",/x.
‘Therefore d?2 and dy are written as
do= fl.ﬁdt’
T i t+b
_¥v 1
dx—7.t—dt.

IV. Intergation

In Eq. (8), we put arbitrarily b= |b'| =1, which makes following calculus

plest, i.e.

of mapping relations

Vi1

do=-L. Y11 g,

Integrating Eq. (10), we get

it

2==27 {ilog (/i +1-v1=1)

+log (W i+1+iv/t—1) —log,/ t } +const .

The constant in the right hand side is got as

const.= L + L log 2+ AT log 2—
2 T T

T—7;

from the condition 23+25'=—r1z, if we choose g,°=qzq5s'.

Then
Q=%+%10g2+€r—rlog2— o1y
~ 27 {ilog (Vt+1-+/1=1D)
+ log (Vt+1+iv/t—D —log / ¢ }
or

-y

A S St PR
e?=e22xe 2 ‘2z

X (WIF 1D WIFIHIVI=D % W) T .

i
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V. Physical plane

From the relation (3), we have
lw=e?/q;. 15y
Substituting (15) into (2)’

dy

a‘z—--q7 ar

dt. (16)

Again substituting (14) and (9) into (16), we get

dz:Le%Z.’?e‘iz—_ytzy?t
Tq;j
. 2, —_— L =2 — ﬂdt
XWEt+1—=a/t-1) = WitF1+i/i=1) =W §) = 7 Qa7

We may know the flow pattern on the physical plane z, if we carry out the inte-
gration of (17).

VI. Integration

The right hand side of Eq. (17) contains /741, /=1, ~/ {, and, morover,
power of their combination, so it is impossible to know the rigid integrated value.
We have to search some suitable method to integrate it approximately. Firstly, we
need to know the nozzle form, which is equivalent to seek the value zz'—z5. This is
done by selecting some suitable integration path, connecting b and ¥, and pursuing
integration along it. As the origine a corresponds to the infinity on z-plane, taking
a path which lies near the origine is not advantageous. We may take semi-unit-
circle, and define 6 as

t=e¥, 0<60<m. (18)

Using this relation, factors in right hand side of Eq. (17) become
. I i
Witt+1—t—1D" =

T . ——————— -t
=2""*(cos ¢+sin g—+/2sin ¢ cos ¢) ="

— 21 tap-1Y2singcos g

Xe = 1teosg—sing

=92 —;—i e"-—r;llog (cos ¢+sin 6— ¥25in ¢ cos )

_H -1 ‘~/2(:os¢ sin ¢
» tan 1¥cos g—sin ¢ (19)

Xe

(19)
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2r

WiF1+i/i=1) =

=2’f(cos $+sin ¢—+/2sin gcos g) *

_ m tan-1 2 sing ¢os ¢+ ¥ 5in g cos ¢
X e (cos g—sin ¢) (1+cos g+ sing)

:2—5 e —f log (cos ¢+sin ¢— v2sin ¢ cos ¢ )

X g™ i tanl e L vasingeons @0
2 2ri 21
Wi)==e="? @D
dtt —2idg (22)
where ¢=460/2.

Substituting these four relations into (17) and rearranging, we obtain

dz=Ke T Xi+ivD (23

where K=QV,/rq)er’? eri/?
Xi=a,+b, Yi=a,—c,+d,

a;=1log (cos ¢+sin ¢—4/2 sin ¢ cos ¢)
A/2sin @ cos ¢

— -1

by=2tan 1+cos g—sin ¢

Cl=2¢

dy=2 tan-! 2 sin ¢ cos ¢+4/2sin @ cos ¢

(cos ¢—sin @) (14 cos ¢-+sin @)
and b+c,=d, X,=Y;.
If the convergent angle is small, we have
| Lx+ivn|<t,
and (23) can be written as

dz= K{l——Xl—z Y.+ (;>2X2+i(—zr—)2Y2

(L) K)o (2) Kok ) v
where

X2=(1/2)(Xf——Yf), Y2=X1Y1

Xy=(1/6) X, (Xi—-3YD, VY,;=(1/6)Y,(3Xi-Y)

X,=1/6)(Xi—Y), Y,=1/3)X,Y,.

20)
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In Eq. 24), X, Y5 ...... ; X, Y, are functions only of ¢, and can be integrated
T

independent of y. For z5'—z5, they are to be integrated oxer 0<¢< 5

VII. Integration of X;, Y; (i=1, 2, 3, 4)

Fig. 12 to Fig. 15 show X;, Y: (=1, 2, 3, 4) as functions of 4, except those which
are identically zero. In order to obtain zz'—z5, we have to know the areas of these
patterns, abscissa being measured in radians. For the interval ¢=0°~80°,

T
3|
local mean
—~
N
2 L V‘/
mean value /
1 + ) \‘ ; / R _
0 /ﬂ%
0° 30° 60° 90"
Fig. 12. — ¢
10~ (1
8-

'2 | meam value
\ ]

30 60 90°
Fig. 13. —_— ¢
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]
4 /
10F 3
sF
6..
local mean S
N
44
- xa ) Y 3
2F /
mean value
\ . . ol
0% . . N / o
0 30° 60 90
' Fig. 14 — ¢
{46
15 |-
10—
local mean
-XL
5 .
mean value /
. . \t - 4__74
0 L \ L . y
0° 30° 60° 90°

Fig. 15. —_— ¢

Simpson’s formula is available, and fairly correct values are got, by dividing the
interval into 8 equal sub-intervals. For the interval ¢=280°~90°, where the curves
have vertical tangents, approximation

X,=Y,=r—2y7 ¢} @)
where $g=r/2—¢

(22)
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will be used. Accuracy of this Eq. (25), is to about 1/2,000 for ¢=80° ($=10°
=r/18), and 1.3/2,000 in case of X,. Thus integrated values are

/2 /2

led¢=fY1 d¢=1.379
0 0

/2

f Y,d$=2.087
()

z/2 /2

—fX3d¢=fY3d¢=1.295
0 0

/2

fX4 dé=—1.348.
0

VIII. Zp’' —Zp

For the value y/7=0.1, 0.2, 0.3, values of zz'—z3 are as in Table 1.

Table 1.
7/ 0.1 0.2 0.3
z2p'—z3 . R
PUNETD 1.679+0.1267  1.783+0.2877  1.876+0.487

IX. Breadth of jet, B;

Breadth of the jet B, is obtained by integration of Eq. (17), taking a semicircle
with sufficiently large radius R as integration path. Substituting ¢=Re®(R>1)
and rearranging, we have

_¥, I I (og2tiog R -Lo
fdz-ﬂ—qjeze fe de, (26)

that is

”

1 (el = T oF fe-Togn
B]‘Ilodél queza/‘e d

20y o 7 .
=%"1ginh L., 27
74q; 2 @7

Numerically, values of B; are as in Table 2.
Using these values of Bj, values of zz'—zp5 in B; are got as in Table 3.

(23)
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Table 2.
/x 1 0.1 0.2 0.3
B;
— | 1577 L .
ey 7 506 1.630
Table 3.
1/ ‘ 0.1 0.2 0.3
'
EEEE | 1.06540.080i  1.1174+0.180¢  1.15140.299i
J .
¥ =017
=102 =
¥=10.3 7o
B C

Fig. 16.

X. Ratio of outer and inner radius of jet

Finally, outer and inner extreme stream lines make circles, and the ratio of their
radii is obtained, noting that the flow is potential one, and that the pressure is con-
stant along any stream line. That is

To - dji _ 4B 2
7i jo qs (28)
From the definition (3)
o —RWB) e-_;
gdB=4; q; (29)
, ~R(28") z
gds =(g;ée =gqg;ez
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therefore

Yo _pv .
~ ev. 30)

Numerical results are such as shown in Table 4.

Table 4.
i |’ 0.1 0.2 0.3
rol7i 1.369  1.874  2.566

7o/B; 3.71 2.144  1.639
ri/ B 2.71 1.144  0.639

XI1. Volumetric flow and power

The flow makes finally an annular flow, with velocity distribution same as a free
vortex. Using here the relationship between velocity and radius of a streamline

qr=4qj, *y=q;; ¥i=const ., (31)

the flow quantity ¥, is obtained as

_ Bjilog(qii/q;) _ Bir _ By
U= jildjo) — j )
Udn—1/a: ~ A/an A—e) — (7as) (=D (32)

From Eq. (32),
qz=Q1—e"¥,/B;y

33)
gs'=(e"—1)¥,/B,y. ¢
On the other hand, from Bernoulli’s Equation
L bttt = o pastti=pa, 34
or
1 2 1 ' _
o P98 +Pe= 4y a8+ Pi=pa, (34)
so substituting (33) into (34)’, we have
1 (A=eN¥N?,, _ 1 ((e@=D¥),, _

Adding the first and the second side of this equation, and putting half of the
sum is equal to the third side, we get

1, p¥

z-'m{“—e'”” @ =1} o (bo+D) =ps . (36)

Then ¥, is obtained as

B ¥ [pa— (Po+P)/2
=Brmh7oV T Tocesh s 37

(25)
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For the case y<«1 (this means that the pressur difference is very small),
7/sinh (3/2) =2, cosh y =1, and so,

V=B, [2pa= (Pt pi)/2}
\/ 0 (38)

This is the flow quantity of a jet, which flows into an equal pressure field, with
pressure equal to (p,+p;) /2. Taking p: as pressure standard, the power required to
produce the jet flow becomes

L= (pa=p)¥: = 5 pa;e¥,= - pa el (39)

As the pressure difference between both sides of the jet is given from (29) as

= pi=5 0 (@5 —as") = pa(e—e) (40)
and therefore
2 2 Do Di
ap= 2 Db 1)

Then Eq. (39) becomes
L= er—f_—rﬁ (Po —Pi) wl

= re'B; ba—(Dot0)/2 () _p,
= gsih(;/2)smh 7V~ Zpcoshy PP - 42)

From Eq. (34)

pa—pi=pq;i*/2=pqser/2
(43)
pa—po=pq;’/2=pgie/2
and using Eq. (41)
pa=DFPi= 2 pqp(e ey = 1 (o—ps) coth 7 . (44)
‘Then (42) becomes
_ re' By 1 )
L= Smrn(; 2)sinh 7 \/—*—‘p sinh 7 (PP (45)
Using the relation
Bi/ry=(y—1:) [re=1—7ri/ry=1—e"7
or
Bj=r,(1—e™),
Eq. (45) is rewritten finally as
L= 5L (p—piyere. (46)

2V p (sinh 1)/

26)
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For y«1, e/?2=1, sinh y=7, and

=_To (p _ )32 4

which holds for small p,—p;.

XII. Conclusion

Here, two-dimensional jet flow into an unequal pressure field is analyzed, assum-
ing that the nozzle has a moderate converging angle, and that the both ends of
the nozzle walls are located on the same equi-potential line. Same method of ap-
proximation may be extended to the case in which nozzle wall ends are not on the
same equi-potential line, and further, to the case in which the nozzle converging
angle is small (case a), or large (case ¢). The author wishes this study would
be utilized as a criterion to the actual cases. And the author wishes to express
his deep thankflness to Mr. T. Saito and Mr. M. Watabe for their good co-operation
with the author.
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