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An Example of the Optimal Stopping 

Rule Problem 

An Approach to an Adaptive Decision 

Process hy Dynamic Programming 

(Received June 2， 1965) 

Hiroshi Y AN AI* 

Abstract 

This article discusses some features of so-called optimal stopping rule problem 
by dynamic programming formulation. After introducing an example of the 
optimal stopping rule problem with宣nitehorizon with known probabilities， the 
adaptive versions of the example will be discussed. 

1. Introduction 

One of the most fundamental problems of the sequential decision process may 

be to make optimal decisions when to accept one of the successive proposals with 

the associated returns known in advance， so as to make the final gain as large as 

possible for the decision maker. In other words， it must be decided when to stop 

waiting for the favourable proposal. Thus， this kind of problem is sometimes， 

called the stopρing ruleρroblem. 
In some cases， (10) it is known in advance what proposals will be made in 

future and in other cases， (20) only the probabilities are known in advance. 

And there is also the case， (30) even the probabilities are not known definitely 

but onlyaρriori distributions of the probabilities are known and the probabilities 
become definite as the process proceeds. 

The decision process associated with the case (10) is called the deterministic 

decision process， (20)一- the stochastic decisionρrocess and (30)ー -the adψtive 
decision trocess 

There may not be remarkable di伍cultyin the deterministic decisionρrocess and 
will not be discussed in this article. An example of the decision process will be 

introduced and its stochastic version will be examined in II. The adaptive version 

of the example will be examined in III. 

#柳井浩，助手 Instructorat the Dep. of Administration Eng.， Keio Uuiv. 
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10 Hiroshi Y ANAl 

II. The example and its stochastic version 

Consider now a man waiting for a taxi-cab on a street to attend a weekly 

meeting, where he would have to pay penalty if he would be late. The penalty 

increases as he will be later as shown below. 

where 

Stage 

1 

2 

N 

Delay 

upto 0 min. 
II 5 II 

II T II 

Ql<Q2<······<QN 

Penalty 

Ql ( =0) 

Q2 

and the penalty for the delay in arrival over 5N minutes is so unreasonably that 

he would not be able to afford to pay. 

His watch shows him that he would not be late, if he would take the first taxi-cab 

he would find. He knows that he would find empty taxi-cab at every 5 minutes 

thereafter. Let us denote by Qi the penalty for him, if he would catch the i-th 

taxi-cab. There are two kinds of taxi-cab, A and B in the district. Although the 

times to reach the place of meeting are the same for the both kinds, the fee of 

the taxi-cab A is CA, while the fee of the taxi-cab B is Cs ( >CA). Thus the 

total costs of taking the i-th taxi-cabs A and Bare CA+Qi and Cs+Qi respectively 
(cf. Fig. 1). 

Let us assume, here, that the probabilities that the man would find the taxi-cabs 

A and B at every stage are p and 1-P and they are independent of what he has 

found before that stage. 

The man wants to pay as little as possible. If he would find a taxi-cab A for 
the first, he would be so lucky that he would not have to pay any penalty while 
he pays the lowest fee. But in case the first taxi-cab is B, he must decide whether 

to pay no penalty paying a higher fee or to wait for the next taxi-cab in the 

hope that the latter would be a taxi-cab A, sacrifying the penalty. In general, 
there would be no difficulty if the i-th taxi-cab would be the first taxi-cab A -­
he would catch it; while if it would be a taxi-cab B, he must decide whether to 

catch the taxi-cab B at that stage or to pass it over in the hope that he would 

be able to find sooner a taxi-cab A,.sacrifying the increase of the penalty. Since, 

it is not always certain that a taxi-cab A would come sooner, he must decide so 

.as to minimize the expected total cost he would pay. 

Dynamic programming formulation 
Let us now formulate the problem posed above by dynamic programming tech­

nique. Defining unknown functions 

(10) 



An Example of the Optimal Stopping Rule Problem 

fi,(p) =the minimum total cost expected at the stage 
i in case all the taxi-cabs arrived upto the stage 

i are of the kind B, O~p~l, i=l, ······,N, 

it would be clear that 

11 

(2·1) 

(2·2) 

According to the principle of optimality [1]*), we have the following recurrence 

relation 

(2·3) 

for i = 1, ·· · .. ·, N -1. 
Indeed, the optimal decision at the i-th stage would be to choose the way which 

will require him lower expectation of the cost he would have to pay. If he would 
catch the taxi-cab B before him, he would have to pay Cn+Qi, while if he would 
pass it over and would be sure of taking the optimal decisions for i +1-st stage 

and thereafter, it would be expected that he would have to pay p (CA + Qi+ 1) 

+ (1- p)fi+1 (p). Thus if he would take the optimal decision at the i-th stage, 
too, the minimum expected total cost is represented by the relation (2·3). 

It may be quite easy to solve the relations (2· 3) beginning with /N-t (p) back 
to h (p), given the values of p, CA, Cn and Qi. Moreover, in some cases, we may 
give a simple rule of optimal decision as shown in the following theorem. 

Theorem II ·1 
If the difference 

(2·4) 

increases monotonously as to i and moreover if there exists such I that 

(2·5) 

then the optimal decision is to pass over the taxi-cabs B up to the J-1-st taxi-cab 

and to catch the taxi-cab whether it might be A or B thereafter. (Of course, 
there would be no difficulty if a taxi-cab A would come before the J-th stage.) 

Proof 
The theorem may be proved inductively from the N-th stage backward. For i 

=N, the only decision is to catch the taxi-cab B: 

/N(P) =Cn+QN, catch. (2·6) 

Assume now for i=N, N-1, ...... ,]>I that 

fi(p) =Cn+Qi, catch. (2·7) 

with this we have, 

*) Numbers in brackets refer to the references cited at the end of the paper. 

(11) 



12 Hiroshi Y AN AI 

(2·8) 

In fact, since 

p(CA+QJ) + (1- P)/J(p) = p(CA+QJ) + (1- p) (CB+QJ) 

= p(CA-CB) +CB+QJ>QJ-t+CB 

by assumptions (2·4) and (2·5), we obtain the relation (2·8) by the recurrence 
relation (2·3). Thus, the optimal decisions for i=N, ...... ,I are to catch the taxi­

cab before him even if it might be a taxi-cab B: 

fi(p) =CB+Q;,, catch i=N, ...... ,I (2·9) 

Next, for i=I-1 we have 

(2·10) 

In fact, since 

p(CA+QI) + (1- P)/I(P) = p(CA+QI) + (1- p) (CB+QI) 

= p(CA-CB) +CB+QI<QI-t+CB 

by assumptions (2·4) and (2·5), we obtain the relation (2·10) by the recurrence 

relation (2 · 3). 

Let us now assume that 

!i (p) = p(CA + Qi+l) + (1- p)fi+t (p), pass over 

for i=I-1, ...... , ]+1. With this, we have 

jj(p) = p(CA+ QJ+l) + (1- p) /J+t (p), pass over 

In fact, since 

p(CA+QJ+t) + (1- p)jj+l (p) <P(CA+QJ+l) + (1- p) (CB+QJ+l) 

= p(CA-CB) +QJ+t +CB<QJ+CB 

(2·11) 

(2·12) 

by assumptions (2 · 4) and (2 · 5), we see the relation (2 · 12) by the recurrence 
relation (2·3). Thus, the optimal decisions for i=I-1, ...... , 1 are to pass over 

the taxi-cab if it is a taxi-cab B : 

Q.E.D. 

Remark 11·1 
In applying the theorem above, it may be useful to draw the graph 

Qi+l-Qi 
CB-CA . 

Remark 11·2 
It follows from the proof of the theorem above, that if there exists such I that 

p(CB-CA) =QI-QI-1 

(12) 



An Example of the Optimal Stopping Rule Problem 13 

instead of the inequality relationship (2 · 5), we have 

/I(P) =Q1+CB= p(CA+QI) + (1+ p) (CB+QI+l), either catch or pass over. 

Corollary 
If the difference 

i=1, ...... , N-1, 

where c is a positive constant, then the optimal policy is to catch taxi-cab B, if 

and pass over taxi-cab B except the N-th one if 

Numerical example 
Let us give a numerical example, with the parametres: 

N=5 

CA=¥ 150, CB=¥ 190 

Ql=¥0 

Q2=¥ 10 

Q3=¥ 30 

Q4=¥ 60 

Q5=¥ 100 

The total costs of taking the i-th taxi-cabs A and B are shown in Fig. 1. 

Tota I cost 

300~--------------------~------

100r-----------------------------

t 15 
4 

20 time 
5 stage 

Fig. 1. The total costs. 

(13) 
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14 Hiroshi Y ANAl 

It may be readily observed that we may apply the theorem above. Drawing 
the graph described in Remark Il·l, we obtain the following chart of the optimal 

decisions. 

p 1.0 

0.5 

pass over 
taxi-cab 8 

catch 
taxi -cab B 

2 3 4 5 

Fig. 2. Optimal decisions. 

The minimal expected total costs ji(p) are shown in Fig. 3. 

300 

200r------------------

100. 

0.0 

Fig. 3. Minimalrexpected total costs. 

(14) 

1.0 
p 

fs (p) 

f 4 ( p) 

f3 ( p) 

f2 (p) 

f1 ( p) 



An Example of the Optimal Stopping Rule Problem 15 

So far as we have considered, the differences between total costs associated with 
catching taxi-cabs A orB at the i-th stage were constant, (CB-CA). We may cir­
cumvent this restriction as follows. Suppose that we are given the total costs 

associated with catching taxi-cabs A orB respectively as i-th stage by Tf and Tf, 

for i=l, ······, N and the Tfv+ 1 and T~+ 1 is considered to be so large that the 

man would not be able to afford to pay. Moreover, assume that 

Tf-:;; T~ for i=l, ······, N. (2·15) 

In this case we have the recurrence relation 

fi(p) =min ' for [ 

Tl! 

P Tf+t + (1- P) fi+1 (p) 
i=l, ······, N (2·16) 

with the same definition for fi(p) as (2·3). And it would be clear that 

/N(P)=TfJ. (2·17) 

In this case we have the following theorem. And it may be readily seen that 

Theorem II· 1 follows from Theorem II· 2. 

Theorem II· 2 
If the difference 

1ncreases monotonously as to i and moreover if there exists such I that 

(2·18) 

(2·19) 

then the optimal decision is to pass over the taxi-cabs B up to the l-1-st taxi·cab 
and to catch the taxi-cab before him whether it might be A or B thereafter. (Of 
<:ourse there would be no difficulty if a taxi-cab A would come before the I-th stage.) 

Proof 
The theorem may be proved inductively in an analogous way as the proof of 

Theorem II· 1. 

In fact, for i=N, 

/N(P) =T~, catch. 

Let us assume that 

fi(p) =Tf, catch. 

for i=N, N -1, ······, ]>I. Then we have for i=] -1, 

h-1 (p) = T~- 1 , catch. 

In fact, since 

pT1+ (1- p) jj(p) = pT1+ (1- p) T~ > T~-1 

(15) 

(2·20) 

(2·21) 

(2·22) 
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by the assumptions (2·18) and (2·19), we obtain the relation (2·22) by the recur­

rence relation (2·16). Thus, the optimal decision for i=N, ······, I is to catch 
the taxi-cab before him even if it might be a taxi-cab B: 

f;,(p) = Tf, catch for i=N, ······, I. (2·23) 

On the other hand, for i =I -1, we have. 

h-tCP)=PT1-t+ (1-p)/J(P)=PT1-t+(l-p)Tf pass over. (2·24) 

In fact, since 

pT1-t+ (1- p)Tf < Tf-t, 

(2·24) follows by the assumptions (2·18) and (2·19) and the recurrence relation 

(2·16). 

Let us assume now that 

fi(P)=PTf+(1-p)fi+t(P) pass over 

for i=I-1, ······, ]+l. Then, we may evaluate /J(p) as 

/J(P)=PT1+ (l-p)f./!- 1 (P) pass over. 

In fact, since 

PT1+ (l- p)ff!-1 (p) s,pT1+ (1- p)TS+l < TS 

(2·25) 

(2·26) 

(2· 26) follows by the assumptions (2·18) and (2·19) and the recurrence relation 

(2 ·16). Thus, the optimal decisions for i =I -1, 

cab before him if it is a taxi-cab B: 

1 are to pass over the taxi-

fi(p) = pTf+ (1- P) Tf+1 , pass over (2·27) 

Q.E.D. 

III. Adaptive version of the example 

So far, we have considered the situation where the probabilities p and 1-p that 

the man would find the taxi-cab A and B at every stage are known definitely in 
advance. Using different words, this means, in a sense, that at least somebody 
has observed sufficiently many times which kinds of the taxi-cabs came along the 

street. But it may not be always the case. In most cases, he only has a vague 

notion about the probabilities at the beginning of the decision process. Even with 
this poor knowledge, the man must make his decision anyhow. As he proceeds on 

to make decisions observing which one comes, he enlarges his experience, and his 

vague notion becomes more definite, and he would be able to make more appro­
priate decisions. 

This type of decision process is called the adaptive decision process. In this 

section we would like to examine the adaptive version of the example of decision 

(16) 



An Example of the Optimal Stopping Rule Problem 17 

process posed in the previous section. 

As the vague notion of the probabilities, we assume that he knows the a priori 

distribution of the probability p : 

dHo(P) (3·1) 

before the man begins with the decision process. The 'vague notion' given in 
(3·1) would become clearer as he observes the kinds of taxi-cabs coming along 
the street. In other words, the vague notion given by the a priori distribution 
(3 ·1) will be changed into another a priori distribution : 

dH0 (P) ~dH'(p) 

after he observes a taxi-cab. And the a priori distribution dH' (p) will be again 
changed into another a priori distribution after he observes the second taxi-cab, 

and so on. 
Let us look for a moment how this will be done, before we consider the associ­

ated decision process. Assume that we have the a priori distribution 

(3·2) 

just before we observe the i-th taxi-cab. According to the Theorem of Bayes [2], 
the a priori distribution is changed into 

(3·3) 

after a taxi-cab B has been observed for the i-th taxi-cab. If he would observe a 

'A' for the i +1-st taxi-cab, the new a priori distribution would be 

pdHi(P) 
fpdHi(P). (3·4) 

But the latter will not be empoyed later, since, in that case, his decision would be 
just to catch the taxi-cab A. 

As an example, if we assume that the a priori distribution belongs to j3-family: 

dHi(p) 1 pm-i(l- p)n-1dp 
B(m, n) 

(3·5) 

O~p~ 1, m, n>O 

where 

1 

B (m, n) = f xm-1 (1-x)n- 1 dx (3·6)' 

with the expectation 

1 

Pi= J pdHi(p) = m:n, (3·7) 
II 

(17) 



18 Hiroshi Y ANAl 

then the new a priori eistribution 

(1- p) dHi(p) 
f (1- p) dHi(p) 

1 pm-1(1-p)ndp o:::;;p:::;;1 
B(m, n+1) 

again belongs to j3-family with the parametres m, n+ 1 and the expectation 

.4.0 

3.0 

2.0 

1.0 

0.0 

3.0 

2.0 

1.0 

0.0 

3.0 

2.0 

1.0 

0.0 

3.0 

30 

( i ) 
m = 4 
n = 1 

m= 4 
n = 2 

m=4 
n = 3 

m= 4 
n = 4 

m=4 
n = 5 

Fig. 4. Change of a priori 
distribution {3 ( 4, 1 ). 

- m 
Pi+l m+n+1 · (3·9) 

~oreover, in the case of integral param­

etres m, n, we may interprete as if m taxi­

cabs A and n taxi-cabs B were observed 
up to the i-th stage, and the expectation 

to be the direct average of them. 

Fig. 4 shows an example how an a priori 
distribution (j3 (m =4, n= 1)) is changed 

after repeated observations of taxi-cabs B. 

The expectations pi are shown by upward 
arrows. It may be observed that the 

modes of the distributions move to the 

left and at the same time they become 
sharper as the repeated observations of 

the taxi-cabs B. (Remark that the vari­

ance of the distribution j3 (m, n) is 

mn ) 
(m+n+ 1) (m+n) · 

Let us now turn to consider the optimal 

decisions under the circumstance described 
above. There may be various approaches 

to this problem. Two of them will be 

described below. 

1 o Parametric method 
If every a priori distribution under con­

sideration belongs to a class, we rna y 
reformulate the problem as an optimal 
decision process defined on the parametre 
space corresponding to the class. Let us 
examine the case of j3-distributions. 

We may apply the method of dynamic 
programming to the formulation on the 

(18) 



An Example of the Optimal Stopping Rule Problem 

m-n space Let us define the unknown function as follows. 

fi(m, n) : the minimum total cost expected at the i-th 
stage after finding a taxi-cab B for the i-th taxi­
cab making an optimal decision using the a 
priori distribution {3 (p; m, n) obtained from the 
a priori distribution {3 (p; m, n-1) we had before 
the i-th taxi-cab B was observed. 

It would be clear that 

19 

(3·10) 

(3·11) 

According to the principle of optimality, we have the following recurrence 

relation for i = 1, · · .. · ·, N -1 

(3·12) 

The representation in the second line in the right-hand-side is the total cost ex­
pected at the i-th stage after passing over the i-th taxi-cab B and using the optimal 
decisions thereafter, that is 

1 

f [p(CA + Qi+1) + (1-p) fi+t (m, n+ 1)] dHi (p) 
0 

(3·13} 

where dHi(P) is the a priori distribution 

f3(p; m, n) 

we have after observing a taxi-cab B at the i-th stage. 

Given the values of CA, CB and Qi we may evaluate the functions fi(m, n), from 
/N-1 (m, n) back to It (m, n) and give the optimal decision for every m, n and i. 

In some cases, moreover, we may give a simple rule of optimal decisions as shown 
in the following theorem which corresponds to Theorem II· 1. 

Theorem III ·1 
If the difference 

(3·14)' 

increases monotonously as to i, the optimal policy is to catch the i-th taxi-cab B 

if 

(3·15) 

(19) 



20 Hiroshi YANAI 

and to pass over the i-th taxi-cab B if 

(3·16) 

Proof 
Since this theorem follows from Theorem III· 2 the proof will not given here. 

Numerical example 
Let us now give a numerical example of the theorem. The parametres excluding 

the value of p are the same as those given in the numerical example in the pre­

vious section. The chart giving optimal decisions are drawn on the m-n plane. 
(Fig. 5), in which an observation of a taxi-cab B corresponds to the unit upward 

movement of the point representing the distribution of p. 

n 

12 

11 

10 

9 

Remark III ·1 

2 3 4 5 6 .,. 8 9 10 11 12 

Fig. 5. Optimal decisions on m- n plane. 

If we give the total costs associated with catching taxi-cabs A or B at the i-th 

stage by Tf and Tf, respectively for i=1, ...... , N instead of CA+Qi and CB+Qi, 

the corresponding recurrence relation is 

[

TB 
t 

ji(m,n)=min m A n 
--Ti+l+-+ f+l(m,n+1) m+n m n 

(3·17) 

(20) 



An Example of the . Optimal Stopping Rule Problem 21 

as it might be readily seen. Under the assumption as to the total cost at the 

N + 1 st stage, we see 

/N(m, n) = Tfj. .· (3·18) 

Now, we have the following theorem, which takes more general form than 

Theorem III· 1. 

Terorem III· 2 
If the difference 

mTA n TB TB -- '+1+-- '+1- . m+n • m+n 1 
• 

(3·19) 

increases monotonously as to i, the optimal policy is to catch the i-th taxi-cabs 

B if 

m TA n TB TB -- '+1+-- '+1~ . m+n ' m+n • • 

and to pass over the i-th taxi-cab B if 

m TA n TB TB -- i+1+-- i+1~ i. m+n m+n 

Proof 

(3·20) 

(3·21) 

This theorem may be proved inductively from the N-th stage backward in 

an analogous way as Theorem II· 2. 
In fact, without loss of generality, we assume that there exists a positive integer 

I for which 

m TA n TB TB 0 m TA n TB TB -- I+1+-- I+l- I> >-- I+-- I- I-1 • 
m+n m+n m+n m+n 

For i=N, clearly 

/N(m, n) =Tifv. 

Let us assume that 

fi(m, n) =Tf catch 

for i=N, N-1, ...... ,]>I. Then we have for i=]-1 

/J-J (m, n) = Tf_1 catch, 

since 

_}!!___ TJ+ _n_ fj(m, n+ 1) = _}!!___ TJ+ _n_ T~> Tf-1· 
m+n m+n m+n m+n 

Thus the optimal decision for i=N, ...... , I is to catch the taxi-cab before him 
even if it might be a taxi-cab B : 

fi(m, n) =Tf, catch for i=N, ...... ,I. 

On the other hand, for i =I -1, we have 

(21) 



22 Hiroshi Y AN AI 

/J-tCm, n) = m+ T1- 1+ n+ /J(m, n+1) m n m n 

= __!!!__ TA + _n_ TB m+n 1 _ 1 m+n 1 , pass over. 

In fact 

_.!!!:.__ T1-1 + _n_ T~< Tf-1 
m+n m+n 

by the assumptions above. 
Let us assume now that 

fi(m, n) = m+ Tf+ n+ /i+1 (m, n+1), pass over 
m n m n 

for i=l-1, ······, ]+1. Then, we have for i=f 

/J(m, n) = m+ T1+ n+ /J+1(m, n+1), pass over~ 
m n m n 

In fact, 

__!!!__ T1+ _n_ /J+1 (m, n+ 1) ~__!!!__ T1+ _n_ T~+t < T~ 
m+n m+n m+n m+n 

Thus the optimal policies are to pass taxi-cabs B upto 1-1-st stage and to catch 
thereafter. 

Q.E.D. 

2° Non-parametric method 
If we cannot assume a class of distributions defined by a finite number of 

parametres we have to define the unknown functions (or functionals) on some 
infinite-dimensional spaces or on some functional spaces. It is not possible, at least 
in practical sense, to treat recurrence relations as to such functions or functionals. 

Thus, in this case, we must invent some appoximate approach to the problem. 
One method may be to use approximation of the a priori distributions by those 
which belong to a class decribed above like the ;3-family. 

Another method may be to use the recurrence relation 

(3·22) 

where dHi+1 (p} is the a priori distribution obtained from the a priori distribution 
dHi(P) after finding a taxi-cab B at the i-th stage by 

(3·23) 

(22) 



An Example of the Optimal Stopping Rule Problem 23 

And a further approximation 
1 

f [ (CA-QHl) + (1- p) fi+1 (p)] dHH1 (p) 
0 

where 

1 

Pi+l =
0
j P dHH1 (p) 

leads to the simplest idea to approach the problem: to enter the chart of optimal 

decisions such like given in Fig. 2 with the value P= Pi which is the expectation 
of the probability of finding a taxi-cab A at the i-th stage. Some examples are 

given in Fig. 6 with the same paramtres as the previous example. 

1.0 

0.5 

pass over 
taxi-cab 8 

R ---"' ---R ---0 -

0 r , o---- p2·---0 ---j53·---oo-1h a priori distribution:~{80,20) 

J. __ P, ----"'? 

~--- R ---><>o-tha priori distribution: (J ( 4 , 1 ) 
2 

catch 
taxi-cab 8 

QL---~----~--~----~----~ 

i 2 3 4 5 

Fig. 6. Optimal decisions by simple approximate method. 

If we take, for the sake of comparison, a j3-distribution as the a priori distribu­

tion, the chart of optimal decisions m Fig. 6 may be transformed into a chart on 

m-n space which is exactly the same as Fig. 5. Although we have arrived at 

the same result via two different approaches for this particular example, it is not 
yet known the relationship between these two approaches. But, this might be 
an illustration for the second approach to be of some practical use. 

(23) 
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