慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On stability of servo－mechanisms with timely varying elements－II
Sub Title	
Author	鬼頭，史城（Kito，Fumiki）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1965
Jtitle	Proceedings of the Fujiihara Memorial Faculty of Engineering Keio University（慶応義塾大学藤原記念工学部研究報告）．Vol．18，No． 68 （1965．），p．1（1）－8（8）
JaLC DOI	
Abstract	With an object of contributing to the study of stability of servo－mechanisms with timely varying elements，a disscussion is made about the stability of solution of a system of（non－linear）ordinary differential equations．The coefficients of this system of ordinary differential equations are taken to vary gradually with the time t ．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00180068－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

On Stability of Servo－mechanisms with Timely Varying Elements－II．

（Received June 2，1965）

Fumiki KITO＊

Abstract

With an object of contributing to the study of stability of servo－mechanisms with timelyvarying elements，a disscussion is made about the stability of solu－ tion of a system of（non－linear）ordinary differential equations．The coefficients of this system of ordinary differential equations are taken to vary gradually with the time t ．

I．Introduction

In the previous report ${ }^{1)}$ of the same title as the present one，the author has reported some results of his study，for the case of linear systems．In the present report，the same problem for the case of non－linear systems is studied．Namely， here we consider a system of non－linear ordinary differential equations，whose coefficients vary gradually with the time t ，and study the condition under which this system of differential equations may have regular and stable solution．

The method adopted in the present study is not a new one，but is one obtained by only a slight modification to that followed by E．Picard．${ }^{2)}$

II．Statement of the problem

Our present object is the study of a system of ordinary non－linear differential equation of the form，

$$
\begin{gather*}
\frac{d x_{i}}{d t}=X_{\dot{i}}\left(x_{1} ; \ldots x_{n} ; \xi\right), \tag{1}\\
(i=1,2, \ldots n)
\end{gather*}
$$

wherein x_{1}, \ldots, x_{n} are unknown variables，t（the time）is the indepentent variable， while ξ is a function of t defined by

$$
\begin{equation*}
\xi=e^{\alpha t} . \quad(\alpha<0) \tag{2}
\end{equation*}
$$

[^0]The right-hand side of this equation (1) are regular functions of x_{1}, \ldots, x_{n}, and can be expressed as power series in $x_{1}, \ldots x_{n}$, whose coefficients are linear functions of ξ. Thus, the given equation (1) can be written in the following form (after a linear transformation of dependent variables x_{1}, \ldots, x_{n}, if necessary): -

$$
\begin{equation*}
\frac{d x_{i}}{d t}=\lambda_{i} x_{i}+\sum_{j} A_{j}^{(i)} \xi x_{j}+\sum_{j} \sum_{k}\left[B_{j k}^{(i)}+\xi C_{j k}^{(i)}\right] x_{j} x_{k}+\text { etc., etc., } \tag{3}
\end{equation*}
$$

where $i=1,2, \ldots n$, and the indices j and k are to be taken for $1,2, \ldots, n$. In this equation, only terms up to second order are shown explicitly, on the right-hand side. Also, A 's, B 's and C 's are constants, which may have complex values.

The initial values are, in usual problems of technology, taken to be the values at initial instant $t=0$, thus:-

$$
\begin{align*}
& \text { at } t=0, \\
& \quad x_{i}=H_{i} \quad(i=1,2, \ldots, n) . \tag{4}
\end{align*}
$$

However, during the course of construction of solution of the equation (1) or (3), we shall mean, by the term "initial values" the values at $t \rightarrow \infty$ (namely, $\xi=0$), thus,

$$
\begin{aligned}
& x_{i}=0, \quad \frac{\partial x_{i}}{\partial y_{i}} \\
&=K_{i}, \quad(i=1,2, \ldots, n) \\
& \text { at } \quad y_{1}=0, \ldots, y_{n}
\end{aligned}=0, ~ l
$$

where y_{i} are specified functions of t, which are defined in the next section.
In short, our aim in the present paper is the discussion of a non-linear servomechanisms, every coefficient or some coefficients of which vary gradually with the time t, in such manner as shown graphically in Fig. 1. The constants λ_{1}, \ldots, λ_{n} appearing in this equation (3) are assumed, for simplicity of treatment, to have different values each other.

Fig. 1. gradual variation of coefficients.

III. Condition for existence of regular solution of our system

Following the method and reasoning of E. Picard, we shall put ${ }^{3)}$

$$
\begin{array}{ll}
y_{i}=\exp \left(\lambda_{i} t\right), & (i=1,2, \ldots n) \\
\xi=\exp (\alpha t), & (\alpha<0), \tag{5}
\end{array}
$$

and regard $\left[y_{1}, \ldots, y_{n}, \xi\right]$ as new set of independent variables. Then, the equation (3) can be rewitten in the form:-

$$
\begin{align*}
& \lambda_{1} y_{i} \frac{\partial x_{i}}{\partial y_{1}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{i}}{\partial y_{n}}+\alpha \xi \frac{\partial x_{i}}{\partial \xi}=\lambda_{i} x_{i}+\sum_{j} A_{j}^{(i)} \xi x_{j} \\
& \quad+\sum_{j} \sum_{k}\left[B_{j k}^{(i)}+\xi C_{j k}^{(i)}\right] x_{j} x_{k}+\text { etc., etc.. } \tag{6}
\end{align*}
$$

Regarding this system of equations (6) (for $i=1,2, \ldots, n$) as a partial differential equation of first order with repect to $x_{1}, \ldots, x_{n}\left(y_{1}, \ldots y_{n}, \xi\right.$ being a set of independent variables), let us try to obtain a system of regular solutions, under the initial contition that,

$$
\begin{align*}
& \text { at } y_{1}=0, \ldots, y_{n}=0, \xi=0 ; \\
& x_{i}=0, \quad\left(\frac{\partial x_{i}}{\partial y_{i}}\right)=K_{i} \tag{7}
\end{align*}
$$

[This implies that, we assume λ 's have negative real parts.]
Now, taking the partial derivative, with respect to a variable $y_{m}(m \neq i)$, of both sides of the eq (6), and afterwards, putting $y_{1}=0, \ldots y_{n}=0, \xi=0$ into it, we obtain the equation

$$
\lambda_{m}\left(\frac{\partial x_{i}}{\partial y_{m}}\right)_{0}=\lambda_{i}\left(\frac{\partial x_{i}}{\partial y_{m}}\right)_{0} .
$$

Since we assumed that $\lambda_{1} \ldots, \lambda_{n}$ have different values each other, we shall have,

$$
\begin{equation*}
\left(\frac{\partial x_{i}}{\partial y_{m}}\right)=0, \quad \text { for } \quad m \neq i \tag{8}
\end{equation*}
$$

Next, taking partial derivative, with respect to y_{i}, of both sides of the eq. (6), and putting afterwards $y_{1}=0, . ., y_{n}=0, \xi=0$, we obtain;

$$
\lambda_{i}\left(\frac{\partial x_{i}}{\partial y_{i}}\right)_{0}=\lambda_{i}\left(\frac{\partial x_{i}}{\partial y_{i}}\right)_{0},
$$

which means that $\left(\partial x_{i} / \partial y_{i}\right)_{0}$ remain indeterminate. We shall call this value K_{i}, as was already indicated in the eq. (7).

Next, taking partial derivative, with respect to ξ, and putting afterwards,
3) Hereafter, we shall understand that, by i, j, or similar indices, we mean a set of positive integers $(1,2, \ldots, n)$.
$y_{1}=0, \ldots, y_{n}=0$, we obtain;

$$
\alpha\left(\frac{\partial x_{i}}{\partial \xi}\right)_{0}=\lambda_{i}\left(\frac{\partial x_{i}}{\partial \xi}\right)_{0} .
$$

So that, we shall have (provided that $\alpha \neq \lambda_{i}$),

$$
\begin{equation*}
\left(\frac{\partial x_{i}}{\partial \xi}\right)_{0}=0 \tag{9}
\end{equation*}
$$

Furthermore, by taking the partial derivative of both sides of eq. (6), twice with respect to ξ, and, putting afterwards, $y_{j}=0, \xi=0$, we obtain,

$$
2 \alpha\left(\frac{\partial^{2} x_{i}}{\partial \xi^{2}}\right)_{0}=\lambda_{i}\left(\frac{\partial^{2} x_{i}}{\partial \xi^{2}}\right)_{0},
$$

Which shows us that

$$
\begin{equation*}
\left(\frac{\partial^{2} x_{i}}{\partial \xi^{2}}\right)_{0}=0 \tag{10}
\end{equation*}
$$

provided that $2 \alpha \neq \lambda_{i}$.
Next, by taking partial derivative of eq. (6), with respect to ξ and y_{i}, and putting afterwards, $y_{j}=0, \xi=0$, we obtain,

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{i}+\alpha\right)\left(\frac{\partial^{2} x_{i}}{\partial \xi \partial y_{i}}\right)_{0}=A_{i}^{(i)} K_{i} . \tag{11}
\end{equation*}
$$

Also, by taking partial derivative of eq. (6) with respect to y_{j} and $y_{k}(j \neq k)$, and putting afterwards $y_{s}=0, \xi=0$, we obtain,

$$
\begin{equation*}
\left(\lambda_{k}+\lambda_{j}-\lambda_{i}\right)\left(\frac{\partial^{2} x_{i}}{\partial y_{j} \partial y_{k}}\right)_{0}=\sum_{j} \sum_{k}\left[B_{j k}^{(i)}\right] A_{j} A_{k}+\ldots \tag{12}
\end{equation*}
$$

We may proceed in this way, to obtain values at $y_{j}=0, \xi=0$, of higher partial derivatives of x_{i}. For example, by taking the derivation m times, with respect to ξ, and putting afterwards $y_{j}=0, \xi=0$, we obtain,

$$
\begin{align*}
& \alpha m\left(\frac{\partial^{m} x_{i}}{\partial \xi^{m}}\right)_{0}=\lambda_{i}\left(\frac{\partial^{m} x_{i}}{\partial \xi^{m}}\right)_{0}+\sum_{j} A_{j}^{(i)} m\left(\frac{\partial^{m-1} x_{i}}{\partial \xi^{m-1}}\right)_{0}+\sum_{j} \sum_{k}\left[B_{j k}^{(i)}\right]\left[\frac{\partial^{m}}{\partial \xi^{m}}\left(x_{j} x_{k}\right)\right] \\
& \quad+\sum_{j} \sum_{k}\left[m C_{j k}^{(i)}\right]\left[\frac{\partial^{m-1}}{\partial \xi^{m-1}}\left(x_{j} x_{k}\right)\right]+\text { etc., etc. } \tag{13}
\end{align*}
$$

From which we conclude that, if for $s=0,1,2, \ldots,(m-1)$,

$$
\left(\frac{\partial^{s} x_{i}}{\partial \xi^{s}}\right)_{0}=0
$$

then we shall have also,

$$
\begin{equation*}
\left(\frac{\partial^{m} x_{i}}{\partial \xi^{m}}\right)_{0}=0 . \tag{14}
\end{equation*}
$$

In order to obtain general conclusion, let us take partial derivative of both sides
of eq. (6), p_{1} times with respect to $y_{1} ; \ldots, p_{i}$ times with respect to $y_{i} ; \ldots, p_{n}$ times with respect to y_{n}; and s times with respect to ξ, and put afterwards, $y_{1}=0, \ldots, y_{n}$ $=0, \xi=0$. Then, we shall have an equation of the following form, where only terms with the highest order derivatives are written explicitly:-

$$
\begin{align*}
& \lambda_{1} p_{1}\left|\left[p_{1}, p_{2}, \ldots p_{n}, s\right]\left[x_{i}\right]\right|_{0}+\ldots \\
& \quad+\lambda_{i} p_{i}\left|\left[p_{1}, p_{2}, \ldots p_{n}, y\right]\left[x_{i}\right]\right|_{0}+\ldots \ldots \ldots \\
& \quad+\lambda_{n} p_{n}\left|\left[p_{1}, p_{2}, \ldots p_{n}, s\right]\left[x_{i}\right]\right|_{0} \tag{15}\\
& \quad+\alpha s\left|\left[p_{1}, p_{2}, \ldots p_{n}, s\right]\left[x_{i}\right]\right|_{0} \\
& \quad=\lambda_{i}\left|\left[p_{1}, \ldots p_{n}, s\right]\left[x_{i}\right]\right|_{0}+\text { etc., etc. }
\end{align*}
$$

In this equation (15), the expression

$$
\left|\left[p_{1}, p_{2}, \ldots p_{i}, \ldots p_{n}, s\right][x]\right|_{0}
$$

is used to mean that we take the partial derivative of x, p_{1} times with respect to y_{1}, p_{2} times with respect to y_{2}, \ldots, p_{n} times with respet to y_{n}, and s times with respect to ξ, and put afterwards $y_{1}=0, \ldots, y_{n}=0$, and $\xi=0$. This equation (15) can also be written,

$$
\begin{equation*}
\left(\lambda_{1} p_{1}+\ldots+\lambda_{i} p_{i}+\ldots+\lambda_{n} p_{n}+\alpha s-\lambda_{i}\right) \cdot\left|\left[p_{1}, \ldots p_{i}, \ldots p_{n}, s\right]\left[x_{i}\right]\right|_{0}=\text { etc., etc. } \tag{16}
\end{equation*}
$$

From this equation (16), we conclude that, in order that we can obtain values of $\left|\left[p_{1}, \ldots, p_{n}, s\right]\left[x_{i}\right]\right|_{0}$ one after another, we must have

$$
\begin{equation*}
\left(\lambda_{1} p_{1}+\ldots+\lambda_{i} p_{i}+\ldots+\lambda_{n} p_{n}+\alpha s-\lambda_{i}\right) \neq 0 \tag{17}
\end{equation*}
$$

for every positive integers p_{1}, \ldots, p_{n}, s such that $\geqq 2$.
When this inequality (17) holds, we can, at least formally, obtain the solution for x_{i} as power series in $y_{1}, \ldots, y_{n}, \xi$, thus;

$$
\begin{equation*}
x_{i}=K_{i} y_{i}+\sum_{j}\left(\frac{\partial^{2} x_{i}}{\partial \xi \partial y_{j}}\right)_{0} \xi y_{j}+{ }_{2}^{1} \sum_{j} \sum_{k}\left(\frac{\partial^{2} x_{i}}{\partial y_{j} \partial y_{k}}\right)_{0} y_{j} y_{k}+\ldots \tag{18}
\end{equation*}
$$

It is to be noted that terms such as ξ, ξ^{2}, \ldots are lacking.

VI. Convergency of our solution

In order to discuss the convergency of solution of our problem, we shall use the method of majorante, which is so commonly used in the theory of partial differential equations. Writing, formally

$$
\begin{equation*}
x_{i}=\sum A_{p_{1} p_{2} \cdots p_{n} s} y_{1} p_{1} y_{2} p_{2} \ldots y_{n} p_{n} \xi^{s} \tag{19}
\end{equation*}
$$

which means that x_{i} are power series in $y_{1}, y_{2}, \ldots, y_{n}, \xi$, we shall examine the convergency of this power series, regarding $y_{1}, y_{2} \ldots, y_{n}, \xi$ as complex (independent) variables. From the discussion mentioned above, the only term of first degree in (19) is $K_{i} y_{i}$.

First, we observe that the eqdation (6) can be regarded to consist of three terms, viz.,

$$
\begin{equation*}
(\text { Term I })=(\text { Term II })+(\text { Term III }) \tag{20}
\end{equation*}
$$

where we put,

$$
\begin{aligned}
& \text { Term I }=\lambda_{1} y_{1} \frac{\partial x_{i}}{\partial y_{1}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{i}}{\partial y_{n}}+\alpha \xi \frac{\partial x_{i}}{\partial \xi}-\lambda_{i} x_{i} \\
& \text { Term II }=\sum_{j} A_{j}^{(i)} \xi x_{j} \\
& \text { Term III }=\sum_{j} \sum_{k}\left[B_{j k}^{(i)}+\xi C_{j k}^{(i)}\right] x_{j} x_{k}+\text { etc., etc. }
\end{aligned}
$$

For the (Term I), we shall have,

$$
\begin{align*}
& \lambda_{1} y_{1} \frac{\partial x_{i}}{\partial y_{1}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{i}}{\partial y_{n}}-\lambda_{i} x_{i}-\alpha \xi \frac{\partial x_{i}}{\partial \xi} \\
& =\sum\left(\lambda_{1} p_{1}+\ldots+\lambda_{n} p_{n}-\lambda_{i}-\alpha s\right) A_{p_{1} p_{2} \cdots p_{n} s} \tag{21}\\
& y_{1} p_{1} y_{2} p_{2} \ldots y_{n} p_{n} \xi^{s}
\end{align*}
$$

When the inequality (17) is satisfied, we may be justified in saying that, there exists a positive real constant ε, such that for every positive integral values of p_{1}, p_{2}, \ldots, p_{n}, s,

$$
\begin{equation*}
\varepsilon<\left|\lambda_{1} p_{1}+\ldots+\lambda_{n} p_{n}-\lambda_{i}-\alpha s\right| \tag{22}
\end{equation*}
$$

For a power series of the form (19), we shall denote by X_{i} the power series whose each term is obtained from each term of x_{i}, by taking its absolute value, thus;

$$
\begin{equation*}
X_{i}=\sum\left|A_{p_{1} p_{2} \cdots p_{n} s}\right|\left|y_{1}\right|_{1} \cdots\left|y_{n}\right|_{p_{n}}|\xi|^{s} \tag{23}
\end{equation*}
$$

If we treat similarly, the power series of right hand side of eq. (21), and write formally,

$$
\begin{equation*}
Z_{i}=\Sigma\left|C_{p_{1} p_{2} \cdots p_{n} s}\right|\left|y_{1}\right|^{p_{1} \cdots\left|y_{n}\right| p_{n}|\xi| s} \tag{24}
\end{equation*}
$$

As mentioned above, the only term of first degree in X_{i} is y_{i}. On the other hand, the term of first degree is lacking, in Z_{i}, because we have

$$
\begin{array}{ll}
& \lambda_{1} p_{1}+\ldots+\lambda_{n} p_{n}-\lambda_{i}-\alpha s=0 \\
\text { for } \quad & p_{i}=1, \quad p_{j}=0 \quad(j \neq i), \quad s=0
\end{array}
$$

So that, when we compare (23) and (24), we must compare

$$
X_{i}-\left|K_{i}\right| y_{i} \quad \text { with } \quad Z_{i}
$$

and we shall have,

$$
\begin{equation*}
Z_{i}>\varepsilon\left(X_{i}-\left|K_{i}\right|\left|y_{i}\right|\right) \tag{25}
\end{equation*}
$$

Next, we observe that for the Term I, we may write,

$$
\begin{equation*}
\mid \text { Term II }\left|\leqq \sum_{j}\right| A_{j}^{(i)}| | \xi\left|X_{j} \leqq D\right| \xi \mid \Sigma X_{j} \tag{26}
\end{equation*}
$$

Lastly, we have
\mid Term III $\left\lvert\, \leqq\left[C_{2}+C_{3}|\xi|\right]\left[\left(\frac{X_{1}+\ldots+X_{n}}{a}\right)^{2}+\left(\frac{X_{1}+\ldots+X_{n}}{a}\right)^{3}+\ldots\right] M\right.$

$$
\begin{equation*}
\leqq\left[C_{2}+C_{3}|\xi|\right]\left[\frac{M}{1-\frac{W}{a}}-M-\frac{W}{a} M\right] \tag{27}
\end{equation*}
$$

where we put

$$
\begin{equation*}
W=X_{1}+X_{2}+\ldots+X_{n}, \tag{28}
\end{equation*}
$$

and a, C_{2}, C_{3} are positive real constants of given values.
From these considerations, we are led to a system of equations of following form, which is "majorant equation" for our equation (6) ;

$$
\begin{equation*}
Z_{i}=D|\xi| W+\left[C_{2}+C_{3}|\xi|\right] M\left[\frac{1}{1-\frac{W}{a}}-1-\frac{W}{a}\right] . \tag{29}
\end{equation*}
$$

Putiing $\varepsilon\left[X_{i}-\left|K_{i}\right|\left|y_{i}\right|\right]$, instead of Z_{i}, into this equation, we obtain,

$$
\begin{equation*}
\varepsilon X_{i}=\varepsilon\left|K_{i}\right|\left|y_{i}\right|+D|\xi| W+\left\lceil C_{2}+C_{3}|\xi|\right]\left[\frac{1}{1-\frac{W}{a}}-1-\frac{W}{a}\right] \cdot M . \tag{30}
\end{equation*}
$$

Let us take $K_{i}=1$, which does not impair generality, so long as we are discussing the convergency from the view point of method of majorante. Also, let us take sum, for $i=1,2, \ldots n$, of both sides of equation (30). Then we shall have,

$$
\begin{equation*}
W=Y+\frac{1}{\varepsilon}|\xi| W+\frac{M}{\varepsilon}\left[C_{2}+C_{3}|\xi|\right]\left[\frac{1}{1-\frac{W}{a}}-1-\frac{W}{a}\right] \tag{31}
\end{equation*}
$$

where we put, for shortness $Y=\Sigma\left|y_{i}\right|$.
From this equation (31), we obtain the following algebraic equation, which gives us the value of W in terms of Y;

$$
\begin{equation*}
A_{w} W^{2}+B_{w} W+Y=0 \tag{32}
\end{equation*}
$$

where we have put,

$$
\begin{aligned}
& A_{w}=\frac{M}{\varepsilon a^{2}}\left[C_{2}+C_{3}|\xi|\right]+\frac{1}{a}-\frac{|\xi|}{\varepsilon a}, \\
& B_{w}=-1+\frac{|\xi|}{\varepsilon}-\frac{Y}{a} .
\end{aligned}
$$

So that, we shall have,

$$
W=\frac{1}{2 A_{w}}\left[-B_{w} \pm\left\{\left(B_{w}\right)^{2}-4 A_{w} Y\right\}^{\frac{1}{2}}\right],
$$

whereas we have,

$$
\left(B_{w}\right)^{2}-4 A_{w} Y=\left\{1-\frac{|\xi|}{\varepsilon}-\left(\frac{Y}{a}\right)^{2} \cdot\left[1-\frac{4 M}{\varepsilon a^{2}} \frac{\left\{C_{2}+C_{3}|\xi|\right\} Y}{\left\{1-\frac{|\xi|}{\varepsilon}-\left(\frac{Y}{a}\right)\right\}^{2}}\right]\right.
$$

It can be seen that W can be expanded into a power series (of ascending orders), which converge absolutely, at least for a sufficiently small values of Y and $|\xi|$. Thus, we are led to the conclusion, that the power-series solution, (19) of our problem converge absolutely for sufficiently small vaives of $\left|y_{i}\right|$ and $|\xi|$.

So far, we considered the partial differential equation (6), in which independent variables are $y_{1} \ldots, y_{n}$ and ξ. The initial values of x_{i} was meant to be values of x_{i} at $y_{i}=0, \xi=0$. But, our actual aim was the treatment of differential equation (1) in which the independent variable is t. If the values of indices λ_{i} were such that their real parts have negative values, then we could be justified in saying that for $t \rightarrow \infty$, we have $y_{i}=0, \xi=0$, and that the system of differential equations (1) has a set of stable solutions.

V. Determination of arbitrary constants K_{i}

In the above discussions, arbitrary constants K_{i} were left undetermined. For the case of usual problems in technology, they are to be determined from the "initial condition", that is, the values of x_{i} at $t=0$. Let the given initial values in this sense be,

$$
\text { at } \begin{align*}
& t=0\left(\text { or, } y_{i}=1, \xi=1\right), \\
& x_{i}=H_{i} \quad(i=1,2, \ldots n) . \tag{33}
\end{align*}
$$

Putting these values of (33) into (18) [or, its equivalent, (19)], we have,

$$
\begin{equation*}
H_{i}=K_{i}+\sum A_{j i}^{(i)}+\frac{1}{2} \sum \sum A_{j k}^{(i)}+\ldots \tag{34}
\end{equation*}
$$

Where we put, for shortness,

$$
A_{j 1}^{(i)}=\left(\frac{\partial^{2} x_{i}}{\partial \xi \partial y_{i}}\right)_{0}, \quad A_{j k}^{(i)}=\left(\frac{\partial^{2} x_{i}}{\partial y_{j} \partial y_{k}}\right)_{0}, \quad \text { etc., etc. }
$$

In eq. (34), the right-hand side members are functions of K_{1}, \ldots, K_{n}. So that, formally, the equations (34) form a system of (transcendental) equations for K_{1}, \ldots, K_{n}. Solving it, by some means, the arbitrary constants are determined (as functions of $H_{1}, \ldots H_{n}$). There remains the question of convergency of right-hand side of (34) to be examined. It is hoped that this question will be discussed in the near future, by the author.

[^0]: ＊鬼 頭 史 城，教授 Professor at Faculty of Engineering，Keio University．
 1）F．KITO，This Proceedings，Vol． 17 No． 65.
 2）E．Picard，Traité d’Analyse，Tome III，Chap．VII， 1908.

