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Springback of Coiled Springs after Cold Working”

(Received April 21, 1965)

Masao MIZUNO**
Takahiko KUNO***

Abstract

Simple formulae are presented for the springback ratio of coiled springs for
various types of combined load of practical interests. For the analysis of de-
formation in the cold working process, the rigid, perfectly plastic theory under
the combined loading is employed, and further, “proportional deformation” in
the coiling process is assumed. The deformation in the springback process is,
then, analysed under the assumption of the quasi-elastic behavior.

For the case of the coiling through pure bending, several experiments are
performed. The experimental data are in good agreement with those predicted
by the present theory, equally well as with laborious Gardiner’s elasto-plastic
solution.

I. Introduction

When the coiled spring is made by the cold working a considerable amount of
springback occurs, which varies with the process of coiling, material used and
spring index.

Gardiner and Carlson gave the theoretical and empirical formulae for this problem.
They assumed this problem as the pure bending of the bar, and their analysis is
appoximately right in the case of ‘‘hand coiling.”

Recently automatic coiling machines are available and more exact analysis has
been required. We made an analysis on the assumption that the wire is in the
complete plastic condition during the cold working. We also used the new concept
“ proportional deformation,” which is the notion similar to the “ proportional load-
ing ” of the limit analysis. This approach avoids the necessity of having to analyze
the bar in elasto-plastic portions, consequently achieving economy of thought.

*  Qriginal report (in Japanese) has been published in the Journal of Japan
Society for Technology of Plasticity, No. 50, Vol. 6, pp. 159~164, 1965.

** ok B IE &, #% % Ph. D, Professor of Mechanical Engineering, Keio
University.

w7y F OB, R¥PE%4 Graduate Student, Keio University,
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II. Nomenclature

Q@ oreen pitch angle.

1/k -+ torsion ratio.

1/p0 -+ curvature.

Y oresees Poisson’s ratio.

g, -+ vyield stress of wire.

op - ultimate tensile strength of wire.

d e wire diameter.

D...... mean diameter of spring, free position.
E-..... Young’s modulus in tension and compression.
F.... axial force in cold working.

G.oeoen modulus of rigidity.

Y SETEPN geometrical moment of inertia of the cross section.
Ipeeeene polar moment of inertia of the cross section.
M .. bending moment in cold working.

D oceeeen pitch of coiled spring.

Teeee twisting moment in cold working.

K-t dimensionless factor; o¢.D’/2Ed

Subscripts

r? j. during winding operation. e.g. o’, D.

J+-- yield point load of rigid-perfectly plastic thin rod under combined
loading. e.g. F* M¥*, T*.

Iy e+ vyield point load of perfectly plastic thin rod under simple loading.

III. Analysis

TII.1 Basic formulae

III-1-1 Characteristics of Circular Helix: Curvature and torsion ratio of a cir-
cular helix, which is formed by the centerline of the spring wire, are given as
follows;

curvature, 1/p=(1+cos2a)/D. 1)
torsion ratio, 1/k =sin2a/D. : 2)
from Eq. (1) & (2), po/k=tana=p/=xD. (3)

III-1-2 Yield point load of a rigid-perfectly plastic thin rod under combined
loads: According to the mathematical theory of plasticity, the lower

bound of the yield point load of a rigid-perfectly plastic thin rod submitted to
the combination of bending moment, twisting moment and axial force is given

as follows.?
X\ 2 %)\ 2 * *\2)1/2
() +(m) - () = @

(2)
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This is the equation of a surface, namely ‘ interaction surface:” (Fig. 1)
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Fig. 1.

The lower bound of the yield point load for more simple types of loads can be
derived from Eq. (4) as follows.
Combination of M* & T*; Putting F*=0 in Eq. (4),

M* 2 T* 2__

() + () =2 (5)
Combination of M* & F*; Putting T*=0 in Eq. (4),

F* 2 M* _

(7)) +37, =1 (6)

Curves of Eq. (6) and Eq. (6) are called ‘ interaction curve.”

I1-1-3 Coiling Condition: We introduce a notion of * proportional deforma-
tion,” in which we assume the ratio of curvature to torsional ratio is constant, or
from Eq. (3), the pitch angle «’ is constant throughout the deformation of rigid-
perfectly plastic thin rod, or the plastic deformation of elasto-perfectly plastic one.

tan o’ = p’/k’= (T*/GIp) /(M*/EI)

Also, I,=2I for circular cross section, and 2G/E=1/(1+»).

2GM*tan o’ __ M* tan o’
Hence, L B & aa ™

Then, the ratio of twisting moment to bending moment is also kept constant.

II1.1-4 Calculation of springback ratio: Let a straight spring wire be wound
along a helix of «’, I’, 1/0’, 1/#’, then unload it and get a helix of a, D, 1/p, 1/x.

(3)
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We may assume springback process to be quasi-elastic deformation as follows

(Fig. 2).

Substituting Eq

From Eq. (1),

Then,

Hence,

We obtain

4
T
X

(twisting moment)
bending moment

elasto - plastic material - OEPQ
rigid- plastic material - OMPR

x
0

tan™ 1/E1
(1/61,)

al . R
1/p MEI-l  curvature
(1 /k) , (T761,) (torsion ratio)

- = TE (8
1_1

i_1_1* ®)

. (2) & (7) into Eq. (9),

sin 2o’ _ 2GM* tan o’
D GIL,E ~

1 1/ _ 1o
D’ 1+cos2a’ 2costa’’

1
I3

1 _2sina@cosa’, 1 M*tan o«
K

2 cos?a’ o’ EI

G- ) = L

—K“—)- =tan a=tan «’.

a=a’, (10)

Hence, the pitch angle is kept constant throughout the all deformation process,

(4)
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and the twisting moment is always proportional to the bending moment ; namely
“ proportional deformation.”

We now consider the springback ratio (D—D’)/D. Substituting Eq. (1) into
Eq. (8),

1+cos 2a _ 1+4cos2a’  M*
D D’ T ET

Substituting Eq. (10) into the above relation, and rewriting it, we get

D-D =1 D 1 M*

o D=t ET Y an

Bending moment M* in Eq. (11) is found from Eq. (4), (5), (6) respectively.

III.2 Springback ratio for various types of combined loads of practical

interest
III-2-1 Combined load of M, T, F: Substituting Eq. (7) into Eq. (4), and after
some manipulation, we get

M*

[1.44 tanta{1— (11’;:‘) }+1- \J2.88 tan’a {1- (Fo £ }(F*) +1}

= Mo
1.44 tan?a’ (1+0.72 tan® o)

(12)

where a’+0. s. Appendix [1]

Substituting this in Eq. (11) together with the relations M,=d%¢./6 and I=rd*/64,
we find

1D
D
[1.44tan2a’{1 (5} +1- Jzsstamar {1 (%)2}(1;—:)2+1]”;D, )
~ Ccosta’ 1.44 tan? o’ (140.72 tan? o) "Ed’

where «a’+0.

Approximate Solution : Applying binomial theorem to the term under root in the
braces of Eq. (13) and neglecting the terms of higher order, we get approximately

e G CRTIERT 1010 o - B

s. Appendix [II]

Substituting this in Eq. (13), we get an approximate solution

F*
-0 .- ' (F") Lo
D 7 " cos?a’s/140.72 tan?e’ Ed

(14)

(5)
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II1.2.2 Combined load of M and T': Substituting F*=0 into Eq. (13), we get

D _ 1 .oeD’
1= =17 s’/ TF0.72 tanta E4 - s
II1.2.3 Combined load of M and F: From Eq. (6),
F* 2
*— — (L=
M _M0{1 <Fo) } (16)
also T*=0 or from Eq. (7), «’=0.
Substituting these into Eq. (11)
D _ _(F¥\® o D
- =11 {1=(5) V57 - - an

III.2-4 Simple load of M or pure bending: Substituting F*=0 into Eq. (17),
we obtain

D gD’

V1. Experimental results and its comparison to the theoretical values

In order to prove the usefulness of the theoretical analysis, and to know the
relation between ultimate tensile strength o and o, in Eq. (18), some test springs
were coiled from music wire of

gp=166~220 kg/mm?2,
E=21000 kg/mm?,
d=1.0~5.0 mm,
and arbor diameters; D'—d=2.0~30.0 mm.
Test results are shown in Fig, 3. By taking o.=o05 Eq. (18) is in good agree-

ment with the test data. Consequently, we rewrite Eq. (18) and get a design
formula ;

D _qyqo2l

-5 £ (19)

It is now interesting to compare our result Eq. (19), based on rigid-perfectly
plastic analysis, with those obtained by Gardiner and Carlson.

Gardiner has developed a theorerical springback formula, based on elasto-perfectly
plastic analysis for the case of the coiling through pure bending.? His formula
in our notation may be written as follows:

D2 f. 2 ]
1—T__7.T_{sm 12K+§K¢1_4Kz(5—8K2)}, (20)
-1, 0. D
where K—7 o

(6)
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Fig. 3.

Carlson and Gardiner also have shown that best correlation between experimental
data and Eq. (20) is found when the ultimate tensile strength is used for the term o..

Refering to their experiments, Carlson established an empirical formula of practi-
cal interests.® That is, in our notation;

_ D’ . O'B.D’ _
1 - _1'85—F - 0.02 . 21)

Curves of Eq. (19), (20), (21) are given in Fig. 3 for small springback zone and
Fig. 4 for larger one. The experimental data are in good agreement with those
curves of Eq. (19) and of more laborious Gardiner’s solution Eq. (20). On the other
hand the curve given by Carlson’s formula dosen’t agree with our experimental
data, and it gives minus value of springback ratio for small value of oxD’/2Ed.
Theoretically it should converge to zzro as Eq. (19) or Eq (20). Since most spring
material (except stainless steel) shows decrease of diameter of springs after bluing,
we distinguish them by mark ‘0" in Fig. 3. It can be seen that Carlson’s formula

(7)
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rather agrees with the test data of after bluing. In larger springback zone our
assumption dosen’t hold good any more, and both Eq. (19) and Eq. (21) show a
considerable deviation from Gardiner’s solution Eq. (20).

10 - //

"Carlsons \
empirica
. 08t
a formula
1 e -
o
06
Gardiners solution
0.4
02

0 0.1 02 03 04 05

oD’
2E d

Fig. 4.

Conclusion

A simplified mathematical analysis is shown for the springback ratio of coiled
springs for various types of combined loads. It was proved that the analitical re-
sults are right for the case of coiling through almost pure bending. For the case
of combined loads, experiments are under consideration and the results will be
reported in the next paper.
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Appendix

(I) Derivation of Eq. (12);
Substituting Eq. (7) into Eq. (4), we have

(Fo) + () - O+ 3 0= (2) - ()3 =1

F*\z | (tan a’\? M* M* . (tana’\2 (M, \2 (M*\n1/2 _
(FT) + (%) (To) (Mo> + 3 (5) (To) (MT,)} 1
Put F*/F,=f, and M*/M,=m into the final equation, noting M,=d3qs./6,

Ty=rnd3./12, 0.=4/73 7. (von Mises-Hencky yield condition), we have ‘

[P+ Am*+m(1—Am?)/?=1

where A_(mln;‘) (*’}”00) =0.72 tan’

Putting m?=gq into the above equation, we have a quadratic in ¢,
A(A+1)-g*— 2(1—f) A+1}-q+ (1—12)2=0

Noting «’#0 and |a’|<=/2, we have A+0.
Then the quadratic has two roots,

_2A-MA+T1EV RA—FH A+ —4AUA+D A—=H?
2A(A+T)

Noting 0<M*/M,<1, we have the Eq. (12),

0{1.44tan2a’{1 (’;,:)}H V288 tanza{1— (F*);(’}:)H]

1.44 tan?a’ (140.72 tan?a’)

M*=M,/ g =M

(II) Neglecting the Terms of Higher Order in the Expansion;
Applying binomial theorem to the term under root in the braces of Eq. (13), we have

Jees e {i—( )} (7)1

—-1—!—l % 2.88 tan? o’ 1 (};j) <%—)2—%><(2.88)2tan‘a’{1—(%)7%%)‘4_ )

Putting 2.88 tanza’{l (?:) } (1;?) =x, and ¢ as the summation of the all

terms of higher order, we have,

M1+x =1+% +e,

hence, le|=
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Since most of coiled springs of practical interest have pitch angle a(=«’) of
less than 30 degree, we get

Noting 0< (F*/F,) <1, we have

F*\2,/ F¥\z _ 1 .
{1— (To“) }("F_o) <+ s. Appendix [IIT].
_1
'3

Substituting this relation into the above inequality,
we get

A

From these, x< 2.88( )2% =0.24.

< (020" _g013¢ (1+2:24).
MBS weww w1 (1+%57)

Consequently, if the pitch angle is less than 30 degree, we can neglect the terms
of higher order and put,

\/2.88 tanta’ {1- (%‘)2} (?—j)z-i-l =1+1.44 tanta’ {1— (l;_t)z}(%)z

with good accuracy.

(I1) Derivation of inequality, {1— (fi)z} (—_P:k—)2§%;

FO 0
Putting {1— (%)3(%)%—:31, and (%)zst,
y=Q1-14t, % =1-24, g_;{ =240,
hence, Yi=} =Vmax = %,
‘we obtain, yz{l—(%)z}(ﬁf)z = —41~

(10)



