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Successive Approximation Technique Applied to

Continuous Line Segments Curve Fitting
(Received March 8, 1965)

Hiroshi YANAI*

Abstract

Successive approximation technique is applied to obtain the best fit continuous
line segments with a finite number of vertices with predetermined abscissae to
a given curve or a set of points, in the least square sense. The Lipschitz con-
stant associated to the recurrence relation is evaluated, so as to be able to
obtain the stopping rule in numerical iterations,

I. Introduction

It is required, recently, to fit line segments to a given function or a set of points,
related to some computational techniques. Some of their examples are the numeri-
cal solution of convex programming problems via solving approximated linear
programming problems and generation of functions on electronic analogue computer
systems, employing integrators and comparators.

Algorithms as to various types of line segments curve fitting problems are given :
Stone [3] by classical method, Bellman and Gluss [4]~[6] by dynamic program-
ming technique, and Pontryagin et al [7] by his maximum principle.

In this article, it will be described how the successive approximation technique

" can be applied to obtain the best fit continuous line segments with a finite number

of vertices with predetermined abscissae to a given curve or a set of points in the

least square sense. The evaluations of the Lipschitz constant associated to the
recurrence relation will be used in estimating the errors of the approximations.

After describing the convergence criterions as to the recurrence relations in T,
the recurrence relation giving the successive approximations in obtaining the best
fit continuous line segments to a curve will be given in II, and to a set of points
in Iv. It will be also noted in V, that the method described in this article may
be considered as an example of a particular approach to the minimization problem.

*H F ¥, B7 F Instructor, Faculty of Engineering, Keio University.
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26 Hiroshi YANAI

II. Contraction theory and Gauss-Seidel method in
solving systems of linear equations

Let us first recall the theorem of contraction operator, defined on a complete
metric space as the fundamental theorem of the method evolved in this article.

Theorem
If an operator

p(x) xR (X, o) (2-1)

defined on a complete metric space R(X, o) mapping R into itself is associated
with the Lipschitz constant

p(p(x), p(xN))=Le(x, x) x, ¥ ER(X, p) (2-2)
less than unity
L«1, (2-3)
the sequence
{0, X1y eerins s Xy eerens } (2:4)

beginning with an arbitrary element of R(X, p), defined by the recurrence relation

*ni1=0(xn)  %ER(X, p) (2-5)
converges to the unique fixed point of the operator
x=0(x). (2-6)
Moreover, it is seen that
p(an, 2) S 2 0 (xo, 3. (2-7)
1—-L

Proof

The proof of the theorem may be seen elsewhere in ordinary text books (eg. [8])
of functional analysis and will not be repeated here.

Next, let us consider Gauss-Seidel method from the point of view of contraction
operator.
One of the numerical method of solving system of linear equations

C11 X+ Cpx2 4 .anns +ciux =d?
Cz]x““l'czzxz"l' ...... +C2MxM=d2

(2-8)
C Xt CaaXi—+...... +eunxM=d¥

1) The operator associated with a Lipschitz constant less than unity is sometimes
call a contraction operator.

(2)
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is to convert the system (2-8) into the form

Xl=a X1t apxt+ ... +ay yx+by
X2=@ X'+ Ay X*+...... +aux¥ +b,
(2:9)
M =ap Xt a4+ +amaux™ +by
or in vector-matrix form
x=Ax+b x&Ry (2-10y
where
x=/ x! A=/ ay,, ay, ..., G’ b= /b,
x? g1, Ay oee s Qom b,
' (2-11)
xM Ay, Moy ooey AUy b
and to evaluate the vector sequence {x.} given by the recurrence relation
X =an Xt apxit . auxt+b,
X1 =0 Xnei+ st ..+ Ay xY+ b,
(2.12)

o 1 2 - 3
XK1= XherF Ao Xns1 @ity ya @ A X+ by

X, : arbitrary

until the distance between x. and x.., becomes negligible. This method is called
the Gauss-Seidel iteration method in solving systems of linear equations.

It may be readily remarked that this method is applicable only when the sequence.
given by (2-12) is convergent. Referring to the theorem above, we may examine
the convergence of the sequence by evaluating the Lipschitz constant of (2-12)
considered as an operator. The Lipschitz constant of the operator can be evalu-
ated as follows, corresponding to the metric defined on the M-dimensional space
Ri. It is desirable not only to have the evaluation of the Lipschitz constant less
than unity but also to evaluate it as small as possible in order to assure faster con-
vergence as it was indicated in (2:7). Since the derivations of the evaluations
of the Lipschitz constant given below may be refered to [1] and partly to [2],
they will not be given here.

It may be well known that the M-dimensional space R, is complete as to the
metrics defined in (2-13a), (2-13b) and (2-13c).

It may be also referred to [1] that if a;=0, then we may evaluate the Lipschitz
constant of the operator by (2:13a), (2-13b) and (2.13c) by the parametres

(3)



28 Hiroshi YANAI

Metric Lipschitz constant
p(x, y) =max|xi— yi| L=max({ct} %,
i .
where

X -1 M
ci= 7 laylcd+ T laiyl,
i=1 j=1

M
ci= 3 |ay| (2+132)
j=t

ct

i

M
o)=L % -y L=

i

where

. i_l
ci= % lais| cs+max{|ai;|} %

=

cl=max{|ay|},2  (2-13b)

i
plxy = (]‘Zl: (xt—yH)i/z L= (;1 cHD)1/2

where

i1 o x ,
¢t= % laylel+ (Z (@nh'?,
J= f=

¢ (5 @9 (2130

Ia;i‘=|a"i|+|aila11l i’ .7:‘2? 3’""M
as to M—1 variables (x%, 3, ..., x"), instead of the parametres
| @iz i, 7j=1,2, .., M

as to M variables (x!, x2, ..., x™).

III. Fomulation of the problem and the applicability
of Gauss-Seidel method

Given a function
fx) a=uSx=sux=4p,
it is desired to obtain an approximation of the form

y(x) =y (x) w2 =<1y
:yz (x) %éxéu;

(4)

(2-14)

3D

(3-2)
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=y (x) Ui SXS U
=¥ (x) Uy 1 ExZUn /
with
#) =00 e 007, 3-3)
Ui  SXSU:
which is the best fit in the least squares sense, where the points #,, ..., #y_, are

specified in advance. Thus, we want to fit a continuous line segments to the given
curve. (Fig. 1.)

) .-~ ->— ,9/'.’" 6
)

Up= Uy Up o Uy Uy=f x

Fig. 1.

Following the least 'squares formulation, we wish to obtain the values of the
variables (69,..., 6*) which minimize

Ui
Fo), 00, 0= 5 [ (f0)=3())2dx
Ui

(3:4)

=z f () = TZ02 (i) =072 ds
Uiy

Since F(6°, 01,...,0%) is a non-negative definite quadratic form as to 69,..., 4%,
we may obtain the minimum by finding out the point at which the partial deriv-
atives of the function (3-4) as to (6°,..., %) are zero. This leads to the following
system of M1 linear equations to be solved for the M+1 variables 8°, 61, .. 8%

0= 4 D8 = Gamtto) go L) i J g, ) 1 (e, 1) (3-5—0)

(5)
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0= 1 0F _ (ui—eui—1> fi—14 (ui+1gui—-1) 6+ (ui+16—‘ui) git+t

—J iy, wa) +J (o, isn) =1 (i, %isy)

1=2, ...

0= 1 oF _ (MM'—uM._1) gM-1+ (uM_uM—-l) oM

2 907 6 e A ACTSRE S

where

Uity

I, we) = [ fx) dx
b

Uiy

JCui, winy) = f flx) 2% gy,

Uip1— Ui

(3:5—12)

, M—1

(3-5—M)

(3-6a)

(3+6b)

Although this system of equations (3.5—0)~(3.5—M ) may be solved by the any
of numerical methods solving system of linear equations, we wish to indicate the
applicability of the Gauss-Seidel successive approximation method with the recur-

rence relation.

03“:—‘7 O+ —— ( %) I Cuto, 1) —J Coty, 1))
6L, =— ()] 62, — Uy — 62
! 2 (uy—1y) b2(u z—'uo) +
+ (—uz%us(l(”h wy) +J (o, us)—J (0, %5))
3 (u;i— 741—1) i (tivy— i) i+1
Ofy=—pgrir P Gl — Lt G
. 2(Uig1—Ui) 2(Uisy—Uiy) +
+ —(u—z:‘sj—uz-—l) (I (uiy wirn) +J (ttiy, wi) — J (s, Uis1))

n 1 pwa 3
nH1= T 5 6% +——‘—(uM__uM_1> J (a1, ta)

We may write the recurrence relation above, also, in the form
: ’: : M :
Oin= 2 a0, + 2 ai;0i+b;
i=0 =i+l
M
n+1 = Z 016 ] +b0

where

bo=

= (TG0, 1) =T (s, 03))

(6)

37

(3-8)
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3 {
bi= ———— (I (s, thir) +J Wiy, wi) —J (s, irr)) (3:9)
Uiy — Uiy
by= —‘3——](%11—1, W)
Uy —Uxy_y
and
__ 1 v = a0
ag, 4=0, A1 =5, 20350y 3=... = Qo 5=
D) (g —12y)
a =t 0, a =0 a =72 71/
15 0 2(1{2—1/{0) ’ 1y 1 ’ 1y 2 2(%2—14.,) ’
A1y 3= nnn. =ay, =0,
Ui— Ui
Q0= == =0, g = ) (3-10)
_ Uiy —U;
ai, i=0, ai, i+1——2—(7:+—11j-d;_1) ,
Qiy i42= e —ai,M—O,
Apy 0 =AM, 1 = ... = Ay, 11[4:0, Ay M1 =— 4+, i, x=0.

2

Let us now examine the convergence of the sequence {#.} given by the recur-
rence relation (3.7) or (3-8). Since we may assume that

1 Ui —ui

=< HimUioy ) .

5 = mzax (um uf_1> 2r<1 (3-11)

we see that

lai, i | S7, ol Sy (3+12)
1 1
< = .
TS7<%- (3413)

Hence the Lipschitz constant L of the operator is evaluated by (2.13a) as

L= max ({c'}".,) (3+14)
where
<< %—
< Gty
......... (3-15)

Clsciwlf -+ e
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It may be easily seen that

i b g 1—pH 1 7 ) 7
e = 1 = (= - i .
syt (2 jpm) R Ay
. (3-16)
¥ L o u-;
=g i=0. ..., M—1
Hence, for
1 1
—_ < —
1 =rs 3
L=max({c'}o) <c'= - (3-17)
and for
1 1
=< —
3 =T<3
1
= Ay et (L T Nom-ry ¥ o T .
L=max({c:}&£,)<<c (2 1-7’)7 +1—T<1—T<1 (3-18)

which show the convergence of the sequence.
As it was remarked in the last part of II, we may have, in some cases, smaller
evaluations as follows

L'=max({c"}¥L) (3-19)
where
< 3 T
-2
3
12 2O L2
=7 +7
(3-20)

c M_ISC' i-17, + 7
o < % o' -1

(cf. (2-14)).
It may be easily seen that

e 3 g, 1—7° _ (1 7 ) . e
i<l 2 i —_) = = — 7 .
i< g it =L —1= (5 ) vt e 3-21)
Thus
- n_3 1 1
L'=max({dil=ct=571 F=r=75 (3-22)
L' = max({ei},) < TSrs+ (3-23)

where (3-22) is, in general, not greater than the evaluation (3:17) whereas (3.23)
is equal to the evaluation (3.:18).

(8)
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It is also possible to evaluate the Lipschitz constant corresponding to other metrics
(eg. (2-13b), (2-13c) and/or (2-14)) which can be at most in some cases, not only
less than unity but also less than above evaluations.

The above evaluation can be aids in deciding when to stop numerical iterations
in actual calculations (cf. 2-7). Let us take for example y=1/4 which corresponds
to the case where every subinterval, on which the line segment is given, is of the
same length.

Since

it may be almost enough with 5 iterations in practice.

Remark

We may also give the approximating vector sequence {(67,..., 6%)} by the (simple)
recurrence relation

2
O = ]_z;oawﬂi +b; (3-23)

instead of the relation(3-8). This recurrence relation is associated with the Lipschitz
constant (cf. [1])

L=max ({é} [aij|}jio)= % (3-24)

This evaluation shows that it seems to be favorable to use (3-23) if y=1/3, so
far as the Lipshitz constant is concerned.
Worked Example
Let us now try to approximate the function
f(x)=sin x xe€[0, 7/2] (3:25)

by the continuous line segments

i @Fi-t
yw) =207 Gy 1007

3 (3-26)
6
where
u0=0
u,=7/6
3.27
U,=2n/6 ( )
uy=m/2

Corresponding to the recurrence relation (3.7) we have

gu,, = __%_ 6% +0.2582

(9)
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1 1

0;“: - 1‘ 02»+1 - Z 0 +0.7330

62, = Lo —1 g3 112696
n+1 4 4 n .

6s,, = - % o1, +1.4659

Beginning with the initial approximation
60=01=02=6=0,
the sequence converged up the 4-th decimal place after 8 iterations.
05=0.0029, 61=0.5106, 0;=0.8863, 83=1.0227
(ctf. Fig. 2.)

| | | l

0 T/6 z/3 T2
Fig. 2.

IV. Continuous line segments fitting to a set of points

We may also apply the method described in the preceeding section to obtain the
best fit continuous line segments to a set of points in the least square sense.

(10)
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Consider, for the sake of simplicity, that we are given the values

zi; at x=(NGE—-1)+j)dx

4x>0
i=1,..,.M (4.1}
. Ziy N=2Zi41y 0
j=0,...,N—1, (N)
N=1, M=1

to which it is desired to obtain the best fit continuous line segments
yi(x)= bi—6 (x—({E—1)Ndx)+0:i? 4-2y
t Ndx ’

N(GE—1Ddx<x< Nidx
in the least square sense.

Following the least square formulation, let as obtain the values of variables.
which minimize

N-1

F(o°, 61,...,0%) = 3 (zij—yi5)*+ @un—yuw)? (4-3)

-

=1 j=0

where
=y (=1 +)) dx) = - GO+ (N—7)0+). (4-4)
Thus

M N-1
F(80, 0%, 0% = 3 5 (@i (GO (N=DOD) 4+ Gun =02 (4:5)

Equating the partial derivatives 0F/06¢ to zero, we obtain the following M+1
relations

o= 1. 9F _(N+DQ@N+D 5 Ni=1p 1%

-1 X
2 500 6N N U TN & A

_ 1. 9F _N*—1,0,, 2N*+1,, , N'—1,,
0=5" 357~ bt = 0 = 0

N-1

1 & 1 ¥t . (4.6)
N jg JRij— N j;‘) (N —=7)Zity, 5

_1 9F _N—lgy (NtDEN+D 5y 1 &
0= - o + 6N o N JZ=;1

2" 90% " BN JRii

As the corresponding recurrence relation of the Seidel method we have,

an
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36
0%y =—an'0%+ B8],
O =—an (O +05) + Bul; 47
0;’;{+1= —aN/eg:ll’}'ﬁN,IM
where
ay = N-—-1 ay= _]\72_—1__
2N+1’ 2(2N*+1)
By= B gy=-3
(N+1)(2N+1)’ 2N?+1
(4-8)

N1 . V-1 . .
Ii: Zl ]Zij'l‘ Z(:) (N_])zﬂ'l,]', Z=1, ~-~7M—1
j= i=

N-1 .
Iy= }:1, (N—j)zi;

N .
Iu= 3 jzij

j=1

Remark that the parametres ay and ay’ are in absolute values less than the

corresponding parametres in (3-7) respectively :
ay'< é—
ay < —;—
«.; 00}, A check of validity

which shows the convergence of the sequence {(69,
of (4.7) and (4-8) is that, as N—oo, ax’'—1/2 and ay—1/4, as are to be expected.
. 25,

The values of the parametres ax, ay', 3, B’ are given in Table 1 for N=1,.

Worked Example
Let us now, try to fit continuous line segments
X gi—gi1 i1 )
yi(x)= — (x—u;)+0¢ iy Ex=Zu; {4-9)
6

(N=3, 4x==/18)

where
uy=0
u=7r/6
(4-10)

u2=27f/6
Us=7/2
(M=3)

(12)
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Table. 1.

N an i ay' B B’
110.000 000 0.000 000 | 1.000 000 | 1.000 000
210,166 6771 0.200 000 | 0.333 333 | 0.400 000
3,0.210 526 i 0.285 714 | 0.157 895 | 0.214 286
40,227 273 0.333 3331 0.090 909 | 0.133 333
510.235 2941 0.363 636 | 0.058 824 | 0.090 909
610.239 726 10.384 6151 0.041 096 | 0.066 592
7 ! 0.242 424 | 0.400 G00 | 0.030 303 | 0.050 000
8 10.244 186 ! 0.411 765 ] 0.023 256 | 0.039 216
9 10.245 399! 0.421 053 {0.018 405 0.031 579

10 | 0.246 269 | 0,428 571 0.014 925 0.025 974

111 0.246 914 ( 0.434 783 |0.012 346 | 0.021 739

12 ‘ 0.247 405 | 0.440 000! 0.010 381! 0.018 462

131 0.247 788 | 0.444 444 | 0.008 850 | 0.015 873

14 1 0.248 092 | 0.448 276 | 0.007 634 | 0.013 245

15 ; 0.248 337 | 0.451 613 | 0.006 652 | 0.012 097

16 | 0.248 538 1 0.454 545 | 0.005 848 | 0.010 695

17 1 0.248 705 : 0.457 143 1 0.005 181 | 0.009 524

18 | 0.248 844 ! 0.459 459 | 0.004 622 | 0.008 535

19 | 0.248 963 0.461 538 | 0.004 149 ! 0.007 692

20 1 0.249 064 : 0.463 4151 0.003 745 0.006 969

21 I 0.249 151 | 0.465 116 | 0.003 398 | 0.006 342

22 , 0.249 226 : 0. 466 667 i 0.003 096 1 0.005 797

231 0.249 292 . 0.468 085 ; 0.002 833 :0.005 319

24 00.249 350 ' 0.469 383 10.002 602 | 0.004 898

25+ 0.249 400 0.470 588 | 0.002 398 | 0.004 525

to the set of points
zi;=8in(3(1—1)+7) z/18.

Corresponding to the recurrence relation (4-7) we have

65, = —0.28576% +0.2210
0L,,=—021056%,, —0.210562 +0.6915
0%,,= —0.21056%,, —0.210560%  +1.2059
035,,= —0.28576%,, +1.2664

Beginning with the initial approximation

03=01=02=03=0

’

the sequence converged up to the 4 th decimal place after 7 iterations.

07=0.0819, 6;=0.4868, 0:=0.8904, 6:=1.0120

(13)

37
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Compare the results with the corresponding results in the worked example in the
preceeding section.

V. Some remarks on the method

Gauss-Seidel successive approximation technique applied to continuous line seg-
ments curve fitting, evolved here, may be stated in terms of optimization tech-
niques as follows. It is desired to find the minimum of a function

F(8°, 6'...,0"). (5:1)

Taking a vector §,=(8,°, 6,%..., 0,%) as the 0-th approximation, we modify 6° so
as the modify function takes its minimum as to 6° with the remainder of the vari-
ables 8. ..., 0, fixed. After fixing 60° to that value 6,°, modify 6! so as the
function takes its minimum as to 6! with the fixed remainder of variables 6,°, 6,2,
..., 0,%. Continuing in this way up to 6, we obtain, the first approximation 6.
Repeating this process several times, we would be able to attain the value of the
variables (6°, 61, ..., 0%) which would give, in most cases, the minimum to the
function F.

In other words this method consists of the process of searching one-dimensional
minimums in the problem of searching the M+ 1 dimensional minimum where each
one-dimensional minimum is searched along the straight line parallel to the axis
of the corresponding argument.

In a sense, it may be also possible to recognize this method as a kind of relaxation
method which is often employed in solving differential equations numerically.
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