慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Scattering of a plane wave from an anisotropic plasma column at oblique incidence
Sub Title	
Author	大場，勇治郎（Oba，Yujiro）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1964
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University（慶應義塾大学藤原記念工学部）．Vol．17，No． 64 （1964．），p．16（16）－23（23）
JaLC DOI	
Abstract	The scattering of a plane wave by a circular plasma cylinder is calculated in the case of an oblique incidence．The plasma cylinder is lossy and is magnetized in the direction of the cylinder axis．The solution is derived for the magnetic field vector of the incident plane wave transverse to the cylinder axis．The corresponding result for the electric vector transverse to the axis is also obtained from symmetry of the electric and magnetic vectors in the Maxwell＇s equations．The modes of the field in the plasma are specified by propagation constants in the radial direction．These constants S1 and S2 are calculated for several sets of values of plasma frequency，cyclotron frequency and collision frequency．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00170064－ 0016

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

Scattering of a Plane Wave from an Anisotropic Plasma Column at Oblique Incidence

（Received February 3，1964）

Yujiro OHBA＊

Abstract

The scattering of a plane wave by a circular plasma cylinder is calculated in the case of an oblique incidence．The plasma cylinder is lossy and is magnetized in the direction of the cylinder axis．The solution is derived for the magnetic field vector of the incident plane wave transverse to the cylinder axis．The cor－ responding result for the electric vector transverse to the axis is also obtained from symmetry of the electric and magnetic vectors in the Maxwell＇s equations． The modes of the field in the plasma are specified by propagation constants in the radial direction．These constants S_{1} and S_{2} are calculated for several sets of values of plasma frequency，cyclotron frequency and collision frequency．

I．Introduction

The diffraction of electromagnetic waves by a plasma medium has been of interest to many authors．Platzman and Ozaki treated the scattering of a plane wave from a circular cylinder of a homogeneous and anisotropic plasma at normal incidence and they gave the rigorous solution in terms of a series of Bessel func－ tion ${ }^{1)}$ ．Using the Born approximation，Midzuno treated the similar problems in two cases of the plane wave and spherical wave incident upon the non－uniform plasma cylinder ${ }^{2,3}$ ．These solutions are useful not only for the determination of an elec－ tron density and a collision frequency of the plasma ${ }^{4,5)}$ ，but also for a reentry communication between a space vehicle and a terminal station．In the latter，the problem of diffraction should be solved in the case of the oblique incidence of the plane wave．This problem is very similar to that of the scattering by an isotropic dielectric circular cylinder．Wait solved the latter problem and showed that the scattered field is expressed as a superposition of a set of $T E$ and $T M$ modes even though the incident wave is purely $T E$ or $T M$ mode ${ }^{6)}$ ．
In this paper the problem of diffraction of a plane wave by the circular cylinder of a homogeneous and anisotropic plasma at the oblique incidence is treated．The solution is derived for the magnetic vector of the incident wave transverse to the axis of the cylinder，that is，$T M$ mode．The corresponding result for $T E$ mode is

[^0]also obtained from symmetry. The results are rather more complicated than those for isotropic cylinder. The field in the plasma can be computed after two propagation constants in the plasma medium are determined. These constants are given by complex numbers. These numbers are calculated for the sets of values of plasma frequency, cyclotron frequency, and collision frequency of the plasma cylinder.

II. Cylindrical waves in anisotropic plasma medium

Consider an electrically neutral and unbounded plasma, which is homogeneously magnetized in the z-direction of rectangular coordinates. The permittivity tensor of the plasma is written as

$$
\vec{\varepsilon}=\left(\begin{array}{ccc}
\varepsilon & -j g & 0 \tag{1}\\
j g & \varepsilon & 0 \\
0 & 0 & \eta
\end{array}\right),
$$

where the explicit expressions of tensor components can be found in many places ${ }^{7 \%}$.
When the cylindrical coordinates (ρ, ϕ, z) are taken in the plasma medium, three components of the electric field for a wave mode, which has a periodicity $\exp (-j \gamma z)$ in the z-direction, are written as ${ }^{7)}$

$$
\begin{align*}
& E_{\rho}=-j\left\{\left(F_{m}\right) \gamma S_{m} B_{n}{ }^{\prime}\left(S_{m} \rho\right)-(G) \frac{n}{\rho} B_{n}\left(S_{m} \rho\right)\right\} \exp j(n \phi-\gamma z), \\
& E_{\phi}=\left\{\left(F_{m}\right) \frac{n}{\rho} \gamma B_{n}\left(S_{m} \rho\right)-(G) S_{m} B_{n}{ }^{\prime}\left(S_{m} \rho\right)\right\} \exp j(n \phi-\gamma z), \tag{2}\\
& E_{z}=S_{m}{ }^{2}\left(K_{m}\right) B_{n}\left(S_{m} \rho\right) \exp j(n \phi-\gamma z) .
\end{align*}
$$

where a time dependence $\exp (j \omega t)$ is suppressed, $B_{n}\left(S_{m} \rho\right)$ and $B_{n}{ }^{\prime}\left(S_{m} \rho\right)$ are respectively the n-th order Bessel function and its derivative, and factors (F_{m}), (G) and (K_{m}) are given by

$$
\begin{aligned}
& \gamma\left(F_{m}\right)=-\left(\gamma^{2}+S_{m}^{2}-\omega^{2} \mu_{0} \varepsilon\right), \\
& (G)=\omega^{2} \mu_{0} g, \\
& \gamma\left(K_{m}\right)=-\frac{\varepsilon}{\eta}\left(S_{m}^{2}+\gamma^{2}\right)+\omega^{2} \mu_{0} \frac{\varepsilon^{2}-g^{2}}{\eta} .
\end{aligned}
$$

As is well known, two propagation constants are possible in propagation through the plasma medium. In case of cylindrical waves these constants correspond to S_{m} ($m=1$ and 2) which are two roots of the equation

$$
\begin{equation*}
\left(\varepsilon S^{2}+\gamma^{2} \eta-\omega^{2} \mu_{0} \varepsilon \eta\right)\left(S^{2}+\gamma^{2}-\omega^{2} \mu_{0} \varepsilon\right)+\omega^{2} \mu_{0} g^{2}\left(S^{2}-\omega^{2} \mu_{0} \eta\right)=0 . \tag{3}
\end{equation*}
$$

Therefore two independent sets of wave modes are obtained by putting as S_{1} and S_{2} for S_{m} in equation (2). The general solution of electric field in the plasma medium can be expressed by a linear combination of two independent sets of wave modes.

III. Solution

Consider a plasma column of radius a. The column is infinitely long and is magnetized in the direction of its axis (z-axis). A plane wave impinges on this column making an angle θ with the negative z-axis as shown in Fig. 1. Consider

Fig. 1.
the case that the electric vector is parallel to the $x z$-plane and $H_{z}=0$. The incident wave can be calculated by the z-component of the Hertzian vector which has the factor

$$
\sum_{n=-\infty}^{\infty} J_{n}\left(k_{x} \rho\right) j^{-n} \exp j\left(n \phi-k_{z} z\right),
$$

where a time dependence $\exp (j \omega t)$ is suppressed and

$$
k_{x}=-k_{0} \sin \theta, \quad k_{z}=k_{0} \cos \theta, \quad k_{0}{ }^{2}=\omega^{2} \varepsilon_{0} \mu_{0}
$$

and ε_{0} and μ_{0} are dielectric constant and permeability of vacuum. The φ - and z-components of the electric and magnetic vectors of the incident waves respectively written as

$$
\begin{align*}
& E_{\varphi}{ }^{i}=E_{0} \sum_{n=-\infty}^{\infty} \frac{n}{\rho} k_{z} J_{n}\left(k_{x} \rho\right) Z_{n}, \\
& E_{z^{i}}=E_{0} \sum_{n=-\infty}^{\infty} k_{x}{ }^{2} J_{n}\left(k_{x} \rho\right) Z_{n}, \tag{4}\\
& H_{\varphi}{ }^{i}=-\frac{j}{\omega \mu_{0}} E_{0} k_{0}{ }^{2} \sum_{n=-\infty}^{\infty} k_{x} J_{n}{ }^{\prime}\left(k_{x} \rho\right) Z_{n}, \\
& H_{z}{ }^{i}=0,
\end{align*}
$$

where

$$
\begin{equation*}
Z_{n}=j^{-n} \exp j\left(n \phi-k_{z} z\right) \tag{18}
\end{equation*}
$$

As is shown by J. R. Wait in case of a dielectric column, the scattered field are given by the superposition of sets of $T M$ and $T E$ modes. Since the scattered field must vary according to the factor $\exp \left(-j k_{z} z\right)$, the $T M$ mode is expressed by the z-component of the Hertzian vector which has the factor

$$
R_{1 n} H_{n}{ }^{(2)}\left(k_{x} \rho\right) Z_{n},
$$

and the $T E$ mode is expressed by the z-component of the Fitzgerald vector which has the factor

$$
R_{2 n} H_{n}^{(2)}\left(k_{x} \rho\right) Z_{n},
$$

Therefore the φ - and z-components of the scattered field are given by

$$
\begin{align*}
& E_{\varphi}^{s}=\sum_{n=-\infty}^{\infty}\left\{R_{1 n} \frac{n}{\rho} k_{z} H_{n}^{(2)}\left(k_{x} \rho\right)-R_{2 n} k_{x} H_{n}^{(2) \prime}\left(k_{x} \rho\right)\right\} Z_{n}, \\
& E_{z} s=\sum_{n=-\infty}^{\infty} R_{1 n} k_{x}{ }^{2} H_{n}^{(2)}\left(k_{x} \rho\right) Z_{n}, \\
& H_{\varphi}{ }^{s}=-\frac{j}{\omega \mu_{0}} \sum_{n=-\infty}^{\infty}\left\{R_{1 n} k_{0}^{2} k_{x} H_{n}^{(2) \prime}\left(k_{x} \rho\right)-R_{2 n} \frac{n}{\rho} k_{z} H_{n}^{(2)}\left(k_{x} \rho\right)\right\} Z_{n}, \tag{5}\\
& H_{z}{ }^{s}=\frac{j}{\omega \mu_{0}} \sum_{n=-\infty}^{\infty} R_{2 n} k_{x}{ }^{2} H_{n}\left(k_{x} \rho\right) Z_{n} .
\end{align*}
$$

The field in the plasma column can be obtained by the linear combination of two independent sets of modes shown by equation (2), in which the Bessel's function and its derivative are of the first kind, and $\gamma=k_{z}$. Thus

$$
\begin{align*}
E_{\varphi}{ }^{t}= & \sum_{m}^{1,2} \sum_{n=-\infty}^{\infty} T_{m n}\left\{\left(F_{m}\right) \frac{n}{\rho} k_{z} J_{n}\left(S_{m} \rho\right)-(G) S_{m} J_{n}^{\prime}\left(S_{m} \rho\right)\right\} Z_{n} \\
E_{z}{ }^{t}= & \sum_{m}^{1,2} \sum_{n=-\infty}^{\infty} T_{m n} S_{m}{ }^{2}\left(K_{m}\right) J_{n}\left(S_{m} \rho\right) Z_{n}, \\
H_{\varphi}{ }^{t}= & -\frac{j}{\omega \mu_{0}} \sum_{m}^{1,2} \sum_{n=-\infty}^{\infty} T_{m n}\left\{\left(K_{m}\right) S_{m} J_{n}^{\prime}\left(S_{m} \rho\right) \omega^{2} \mu_{0} \eta\right. \tag{6}\\
& \left.-(G) \frac{n}{\rho} k_{z} J_{n}\left(S_{m} \rho\right)\right\} Z_{n} \\
H_{z}{ }^{t}= & \frac{j}{\omega \mu_{0}} \sum_{m}^{1,2} \sum_{n=-\infty}^{\infty} T_{m n} S_{m}^{2}(G) J_{n}\left(S_{m} \rho\right) Z_{n}
\end{align*}
$$

The boundary conditions at $\rho=a$, written symbolically, are

$$
\begin{align*}
& E_{\varphi}{ }^{i}+E_{\varphi}{ }^{s}=E_{\varphi}{ }^{t}, \\
& E_{z}{ }^{i}+E_{z}{ }^{s}=E_{z}{ }^{t}, \\
& H_{\varphi}{ }^{i}+H_{\varphi}{ }^{s}=H_{\varphi}{ }^{t}, \tag{7}\\
& H_{z}{ }^{i}+H_{z}{ }^{s}=H_{z}{ }^{t},
\end{align*}
$$

From equation (7) the coefficient $R_{1 n}, R_{2 n}, T_{1 n}$ and $T_{2 n}$ are obtained as
where

$$
\begin{gather*}
D=\left|\begin{array}{llll}
\frac{n}{\rho} k_{z} H_{n}{ }^{(2)}\left(k_{x} a\right) & -k_{x} H_{n}{ }^{(2) \prime}\left(k_{x} a\right) & X_{n}\left(S_{1} a\right) & X_{n}\left(S_{2} a\right) \\
k_{x}{ }^{2} H_{n}{ }^{(2)}\left(k_{x} a\right) & 0 & S_{1}{ }^{2}\left(K_{1}\right) J_{n}\left(S_{1} a\right) & S_{2}{ }^{2}\left(K_{2}\right) J_{n}\left(S_{2} a\right) \\
k_{0}{ }^{2} k_{x} H_{n}{ }^{(2) \prime}\left(k_{x} a\right) & -\frac{n}{\rho} k_{z} H_{n}\left(k_{x} a\right) & Y_{n}\left(S_{1} a\right) & Y_{n}\left(S_{2} a\right) \\
0 & k_{x}{ }^{2} H_{n}{ }^{(2)}\left(k_{x} a\right) & S_{1}{ }^{2}(G) J_{n}\left(S_{1} a\right) & S_{2}{ }^{2}(G) J_{n}\left(S_{2} a\right)
\end{array}\right|, \tag{9}\\
\quad X_{n}\left(S_{m} a\right)=\left(F_{m}\right) \frac{n}{\rho} k_{z} J_{n}\left(S_{m} a\right)-(G) S_{m} J_{n}{ }^{\prime}\left(S_{m} a\right), \\
\quad Y_{n}\left(S_{m} a\right)=\left(K_{m}\right) S_{m} J_{n}{ }^{\prime}\left(S_{m} a\right) \omega^{2} \mu_{0} \eta-(G) \frac{n}{\rho} k_{z} J_{n}\left(S_{m} a\right),
\end{gather*}
$$

and determinants $D_{r}(r=1,2,3$ and 4) is obtained by replacing the r-th column of the determinant (9) by

$$
\left\lvert\, \begin{aligned}
& -E_{0} \frac{n}{\rho} k_{z} J_{n}\left(k_{x} a\right) \\
& -E_{0} k_{x}{ }^{2} J_{n}\left(k_{x} a\right) \\
& -E_{0} k_{0}{ }^{2} k_{x} J_{n}{ }^{\prime}\left(k_{x} a\right) \\
& 0
\end{aligned}\right.
$$

In case that the incident magnetic field vector is parallel to the $x z$-plane and $E_{z}=0$, the φ - and z - components of the incident wave are written as

$$
\begin{align*}
& E_{\varphi}^{i}=H_{0} \sum_{n=-\infty}^{\infty} k_{x} J_{n}^{\prime}\left(k_{x} \rho\right) Z_{n}, \\
& E_{z}{ }^{i}=0 \tag{10}\\
& H_{\varphi}{ }^{i}=-\frac{j}{\omega \mu_{0}} H_{0} \sum_{n=-\infty}^{\infty} \frac{n}{\rho} k_{z} J_{n}\left(k_{x} \rho\right) Z_{n},
\end{align*}
$$

$$
H_{z}{ }^{i}=-\frac{j}{\omega \mu_{0}} H_{0} k_{x} \sum_{n=-\infty}^{\infty} \frac{n}{\rho} J_{n}\left(k_{x} \rho\right) Z_{n}
$$

As the scattered field and the field in the plasma are expressed by equations (5) and (6) respectively, four coefficients $R_{1 n}, R_{2 n}, T_{1 n}$ and $T_{2 n}$ are written as equation (8), and the determinant of numerator $D_{r}(r=1,2,3$ and 4) can be obtained by replacing the n-th column of determinant (9) by

$$
\begin{aligned}
& -H_{0} k_{x} J_{n}{ }^{\prime}\left(k_{x} a\right) \\
& \quad 0 \\
& -H_{0} \frac{n}{\rho} k_{z} J_{n}\left(k_{x} a\right) \\
& H_{0} k_{x}^{2} J_{n}\left(k_{x} a\right)
\end{aligned}
$$

IV. Propagation constants in the plasma

Putting $\gamma=k_{z}$, roots of Eq. (3) are calculated as

$$
\begin{equation*}
S^{2}=\frac{-A \pm \sqrt{A^{2}-4 B}}{2}, \tag{11}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A=\left\{\left(1+\frac{\eta}{\varepsilon}\right)\left(k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon\right)+\omega^{2} \mu_{0} \frac{g^{2}}{\varepsilon}\right\} \tag{12}\\
B=\frac{\eta}{\varepsilon}\left\{k_{z}{ }^{2}-\omega^{2} \mu_{0}(\varepsilon+g)\right\}\left\{k_{z}^{2}-\omega^{2} \mu_{0}(\varepsilon-g)\right\}
\end{array}\right\}
$$

The elements of tensor permeability (1) are shown as

$$
\begin{aligned}
& \frac{\varepsilon}{\varepsilon_{0}}=1-j \frac{p^{2}(j+\nu)}{(j+\nu)^{2}+c^{2}}, \\
& \frac{\eta}{\varepsilon_{0}}=1-j \frac{p^{2}}{j+\nu}, \\
& \frac{g}{\varepsilon_{0}}=\frac{p^{2} c}{(j+\nu)^{2}+c^{2}},
\end{aligned}
$$

where p, c and ν are plasma frequency, cyclotron frequency and collision frequency, respectively, divided by the angular frequency of the incident plane wave. Using Eqs. (11) and (12), the propagation constants are calculated in the following cases: Case $1 ; \nu=0, k_{z}=0$ (normal incidence of $\theta=90^{\circ}$)

$$
\left.\begin{array}{l}
S_{1}{ }^{2}=\omega^{2} \mu_{0} \varepsilon_{0}\left(1-p^{2}\right), \tag{13}\\
S_{2}^{2}=\omega^{2} \mu_{0} \varepsilon_{0}\left[1+\frac{p^{2}\left(1-p^{2}\right)}{c^{2}+p^{2}-1}\right] .
\end{array}\right\}
$$

These constants coincide with those in the case of the direction of propagation perpendicular to the static magnetic field. S_{1} and S_{2} are pure imaginary or pure
real numbers.
Case 2; $\nu=0, k_{z}{ }^{2}=\frac{1}{2} \omega^{2} \mu_{0} \varepsilon_{0}$ (oblique incidence of $\theta=45^{\circ}$)

$$
\begin{equation*}
S_{1,2}{ }^{2}=\omega^{2} \mu_{0} \varepsilon_{0}\left[\frac{1}{2}-p^{2}+\frac{3 c^{2} p^{2}}{4\left(p^{2}+c^{2}-1\right)} \pm \frac{p^{2} c \sqrt{c^{2}+8-8 p^{2}}}{4\left(p^{2}+c^{2}-1\right)}\right] . \tag{14}
\end{equation*}
$$

When $c^{2}+8-8 p^{2}<0$, the propagation constants are complex numbers. When static magnetic field equals to zero ($c=0$), the plasma cylinder is isotropic and two propagation constants equal each other and are obtained as ${ }^{62}$

$$
S_{1,2}^{2}=\omega^{2} \mu_{0} \varepsilon_{0}\left(\frac{1}{2}-p^{2}\right) .
$$

Case $3 ; \nu \neq 0, c=0, k_{z}{ }^{2}=\frac{1}{2} \omega^{2} \mu_{0} \varepsilon_{0}$.

$$
\begin{equation*}
S^{2}=\omega^{2} \mu_{0} \varepsilon_{0}\left[\frac{1}{2}-\frac{1+j \nu}{\nu^{2}+1} p^{2}\right] . \tag{15}
\end{equation*}
$$

The plasma cylinder is the same as an isotropic and lossy dielectric cylinder.
Case 4; $\nu \neq 0, c=1, k_{z}{ }^{2}=\frac{1}{2} \omega^{2} \mu_{0} \varepsilon_{0}$.

$$
\begin{equation*}
S_{1,2}=\omega^{2} \mu_{0} \varepsilon_{0}\left[\frac{1}{2}-\frac{1+j \nu}{\nu^{2}+1} p^{2}+\frac{p^{2}(\nu-j)}{4 V\left(1+\nu^{2}\right)}\left\{3 j \pm \sqrt{8 \nu^{2}+p^{2}-9+\nu j\left(16-p^{2}\right)}\right\}\right] \tag{16}
\end{equation*}
$$

where

$$
V=\nu^{2}+p^{2}+j \nu\left(2-p^{2}\right) .
$$

In general, two propagation constants are complex numbers.

V. Conclusion

The scattered field by the plasma and the field in the plasma are given by expressions (5) and (6) respectively. It is found that these expressions are very complicated in a practical computation even when the propagation constants are computed. Computational results will be published in the near future.

References

1) P. M. Platzman and H. T. Ozaki, "Scattering of electromagnetic waves from an infinitely long magnetized cylindrical plasma", J. App. Phys., 31, pp. 15971601, 1960.
2) Y. Midzuno, "Scattering of microwaves from a cylindrical plasma in the Born approximation. I", J. Phys. Soc. Japan, 16, pp. 971-980, 1961.
3) Y. Midzuno, "Scattering of microwaves from a cylindrical plasma in the Born approximation. II", J. Phys. Soc. Japan, 16, pp. 1403-1417, 1961.
4) U. Kubo and Y. Inuishi, "Measurement of gaseous discharge plasma with microwave interferometer (I)", Tech. Rep. Osaka Univ., 10, pp. 565-577, 1960.
5) U Kubo and Y. Inuishi, "Measurement of gaseous discharge plasma with microwave interferometer (II)", Tech. Rep. Osaka Univ., 12, pp. 229-238, 1962.
6) J. R. Wait, "Scattering of a plane wave from a circular dielectric cylinder at oblique incidence", Can. J. Phys., pp. 189-195, 1955.
7) Y. Ohba, "Radiation from a current filament in an anisotropic plasma", Proc. Faculty Eng., Keio Univ., 16, pp. 47-55, 1963.

[^0]: ＊大 場 勇治郎 School of Engineering，Keio University，Koganei，Tokyo，Japan．

