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Collisional Damping of Plasma Oscillation
—Application of the Unified Theory—
I. Collision Theory

(Received December 9, 1964)

Masatada OGASAWARA*

Abstract

Damping rate of plasma oscillation is calculated with use of the Boltzmann
equation for the screened coulomb potential exp ( —ksr)/r, » and k;~! being the
distance between particles and the screening distance. The result is required
for applying the unified theory.

1. Introduction

Effect of collisions on the plasma oscillation has been investigated by the present
author @ (hereafter refered to as the paper 1) by using Boltzmann’s collision term.
As is well known collision integrals, however, diverge logarithmically at large
impact parameter due to the long-range nature of coulomb force. Usually cut off
with the Debye length is employed to obtain finite collision integral. In this way
we have a logarithmic factor which is called coulomb logarithm, with physically
introduced cut off length. Thus our rate of damping of plasma oscillation contains.
ambiguity through the argument of coulomb logarithm.

Recently Kihara and Aono ® developed a new theory which enables us to obtainr
transport coefficients or relaxation constants with exact arguments in the coulomb
logarithms. The new theory is called the unified theory.

The aim of the present series of papers is to obtain the damping coefficient of
plasma oscillation with the exact coulomb logarithms in the long wavelength limit
by applying the unified theory.

Let us briefly survey the unified theory. The interactions between particles much
closer than the Debye length are binary and can be treated with the usual Boltz-
mann equation. Those between particles much remoter than the close impact radius
are collective and can be treated with the “ wave theory”, in which the system of
particles is regarded as a continuous medium with a dielectric constant ¢ (k, w) of
the wave number k and frequency . For high temperature plasmas

close impact radius € Debye radius . (1-1)
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2 Masatada OGASAWARA

Therefore the regions of validity of the ‘collision theory”, which is based on
the Boltzmann equation, and the wave theory greatly overlap each other. By taking
this fact as a clue to the problem, Kihara ¢ proved the following theorem.

X=X+ [IX(R)—X(R)] dk,

1-2)

X.(k) = (kzk 53 Im RX (k).
Here X, is the expression of the transport coefficient or the relaxation constant
obtained by the collision theory with use of the screened coulomb potential exp(—«7)

/r, ¥ being the distance between the particles. And f X(k)dk=Xypawe is that ob-

tained by the wave theory in the integral form with respect to the wave number
k. An auxiliary parameter r must be chosen in the intermediate region

close impact radius € k= € Debye radius . (1+3)

The final result is independent of x. The name “unified theory” comes from the
fact that the exact expression of X is obtained by unifying X, and Xuwa. by the
theorem (1. 2).

The expression X, for the damping rate of the plasma oscillation is obtained in
the first paper of our series. The expressions X, and X are to be found in the
next papers of the series. The plasma under consideration is composed of electrons
and ions of one type, and in thermal equilbrium at temperature T,. In Il we write
the Boltzmann equation in the relation between velocity moments of the electron
velocity distribution function. In TII the high-frequency conductivity is evaluated
with use of the equation which is derived in II. Then the dispersion relation for
the plasma oscillation is obtained. In Appendix B the algebraic error contained
in the paper 1 is corrected.

II. Integrated moment equation

In this section we write the Boltzmann equation in the velocity integrated form.
“This equation enables us to obtain macroscopic quantities only by simple algebraic
calculation.

Let f(v) be a velocity distribution function of electrons, v being the velocity.
The Boltzmann equation for the electrons in an external electric field E is given as

of af of _ (9f .
at+v m .'8;_(615)&;“ 2-D

where x, —e, m, E and (-%) mean position, charge, mass of the electron, the

(2)



Collisional Damping of Plasma Oscillation 3

external electric field and the effect of collisions, respectively. The ions are smeared
out as a positive charge background for retaining charge neutrality.
Regarding E as a perturbation, we write

fo, x, )=fW)+f (@, x, 1),

(2-2)
SO, x, H=f@ew, x, 1), 4|1
f, being Maxwellian velocity distribution ;
_ m \3 _ mv?
fo(v)_n‘)(er/cTo) exp( ZICTO)’ (2-3)

where n,, T,, and r express number density, temperature and the Boltzmann con-
stant, respectively. Linearizing the Boltzmann equation (2 - 1), we have

g 3 _ 1o _
% T m wE f oo =—mJ?, 2-4)

where J is the Boltzmann collision operator which is defined as

J6@= 3 [ [ [A@als@)+e@) -4

—¢(vy')]1gI(g, x)sinydyde dv,. (2+5)
Here prime means the velocity after the collision and I(g, %) siny dyx de indicates the
differential cross section for scattering into the solid angle sinydyde with the
speed g=|v,—v,|=|v/—0;'[.
Now we introduce a complete set of orthogonal functions defined as

%L(U) @
Tr(o) = ~N. G‘P( £ )SH%(SZ)’ (2 6)
e.:_v.._’ v02=2,cTo/m’
Uy
2 1 3
Ni=ariga T+ 2) @0

where P; and S are the Legendre and Sonine polynomials, respectively. & and
N, mean the dimensionless velocity and the normalization constant.
When we define an inner product of two arbitrary functions of v, ¢(v) and

¢(v), by

& 9= [ frovdv, (28
the relation of orthogonality of the set {¥.} is given

(wrl, w‘r,L,) = 61‘1‘/5”/ . (2 . 9)

We expand ¢(v, x, ¢) in terms of ¥, with time- and space-varying coefficients
as follows

(3)
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B (v, x, t)=>r:lan(x, HY.(v), (2-10)
are(x, 1) =¥, gf>)=nio [ rowadv. (2+11)

The coefficients a,/’s that mean the moments of f with respect to ¥.’'s are used
in place of f® throughout this paper. These coefficients are connected with the
deviations of several macroscopic quantities such as number density, macroscop-
ic velocity, temperature etc. from their equilibrium values.

Substituting the expansion (2-10) into (2.5), we have

—nJp=—mny ZL: anJVn=—3% }:5? an¥s. (2+12)
<
where
zg) =ny(¥r, J¥s) = ng.) . (2-13)

Here 3&,‘3 ’s correspond to the collision frequencies and can be shown to be positive
definite, which shows the relaxation feature. We express the electron-electron and
electron-ion collision frequencies by 2 and A, respectively, then we can write

I =% AP (2-14)

From the conservation laws it follows that
=190,
9= AP=AP=AP=0
AP =0.

(2-15)

First, second and third lines express conservations of number density, energy
and momentum, respectively. The values of 1% and 4§ are given in Appendix A.
Substitution of (2.10) into the Boltzmann equation (2 - 4) yields

eE 1 df

Zau WU-FZv ——a;;yf” —’7 7;-.%_

==X a0y, (2-16)
ijs
where dot implies time derivative. Operating ni f dv f, ¥». on both sides of this
0

equation, we obtain, with use of the orthogonality of ¥,

aﬂ‘l‘z (wrl, DWU) —‘ az]+ (er, v)
=—2iP au. (2:17)

Assuming the directions of E and the space variation be in the direction of z-axis,

(4)



Collisional Damping of Plasma Oscillation 5
we can write the equation (2-17) as follows

(.lrl'l'vo %: W, £:735) % aij+v, /ce—i T, &2)

=—ZZ§? iy . (2.18)

Making use of a recurrence formula which is given by ®©

Sawrl=Arlw‘r; L+1‘—Brlw7_1, l+1+crlw'ry l—l_Drle+]y =1y (2' 19)

= I+r+3
A (l“)\/ @+D 213’

- r )
B (IH)‘/(_ZﬂT)m’ (2-20)

An=Cr, 141, Bri1y1=Dry 144,
we obtain

. 0
arn+v, ¥ Antyr, 14— Brittr_yy 141+ Cri@r, 1o —Dri@raqy 124

+DD%NM Bro = — 24D auy . (2-21)

This is the integrated moment equation which manages the behavior of the moment
Qry.

In the next section we will use this equation to obtain the dispersion relation
for the plasma oscillation.

III. Dispersion relation for plasma oscillation

The first aim of this section is to calculate high-frequency conductivity, from
which we can obtain the dispersion relation for the plasma oscillation. This is the
principal object of this section.

We confine ourselves to the case of long wavelength and to the case of collision
frequency 2 much less than the frequency of plasma oscillation.

Let the space- and time-varying high-frequency electric field

E=FE,exp[i(kz—owt)] 3:1)
be applied to the plasma, then electrons are deviated from their equilblium state.
Then there appears ¢ (v, z, t) or a.(z, t). These are described by the equation
(2-21). By putting

are ¢ €Xp [ (kz—wt)], (3+2)
we obtain from (2.21)

—iwarn+1kvy[ Anar, 141— Bri@r_y, 141+ Criary 1-y—Dri@try, 14

eE Y
+Uo;ﬁ N01 570 5l|:—z l,(-? air .

(5)
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Dividing both sides of this expression by the frequency of the plasma oscillation w.,
which is defined by

2
w3=4”%, @3- 3)

we obtain the integrated moment equation in the dimensionless form

p ~
‘Qarl"'zi: y’f‘i) a”—x[A;l Qr, l+1—B7{l ar—l, l+1+ C;Z ar, -1

—D/; sy, 11 ]=aE 82014, (3-4)
where
—© -k w 125 —_je 1 (m)\}
T T R
3-5)
A’rl':o\/?A'rl y B’rl='\/73ﬂ ’ C,rl=o\/§crl , D’rl=~/§Drl N
and ki= 47;’;982 is the Debye constant. (3-6)
0

From the assumptions mentioned at the beginning of this section, it follows that

»®] <1, x<1. 3.7
Then we seek the solution of (3-4) in the form

an= T ETvast. @3- 8)
m
0<n<l

By substituting (3-8) into (3-4), we have

my M) ) ,0my n-1) ' (m—15 n) 3 (M- n
Qap ™ + nvgay -—[A”a,, T+ —B‘flar—-l,l+}
T

3-:9)
+Cr a7 =D aTE0 ] =aE 6,001 .
The electron current j is obtained as
j=—¢ [v.f (@)dv=—¢ [0.4(2) (v, 2, D)dv
= —en,woNo ;} ari(¥o1, Trt)
=—noe( Lo}t 4y, (3+10)

Hence for the purpose of obtaining high-frequency conductivity the solution of
(3-9) for a, is required.
From (3-9) we obtain a@ ™ as follows.

(6)
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L1] (m, m)=(0, 0)

The nonvanishing moment of this order is only a{®,

asgv 0 —

a
ﬁE'

[2] (mm=(,0)

The nonvanishing moments are

A B
ar® = Ao 00 a0 Do
0 T p %1, G T =T pda o,

Hence

aP ® =0.
[3] (mn)=(2, 0)
Qaiy ® =Alyiafy © +Cnafy  —D'oafy .
Substitution of (3-12) into this yields
Qai® =[A%+ A%+ Bhlal ¥ =34t ®,
where use has been made of (2-20). Then we have

3
a(()?.’ 0 — a(()({) 0> .

2

By performing similar calculations, we have the following results

w0 — & (150 — @0 _ 3 o
agy V= 9] E, ap® =0, ao"= 0z ag ™,
o)
01 — _ Yoo 40000 Iy D —
ay’ == ag’”, ay’ =0,
1 4 6
af P =— o) 6v5p + 3 vip — '5“«/10 viP el .

By taking account of (3:5) and the law of conservation (2.15), we have

Goy _qaq K2 1iAQ
R TR Ry

CRET6AD 4 1 (AP | idD
o et e 5l

5 £ we

_6¢iﬁ‘_1_iAgg>] =3

hence

a
ay=pal® = —[f E.

(7)

1
a(ls 0 — C oza(o' 0
02 - 0 01 .

(3-11)

(3:12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)



8 Masatada OGASAWARA

From (3-10) and (3-18) the conductivity a=% is given as

=—n,e ('Cn?)’} (f(QB . (3-19)

Now that ¢ is obtained, we can obtain the dispersion relation for the plasma

oscillation by the following relations

s=1_.47?_", e=0. (3-20)

1w

Here ¢ is the dielectric constant of the electron plasma and ¢=0 gives the dis-
persion relation for the longitudinal oscillation. Then we obtain, with use of the

- (2

Hence the dispersion relation is obtained

definition of ¢ and «

1A
(o) =8= 1435 R
(3-21)
634D 4 1 2@ | iAP\  64/10 1 iAP
o[ 4 L (8 i) _Sy10 Ak

This expression agrees with the corrected result of the paper 1. (See Appedix B.)
The dispersion relation (3-21) is solved by successive approximation when we
take account of (3-7). In the first approximation we put £=1 and obtain

w\? __ ~, AP
(Te) —1+3x2—T°;'. (3:22)

The second approximation to the frequency is found by substituting the first ap-
proximation into the right-hand side of (3-21). Then we obtain

(i)z — 14352 1A%

We We

3 AP AL | iAP\  6/10 {AP
[2 we+3(we+ we> 5 a)e] (3-23)
Now writing o in real and imaginary parts as
0=w,—iw;, ‘ «1, (3-24)
we have from (3.23)
o\,
(o) s, o
=@ f1 gy 53 oy T @ 4 AD __3_\_/1_—0 (1)
@i w,{zA” T [4/1 508 5 A"‘]}
~ 3 In
=g+ [2 g rap) -0 ap] (326)

(8)
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The imaginary part gives the rate of damping of the plasma oscillation. From
Appendix A, collision integrals are given as

AP = ‘%Z_noK' [Zn A= —;—] ,

ap="Y5 g [mar— L],

. (3 27)
Ap = __“g 2 noK' In A,

Ag?:g-noKlnA,

where

)
r_ _4xT, A:M‘L (3-28)
riZe’k; ’ rietk;’

here In y=0.57722 is Euler’s constant.
When Z=1, the damping rate is given as

wi=2~g%x (ma-1)

) ot 2w (- 2]

The terms including 4/ 2 arise from electron-ion collision, the remaining term from
electron-electron collision.

Appendix B Evaluation of (¢p, Je—i @u) and (o2, Jeee ¢p2)

[1]1 (¢ri, Jei @ar)
Assuming the mass ratio of the electron mass m to the ion mass M be zero,
namely

_n:l‘:O’ (A'l)

we have from (2-5) the collision operator J._; for electron-ion collision

Jests@ = [ [T6)—o@) 1oL, 1) siny dx de . (A-2)
The generating function of the Sonine polynomial is given by
@ @
(1=s)~“Pexp (—SeHN=2s'S (&Y, (A-3)
q=0 l+g
S=_5_
1—s"

(9)
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Then it follows that
T8 Jeli = (1—s§)~4+3/D

Xff[é’PL (%’—) e‘sfz—-é”Pz(—?—:) e‘sf'z] vl(v, x) sinydxde. (A-+4)

On account of the assumption of infinite mass ratio (A-1), the energy of the elec-
tron is conserved in collisions with the ions. Then it follows

£=¢".
Hence (A.4) reduces to
8 Joi 0 = (1—§)~C+3/D g gl41 st A, (A-5)
A= [ [TPi(cosd) —Pi(cos0") 11 (v, x) sinx dyde , (A-6)
where )
cosf = ij s cosf'= ETZ .

From Fig. 1 it follows
7 cosf’'=cosf cosy+sinf siny cose .

Then readily we have
27
fPl(cosﬁ')ds =2rP,(cosd) P,(cosy) .
0

Inserting this into (A-6), we obtain

AL=27rPL(cos0)f [1—=Pi(cosy)]I (v, x) sinxdy

=2nP;(cosf) B (&) . A7

Fig. 1. With use of (A-3), (A-5) and (A:7) we have

Zwlo S21?(pp1, Jeei Pa1)
=

P=0

=220, [(1—s) (1—£) ]+ 22 [ TP (c0s6) T2 d (cos0)
7[2

o

xfe-(usw)e2 g2+3 By (&) de (A-8)
0

w©

% 2
=47 (1) Ta-9) 1=n]=0b 2 femarsnt envs Bi(erde

If we adot a screened coulomb potential %exp (—ks7), where r is the distance

(10)
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between two interacting particles and &;~! is the screening distance, we obtain ¢

f(l cosy)I(g, x)sinydy=2 (Z;) [ 722/:3§k3 — —] (A-9)
f (1—cos?y)I(g, x)siny dy= 4 (Z;) [lnrzz"é%;s——l], (A-10)

where pg= Ml‘ﬁ—":n is the reduced mass, Ze is the charge of an ion and In y=0.57722

is Euler’s constant. By use of (A.9) and (A-10) we obtain

B =2(35%) [ Fdr - 2

=1(ze zi 4T,
=3 (/cTo) 7 [laneZk +’”52]’ (A-11)
_3(Z¢\ 1 [y, 4T, _
B;(¢) = 5 ( lcTo) e [ln ~Zek, 1+ln$2]. (A-12)
Thus B, is written as follows
_1(Zex\* C,
Bi=y (25) G (Ditinen (A-13)
where
- — g 46Ty 1 1., 4T
Cl—l, Cg—?), Dl—lnrzezks 2 ’ Dz lanezz 1. (A'l4)¥

Substituting (A-13) into (A-8), we obtain

2:5%7 (01, Je—iPqr)

— kTo\} -+
=2vz (T (4 )[(1 HA-DI P gisC
Xfe—<1+s+r)52$21—1 [Di+ine?]de . (A-15)

The integral in this expression is evaluated by changing variable as follows

(A+S+T)é2=x.
Then

fe"“S*T) 52 gu-1[D,+Ing?]de
0

o

- 1 e
= e x! [Di—In(14-S+T) +Inx]dx

2(1+s+T)lof !

2———(1%2:,),[ —In(1+S+T)+4 ()], (A-16)

11)
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where use has been made of the formula ®

o

f e x-tinxdx=T"1)=p@) T (1) . (A-17)

[

Here ¢(I) is digamma function. Values of ¢(l) are given by
dMy=—Iny, $@)=1-Iny. (A - 18)
From (A-14), (A-15), (A-16) and (A-18) we obtain

5 5 87 om T oson) =2¢32ﬂ (IcTo> (Ze )

m KTo
[A=9A=nT¥,, 4T 1 _ '
T tstT [lnTZZezks 7= ndesiD]. R
N8V 27 (kTy\} (Ze?\?
22 SUEP(Ppy, Jemi 9g2) = -5 (7) (/c_To>
(LU=9a=0717Fr 4T, _ H
(+5+T)? [lnTZZest In(1+5+) | A
Taking account of S=—— and T= IL’ we can rewrite (A.19) and (A-20),
namely,
) _2\/2—71’ KTO%Zezz
20 U2 (9pys Jemi Q1) = 3 (7) (’?T-—o>
_3
e

22 182 (Pngy Jemi @ga) = 6x/271' (KTO) <éT—>

[a-—9a-01%r, 47, _
A G EE {l" 7k, In(1+5+7)). (A -22)

These expressions agree with what is given in the paper 1 (C-12) except for the
factor which includes the coulomb logarithm.

[2] (9002, Je_e 5002)

From the definitions of the inner product and the collison operator J... for elec-
tron-electron collision, we have

(Pozs Je—epy;) = -%fffffo(vl)fo(U2)9002(171)[9002(171)+S002(Uz)
— 002 (1) — P02 (v2') 1 81(g, %) sinydyde dv,dv,. (A -23)

Substituting the expression

ou=ePs (£2)57) (e9=2P2 (2). (A - 20)

(12)
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into (A.23), we have

(o Jee o) = [ [ [ [ 5100 5w e1P2 (2) 5
X[k +éh—¢/1—¢271gl(g, 1) sinxdyde dv,duv,, (A - 25)
where we have used the law of energy consevation ;
Sité&i=¢1+¢4. (A - 26)

Let us introduce the center of mass velocity G and the relative velocity g by

vl=G+%, v,=G—g—, (A-27)
with
0(vy, vs) =1,
(G, g)

The expression in the bracket of (A.25) is then written as

l £ : 20 — 29’ ——__1___2 g z — 4 .
D) < 0\) (cos 8 —cos?8’) 73 ( 0) Pz(cosﬂ) P,(cosf’) | (A . 28)
with

cosf=2Ez | cosf'= g_:’= g ,
g g g

cos@’=cosf cosy+sind siny cose . (A -29)

Taking into account of (A-.28), (A-29) and (A.10), we obtain

z P13
[ dx singI(g, ) fdel:%z(vx)+¢oz(vz)—$"oz(l’1’)_Sooz(vz')]
0 0

= nP,(cosf) (vi‘))zfdx sinx I(g, x)[1—P.(cosy) ]

— 67P,(cos) (_KE;T)’ (l;g)z [zn ?;2 —1+In (vioﬂ . (A-30)

The expression (A-.24) is rewritten by using (A-27) as

pat0 = o[ (0 ) — 3 (6+ 4]

The term which is proportional to P,(cos ) in ¢,,(v,) is given as

eu)~ (L&) Picost) . (A-31)

Only this term of all terms of ¢,,(v,) contributes to (¢y,, Je-e ¥o;) because of the

(13)



14 Masatada OGASAWARA

orthogonality of P;(cos §). Using (A-30), (A-31) and performing all integrations,
we obtain

m

xetn [ (O u(8) V2,

Yzzﬂf:tpz(x)]zdxje_%(%)z (vo) [[ 2K]I;0 1+l7‘l(v0 )2]

_8r . 4T,
- 5 lanesty

(‘Poz, Je—e %2)_3;222 (KTO) (K—T")%X Y,

thus

_6/w [ e? \t(kTo\%,, 4cT, .
(Po2y Jeme Po2) = 5 (IC_T.,) (7) In T (A-32)

Appendix B

The result of the paper 1 (5-8) contains algebraic error, so in this appendix we
will show correct result:
From (1-5-7) the dispersion relation is given as

2 4
(2) =1- 2+ 2 2 Q9+ 4D JuTu, (B-1)
where
a= L2 kg0
2 K kD We
and )
]rl= (A_—l—gz , y’rl) .
Taking the long wavelength limit, we can write J,; as
frz———5m5to+ 22“/2 07902, — L/l 0ro012— r15lo+ 570510}
___;T[?mZZ 5’°5“_Z/3_§ 0,101+ 2~/“ 6,‘,513] ] (B-.2)

Terms with underline when substituted into (B:1) do not contribute to the dis-
persion relation due to the conservations of number density and energy. Thus we

obtain
]rl]sl-— 224 5r0530511+ 316 r0530512
2
+ >0 (% 5r05so511—“231—0 5r0531511) .
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Then taking account of the conservation of momentum A =0 in electron-electron

collision, we obtain the correct result

o\ _ k2 1 AP
(&) =143 Do
_ kAT 6449 4 1 (4AQ iAgg)_6~/ﬂ)li§P .
oot 5o (B2 +18) - 250 g1t B-3
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