慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Optimal parametric excitation in a resonant circuit
Sub Title	
Author	佐藤，力（Sato，Chikara）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1963
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University（慶應義塾大学藤原記念工学部研究報告）．Vol．16，No． 63 （1963．），p．79（13）－85（19）
JaLC DOI	
Abstract	An L－C resonant circuit with parametric excitation is dealt with when the circuit corresponds to the differential equation of the form ：$\ddot{\mathrm{x}}+\left[\omega^{2}+u(t)\right] x=0$ where function $u(t)$ is controllable under the condition $u \min \leq u(t) \leq u$ max．The objective is to find the optimal trajectories so that an initial phase point moves toward a terminal in a minimum time．The terminal which is used here is a circle with its center at the origin．Using both maximum principle of Pontryagin and transversality condition，synthesis is made on the phase plane for outside and inside of the circle．According to the results obtained herein the control function $u(t)$ takes either minimum value or maximum value．From the synthesis on the phase plane it is known that the function $u(t)$ changes its value four times when the argument on the phase plane increases by 2π ． In other words it is most effective to induce oscillation of $1 / 2$ subharmonic type in order to make the phase point move toward a circle in a minimum time．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00160063－ 0013

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Optimal Parametric Excitation in a Resonant Circuit

（Received December 9，1964）

Chikara SATO＊

Abstract

An $L-C$ resonant circuit with parametric excitation is dealt with when the circuit corresponds to the differential equation of the form ： $$
\ddot{x}+\left[\omega^{2}+u(t)\right] x=0,
$$ where function $u(t)$ is controllable under the condition $u_{\text {min }} \leq u(t) \leq u_{\text {max }}$ ． The objective is to find the optimal trajectories so that an initial phase point moves toward a terminal in a minimum time．The terminal which is used here is a circle with its center at the origin．Using both maximum principle of Pontryagin and transversality condition，synthesis is made on the phase plane for outside and inside of the circle．According to the results obtained herein the control function $u(t)$ takes either minimum value or maximum value．From the synthesis on the phase plane it is known that the function $u(t)$ changes its value four times when the argument on the phase plane increases by 2π ． In other words it is most effective to induce oscillation of $1 / 2$ subharmonic type in order to make the phase point move toward a circle in a minimum time．

I．Introduction

One of the recent topics in control engineering is the optimal problem，that was established by Pontryagin ${ }^{(1)}$ and Bellman ${ }^{(2)}$ beyond the classical calculus of variation． Since these mathematicians and their coworkers gave mathematical formulations and several fundamental theorems in 1956，many papers have been published in the field of control engineering．On the other hand in the field of circuit theory not so many papers have been published about optimal problems．
In this paper a specialized topic in circuit theory is discussed with respect to the optimal problems．Here we will treat only a simple $L-C$ resonant circuit with a variable parameter．Mathematical treatment used here depends on both maximum principle of Pontryagin and transversality condition．

[^0]
II. Mathematical Analysis

Parametric oscillation can be induced in an $L-C$ resonant circuit by varying the capacitance. Conversely an induced oscillation in the circuit can be suppressed by varying the capacitance. In this paper investigation will be made to determine the optimal variation of the capacitance, in order to induce or suppress the oscillation. From both engineering application and mathematical interest it is supposed that the value of the capacitance $C(t)$ is positive and bounded between two finite values. Under these assumptions the ultimate objective is to find the optimal trajectories so that an initial phase point moves toward a terminal in a minimum time. The terminal is a circle with its center at

Fig. 1
L-C Resonant circuit origin. The circle is employed as a simple region including the origin inside. The circle also coincides with one of the constant energy level in a special case. Those are the reasons why we take a circle as the terminal. Using maximum principle and transversality condition optimal trajectories will be obtained on the phase plane.
From the circuit shown in Fig. 1 the corresponding differential equation is given by

$$
\begin{equation*}
\ddot{x}+\left[\omega^{2}+u(t)\right] x=0, \tag{1}
\end{equation*}
$$

where x is a charge in the capacitance $C(t), \ddot{x}=d^{2} x / d t^{2}$, and parameters ω^{2} and $u(t)$ are given by reactances L and $C(t)$. We can put $\omega^{2}=1$ without loss of generality. Function $u(t)$ is supposed to be controllable under the condition

$$
\begin{equation*}
u_{\min } \leq u(t) \leq u_{\max } \tag{2}
\end{equation*}
$$

The function $u(t)$ which is possibly piecewise continuous function is said an admissible control function, after Pontryagin. If we put that

$$
x=x^{1}, \quad \dot{x}=x^{2},
$$

the original differential equation (1) and its auxiliary equation are followings,

$$
\begin{align*}
& \dot{x}^{1}=x^{2}, \quad \dot{x}^{2}=-[1+u(t)] x^{1}, \tag{3}\\
& \dot{\phi}_{1}=[1+u(t)] \psi_{2}, \quad \dot{\phi}_{2}=-\phi_{1} . \tag{4}
\end{align*}
$$

Hamiltonian function H is given by

$$
\begin{equation*}
H=\phi_{1} x^{2}-[1+u(t)] \phi_{2} x^{1} . \tag{5}
\end{equation*}
$$

In order to maximize the function $H, u(t)$ must be maximum value if $-\phi_{2} x^{1}$ is positive and $u(t)$ must be minimum if $-\phi_{2} x^{1}$ is negative, that is:

$$
\begin{array}{ll}
u(t)=u_{\max } & \text { for } \quad-\phi_{2} x^{1}>0 \\
u(t)=u_{\min } & \text { for } \quad-\phi_{2} x^{1}<0 \tag{6}
\end{array}
$$

and $u(t)$ is not determined by these treatments if $-\phi_{2} x^{\prime}=0$. So the function $u(t)$ is expected to be of bang-bang type.
Now, right-hand terminal condition is on a circle with radius R, that is

$$
\begin{equation*}
\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}=(R)^{2} . \tag{7}
\end{equation*}
$$

We assume that at $t=0$, the vector (x^{1}, x^{2}) reaches the terminal circle (7), and that at $t=0, \quad\left(x^{1}, x^{2}\right)=(R \cos \alpha, R \sin \alpha)$. According to the transversality condition, at $t=0$ the vector (ψ_{1}, ϕ_{2}) must be normal to the circle (7) at the point $\left(x^{1}, x^{2}\right)=(R \cos \alpha, R \sin \alpha)$. Therefore we can take at $t=0$ that

$$
\begin{equation*}
\left(\psi_{1}, \psi_{2}\right)= \pm(R \cos \alpha, R \sin \alpha) \tag{8}
\end{equation*}
$$

because the equation (4) is homogeneous for ψ_{1} and ϕ_{2}. Thus we have two transversality conditions depending on the signs in expression (8). Using these two transversality conditions synthesis will be made below.

III. Synthesis

The aim of this section is to have optimal trajectories from an arbitrary point to the terminal circle in a minimum time. The method of obtaining optimal trajectories and their switching curves will be explained using an example when $u_{\text {max }}=0.5$ and $u_{\text {min }}=-0.5$.
In Fig. 2 (a) and (b), a phase plane for (x^{1}, x^{2}) and a phase plane for (ϕ_{1}, ϕ_{2}) are shown respectively. In Fig. 2 (a) there is a circuit with radius R, and its center is at origin. This circle is the terminal which corresponds to equation (7). By taking the negative direction of time t, optimal trajectories can be traced from the terminal state P_{0} on the circle toward a initial point. This P_{0} is an arbitrary point. Corresponding to P_{0}, a point P_{0}^{\prime} can be set on a circle on the $\left(\psi_{1}, \psi_{2}\right)$ plane by transversality condition. If the angle $\angle P_{0} O x^{1}$ is taken to be α then the angle $\angle P^{\prime} O-\psi_{1}$ makes an angle α. At first the trajectory proceeds from P_{0} to P_{1} with control $u=0.5$. This trajectory is a part of an ellipse. When the trajectory crosses x^{2}-axis at P_{1}, control u changes its sign from positive to negative value, that is, u becomes from -0.5 to 0.5 . From P_{1} to P_{2} the trajectory proceeds along another ellipse. At point P_{2} the sign of x^{1} does not change, but at corresponding point $P^{\prime}{ }_{2}$ the sign of ψ_{2} changes from negative to positive. Likewise switching is made at points $P_{1}, P_{2}, P_{3}, P_{4}, \cdots \cdots$. Among them switching pcints $P_{1}, P_{3}, P_{5}, \cdots \cdots$ are on x^{2}-axis. On the other hand switching points $P_{2}, P_{4}, P_{6}, \cdots \ldots$ are nct in general on x^{1}-axis. It is important to notice that three points P_{2}, O and P_{4} lie on a straight line. This can be easily proved, because the figure $O P_{2} P_{3} P_{4}$ is similar to the figure $O P_{2}^{\prime} P_{3}^{\prime} P_{4}^{\prime}$. The other optimal trajectories and their switching curves can be obtained by geometric expansion, for outside the circle as shown in Fig. 3. Likewise optimal trajectories can be obtained for inside of the circle, by using another transversality condition. Now the synthesis is made for both outside and
inside of the circle as shown in Fig. 4. Since all the trajectories consist of two kinds of ellipse, synthesis can be accomplished by geometric procedures. To test the validity of this geometric synthesis, analog computation-technique is used. The curves shown in Fig. 5 are optimal solutions of x^{1}, x^{2}, ψ_{1} and ψ_{2}. These curves agree well with the above results.

(a)

(b)

Fig. 2 Geometric method oflisynthesis

It must be noticed that Pontryagin's maximum principle provides only necessary condition, and does not provide sufficient condition. Furthermore, uniqueness is not always satisfied. In the present case sufficient condition and uniqueness are not guaranteed analytically, but only uniqueness is known from the geometric figure, because there are no overlapping trajectories in Fig. 4.

Fig. 3 Synthesis of optimal parametricuexcitation for outside of the circle, when $\ddot{x}+[1+u(t)] x=0,|u| \leq 0.5$

Fig. 4 Synthesis of optimal parametric excitation for outside and inside of the circle, when $\ddot{x}+[1+u(t)] x=0,|u| \leq 0.5$ $u=-0.5$ for shaded regions, and $u=0.5$ for other regions.

Fig. 5 Optimal solutions by analog computer

Conclusion

An $L-C$ resonant circuit with variable capacitance is dealt with when the circuit corresponds to the differential equation of the second order. The objective is to determine the optimal variation of the capacitance in order to induce or suppress the oscillation. From both engineering application and mathematical interest it is supposed that the value of the capacitance $C(t)$ is positive and bounded between two finite values. Under these assumptions mathematical formulation of this problem coincides with the optimal problem of Pontryagin. Thus, Pontryagin's maximum principle and transversality condition are used in order to obtain the optimal trajectories and their switching curves so that an initial phase point may move toward a terminal circle in a minimum time. Synthesis is made on the phase plane for both outside and inside of the terminal circle.
The value of the capacitance takes either minimum value or maximum value, that is, the capacitance varies in bang-bang type. From the synthesis it is obtained that the capacitance changes its value four times when the argument on the phase plane increases by 2π. In other words it is $1 / 2$ subharmonic type of oscillation. Thus it is most effective to make parametric oscillation of $1 / 2$ subharmonic type in order to induce or suppress the oscillation in a minimum time.

Mathematical treatment depends mainly on Pontryagin's maximum principle that provides only necessary condition. Therefore, the synthesis obtained here consists of the necessary condition for this time optimal problem. The sufficient condition and uniqueness are not proved analytically.

References

(1) L.S. Pontryagin : The Mathematical Theory of Optimal Processes, 1961.
(2) R.Bellman : On the Bang-bang Control Problem, Quart. Appl. Math. 14, pp. 11-18, 1956.

[^0]: A part of tnis paper was submitted to International Conference on Microwave， Circuit Theory and Information Theory，held in Tokyo，September， 1964.
 ＊佐 藤 力 Assistant Professor at Keio University

