EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Radiation from a current filament in an anisotropic plasma
Sub Title
Author K%, BIAHF(Oba, Yujiro)
Publisher BISRBAFRELSTIFH
Publication year |1963
Jtitle Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University (BEZRZ X F B RS T F AR E). Vol.16, No.62 (1963. ) ,p.47(1)- 55(9)
JaLC DOI
Abstract The radiation field from a current filament is calculated. The filament is located in a homogeneous,
anisotropic and unbounded plasma medium and carries travelling electric or magnetic current. The
equation satisfied by propagation constants in the radial direction is obtained. Two sets of wave
modes are found corresponding to two propagation constants. The field from the current filament is
constructed by the superposition of two sets of wave modes in both cases of electric and magnetic
current filaments.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K0O50001004-00160062-

0001

BRZZBAZEMERIRD MU (KOARA)ICIEBE M TWLWAR OV TUY OEFIER. ThThOEEE, FLFLFHRLRTECREL. TOERMGEHFEEELCELST
REENTVET, 5|ACHLE> TR, BEFRELEZETLTIFALEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

Radiation from a Current Filament

in an Anisotropic Plasma
(Received September 10, 1964)

Yujiro OHBA*

Abstract

The radiation field from a current filament is calculated. The filament is
located in a homogeneous, anisotropic and unbounded plasma medium and
carries travelling electric or magnetic current. The equation satisfied by
propagation constants in the radial direction is obtained. Two sets of wave
modes are found corresponding to two propagation constants. The field from
the current filament is constructed by the superposition of two sets of wave
modes in both cases of electric and magnetic current filaments.

I. Introduction

For several years the propagation of electromagnetic waves through a plasma
medium has been of interest to many authors®»%»%, A plasma in an external
magnetic field has anisotropic properties. As a result, two propagation constants
are possible in propagation through the plasma medium, that is, the plasma medium
has a doubly refractive property such as a crystal for light waves. Therefore
problems of propagation in anisotropic media are rather more complicated than
those in isotropic media.

According to some simplified assumptions for the plasma, Maxwell’s equations
for the plasma medium may be obtained by replacing a scalar dielectric constant
¢ for isotropic medium by a tensor permittivity.

The radiation from antennas in a plasma medium and the scattering of electro-
magnetic waves by a plasma medium have become very important in connectiomr
with reentry communication between a space vehicle and a terminal station.
Several papers on these problems have been published*®®. Using a dyadic Green’s
function, Kuehl has treated the radiation from a dipole in an anisotropic plasma.
Using a similar method in the two dimensional case, the radiation from an electric
or a magnetic current filament, which is infinitely long and clad by an anisotropic
plasma sheath, has been calculated by the author?”,

In this paper the radiation from an infinitely long filament, which carries a

* K 12 BisAr Department of Instrumentation Engineering, School of Engineering,
Keio University
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progressive electric or magnetic current in a plasma medium, is calculated. As is
expected, two propagation constants are obtained. The radiation fields in both
cases are obtained, by the suberposition of two modes corresponding to two prop-
agation constants. These propagation modes are the same as those given Epstein®.
These modes may be very useful for problems of scattering by a plasma column
or plasma sheath at oblique incidence of electromagnetic waves.

II. Maxwell’s equations in a magnetized plasma medium

Consider an electrically neutral, homogeneous and unbounded plasma. An elec-
tron in the plasma under an external magnetic field will be subjected to a Lorentz
force. As usual, a plasma frequency w, and a cyclotron frequency o. are defined.
In order to describe collisions between particles in the plasma, a collision frequency
v is introduced. The electric displacement D in the plasma is related to an electric
field E by

- = -

D=¢ - E,
where ¢ is the tensor permittivity defined in terms of these frequencies. When
the plasma is magnetized homogeneously in the z-direction of rectangular coordi-

==
nates, ¢ is written as?

e —jg 0
=] jg e 0 (1)
o 0 =2/,
where
_ 2 wpz(jw—{—u)
&= [1 J {(Go+ u)2+wcz}w]€°’

wpiw,

E= Gor vyt odie

1={1-i egye) o

“Thus Maxwell’s equations in the anisotropic plasma medium are

. vxﬁ=}+jw:;'ﬁ,
(2)

vfo = —jw H,

where E and H are the field intensities, ] is an impressed current density, and g,
is the magnetic permeability of the plasma which equals that of vacuum. In the
above vector quantities, a time dependence exp (jot) is assumed.

(2)
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III. Dyadic Green’s function for the anisotropic medium
From equation (2), one obtains
- = - . -
VXYXE—w e « E=—jop J. 3

Introducing a dyadic Green’s function:f“(;, ;’), the electric field E‘(;) at an observing
point is

— - = — - —- -
En=[Tar) -Ja)av, 0

14
where 7 and 7 are coordinate vectors of observing and source points respectively,

and the integration is performed over the volume V containing the source currents.
Substituting equation (4) into equation (3), one obtains

[toxvxT ) —wtme -T ¢,/ T @) dV'=—jouJ@). (6
14

_7(;) on the right-hand side of equation (5) is given by

— = - - - -

I =[T-J@se—r)av, ©)

|4
where T 1s the unit dyadic and ¢ (;—;’) is the Dirac delta-function. From equa-
tions (5) and (6), one obtains
= E = . = o o
(—VEU+VV—iyy &) « I'(r,7) =—jop,Ud(r—r'). )

Taking the Fourier transform of equation (7) with respect to ;, one obtains

= = - - . = o

AT (p,r)=—jop,U ™", (8)

= - - = - -
where I' (p, ') is the transform of I'(r,7),

7=p2 U "55—“’2#0? (9)
D=bui-+Dyj+pek, (10y

and ;, ; and k are unit vectors in x, ¥ and z axes, respectively. Premultiplying
-
by the inverse dyadic 17, equation (8) becomes
= - - . = o
I (p,7') =—jop, 27" .

Taking the inverse Fourier transform of the above equation, the dyadic Green’s.
function is obtained as

= - = : Q:) - -
TGy ==l [ [ [ 7075 dpedpy dp. an

(3)
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As calculated from equations (9) and (10), each of nine components of 7-1 is the
quotient of two polynomials in p., p, and p.. Because the polynomial in the nu-

merator of each component operates on the term exp[—ji; . (;—;’)], Pz, by and p,
in the numerator may be replaced by

0

= a
pﬂ—]g;:

—; 0
pﬂ—]ﬁy

b:=J 7z°
Interchanging the order of integration and differentiation, one obtains

= -

- : = ~ o
Par =D [ [ [ 2 7 dpedpudre (a2)

where |=2>[ is the determinant of 1 and D is the dyadic operator. From equations
(9) and (10), one obtains
|7’| _| PP—bat—?pye  —pupy+jwiig —pap: !
—bub:
p—pi—wtpey ||

—Dybe—joipeg PP—pyi—w e

—Diba —bDy
=—p o) +p.twuy [ 200 e 1 — (e + 1) (P=+ 57 ]
— ity [(pa?+py®) —0?pten 1 & (D +54") — o (e —g"M) ], 4
D= / Dsz  Day Dz
Dy, Dyy Dy "
D.. D., D.. /,
D= (% —VZ-—w’ﬂoe) (3%;_2) (152)
2
o) amr-em)
Duo== (Fs +iarsng) ()
| ) (15b)
Gewm) (o —v—oen)
D, = (az_zay +jteg) ) (15¢)
(% —vi—wtpe ) (Waza_z)
o= (3-%5 —jw’ﬂog) (%) (15d)
) (vom)

(4)
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D= (& —vi—orpee) ()
N N (15e)
(52—6;') (5;2 —V’—w’ﬂm)
e o) ()
- ) (15f)
(m —jwreg ) (53752) )
N - (15g)
(a225) @ |,
D.y=— (aa;z Vz-a)zlzoa) (aiay +je #og)
) . (15h)
(s22%) G |
D..= (:;2 Vz—cuz,uoe) (agay +je ,u.,g)
2 2 (15i)

Substituting equation (12) to equation (4), the electric field E (;) can be obtained
for a given distribution of source current density ,7 (;').

IV. Field from an electric current filament

Consider a filament carrying a progressive electric current I, exp (—jk.2+jot) in
the unbounded anisotropic plasma medium. The filament is located at a point
(%, y1) and it is parallel to the z-axis of the rectangular coordinate system.

Suppressing the term exp (jot), the current density ,—f (;’) is written as

JO") =1,6 (&' —x,) (' =) exp (—jkiz') k. (16)

Substituting equation (16) into equation (4) and performing integrations with
respect to x' and ¥/, one obtains

— ”_—_> - -
E@®=[T @,5,9.2) Iyexp (—jkiz) - kd7. 7

Integrating equation (17) with respect to 2/, and then p. after substitution of
equation (11) into equation (17), one obtains

E® =_j‘”/‘0210 D f : e—itaG=x)jpy Cy=yd—jksz « kdp, dp,. (18)
ir Yo |2 l

(5)
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Performing the transformation
Dpz=q cos B, bPy=qsin B, b+ Pl =45,
x—%=|p—p,|cos a, y—y=|p—p,|sin a,

equation (18) becomes

® 27 —- -
- - . = i B-a) -
E(r)=_.f_“;.ﬁ_‘;2ﬁpe-1k.z ffw gdqdp - k.

=

|

As is well known, the integration with respect to 8 yields

Y (N, P ]o(‘IIP Pll)
E() 27:(1)5DeJ zo q:—S:%) (q*— )qdq k

+w - -
il Byt [ HP =D g%
Do [ s bt da k. (19

Taking into account equation (13), it is found that S,2 and S, in equation (19)
are given by two roots of the equation

(e S+ — 0?1y ) (S*+H k2 —wPpge) + 0P pag? (S2—w?pen) =0. (20)

Closing the contour 1n the lower half-plane of the complex g-plane and applying
the residue theorem, equation (19) becomes

E(r)=E.Detz 51 (=)™ Hy®(Sn|p=pi]) + &, (21)

where

I,
Ee 4we (Sz 812) :

Using equations (14) and (15) for the dyadic operator ].=)> in equation (21), three
components of E(r) in rectangular coordinate system can be obtained. It is conveni-
ent, however, to describe the components of E (;) in the circular cylinder coordinate

system (p, ¢, 2). Applying the addition theorem to the term H,® (Sx| ;-—;ll) in
the case of p>p,, thrée components can be calculated as

E,=Eejkse itz 3 [(—1)™ 5 { (Fn) SuHa®' (Sn 0)
—(G) '%Z H,®(Snpe)} Jn(Sno) e7'n(<b—d>1):|’

Ey=E.jbsee 5 0(=D" 5 (Fw) 2 B (Snp) 22)

+(G) SmHn®'(Sm0) } Ju(Sn 1) e/m(#=41],

E,=E, e‘jk;zlg [(—1)msm2k;2 E{Z; ninnu) (Sn0) Ju(Smpy) ein(¢=$07],

(6)
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where p, and ¢, are circular cylinder coordinates of the source current and coef-
ficients (Fm), (G) and (L») are written as

(Fm) =+ Sui— 0,
(G) =j g,
(Lm) =Sn*—o? 1.

‘When the electric current is located at the origin, equation (22) becomes

E,=E.jkieitz 31 (—1)™(F) SmH, @' (Smp),

Ey=E,jk,e7ik:z 12’? (=D)™(G)SnHy®'(Snp), (23)
E,=E,e- sz 5% (—1)mS,2k,? %i; H,® (Snp).

V. Field from a magnetic current filament

Consider a filament which is carrying a progressive magnetic current K, exp
(—jk.2+jot), and is located along the z-axis of a cylindrical coordinate system.
The magnetic current may be regarded as the limit, as the radius tends to zero,
of a circular cylindrical electric current. Therefore the electric current density

Jr) =I,(—sing'i+cos ¢' 1) ek 6(p'—py) (24)
is considered in order to express the magnetic current.
Substituting equation (24) into equation (4), performing the integration with

respect to p’, 2/, p, and then p, and p,, after using the same transformation as in
the last section for variables p. and p,, one obtains

2%
B () — Ip, D o-ihaz
EO=grsitsn ) Do

. g ,—-: 12 - -
* (—sin ¢'i+4cos ¢' j) § (—D™Hy?(Sn| p—p,1]) d¢'.

Performing the integration with respect to ¢’ after applying the addition theorem
for Hy®(Sn| p—;ll), one obtains

E(;) = 2rley lf (=D™J,(Snpyr) Dok . (—sin go—z:+cos _:)H (S, p)
4“)5 (322—812) m ! mit SD] 1 mP).

In the limit of p, — 0, the above equation becomes

- - K, W G Btk s (—civ 3 e o
E(r)“4jw2yoe(szz_slz)§( 1)™Sm De k=2 - (—sin @ i+cos ¢ j)H, (Smp)‘)

(7)
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where K, is the amplitude of magnetic current and by definition
Ky=jopem p 1.

Using equations (14) and (15), three components of E (;) in the circular cylinder
coordinate system are obtained as

E,=E,e % 3: (—1)™Sn(Ln) Hy® (Snp),

Eo=Eyesh 5 (—1)Sn {8 {n) B, (S, ), (25)

E,=E,(—jk:) et 31 (—1)™ Sp2 Hy® (Snp),
where

— gKo
Ev=reSi—sm

IV. Conclusion

The field from a current filament, which is placed along the z-axis taken in an
anisotropic plasma medium, has been obtained and is shown by expressions (23)
and (25) in cases of electric and magnetic current filaments respectively. It is easily
found that the expressions (23) and (25) degenerate to those for the field from a
current filament in an isotropic medium by putting as ¢ =7, g=0 and S,=35,.

Two propagation constants S; and S; in the radial direction may be calculated
from equation (20). They are given in terms of wp, w., v and k,. Whether or not
radiation into the plasma medium occurs, will depend on these parameters.

Two sets of wave modes for two propagation constants S; and S, are obtained.
They agree with those shown by Epstein®. The field from the current filament is
constructed from the superposition of two sets of wave modes. Consider only the
modes for the propagation constant S,. Taking ratios of p-, ¢- and z-components
of electric field for the electric current filament to those for the magnetic one

respectively, it is easily found from equations (23) and (25) that all three ratios

are equal to jk,% Ei"‘g , that is, two electric field vectors for electric and magnetic
[ m

currents are parallel to each others. The same relation is also found between two
electric field vectors for the other propagation constant S,. It is noted that the
fact mentioned above is rather different from the relation between two sets of the
electric field vectors for the electric and magnetic current filaments in isotropic
media,

Two sets of these modes are very useful for the calculation of scattering by a
plasma column or plasma-clad metal cylinder at oblique incidence of the incident
waves,

(8)
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