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On a nonlinear but perfectly sinusoidal oscillator 
(Received March 23, 1964) 

Hiroichi FUJIT A骨

Abstract 

Wave form of a nonlinear oscillator is usually distorded. But in this paper 
some examples of nonlinear osci11ators are shown whose wave form are perfect1y 

sinusoida1. The nonlinear di任erentialequation for such osci11ator and the exact 
solutions are discussed. 

I. Introduction 

An osci1lator contains general1y some active elements, such as a transistor 01'・ a

vacuum tube. Energy generated from such active elements compensates for the 

energy lost in passive elements. If the active element has a linear characteristic 

and the dissipation is less than the supplied energy, the amplitude increases inｭ
finitely. If the loss from resistance in the circuit and the negative loss from the 

linear active element were exactly balanced , then the amplitude would be constant. 
But in such a condition the oscillation not being structurally stable can not be 

realized. 

An actual active element has a nonlineal'・ characteristic. At the initial state of 

oscillation, the amplitude is so small that the active nonlinear element may be 
regarded as linear and the amplitude increases exponentially. For a considerably 

large amplitude, the nonlinearlity of the active element suppresses the amplitude 
and the oscillator is maintained constantly. So the wave form of a nonlinear 

oscillator is usually distorted. 

However such distortion need not necessarily occur in nonlinear osci1lation. 

In other words, there may be a nonlinear osci1lator whose wave form is perfectly 
sinusoidal. In this paper, some examples of such sinusoidal nonlinear oscillators 
wi11 be shown and discussed. 

11. The nonlinear differential equation with sinusoidal solutions 

Nonlinear di百erential equation 

x" + � (x2 十 X'2ー l)x'十x=o (1) 

has sinusoidal solution合

x= sin t or x=cos t . (2) 
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This can be ascertained by direct subsitution. (1) above is not linear; the sum 
of the solutions is not its solution. But 

x=sin (t+~) 

is also a solution, where ~ is an arbitrary phase angle. 
This differential equation is considered as a special case of the equation 

If P=q=1 in (4), it becomes (1). 

If P=O and q = 1, ( 4) becomes van der Pol's equation. 
If P = 1 and q =0, it becomes Rayleigh's equation. 

(3) 

(4) 

Amplitude A of the solution of ( 4) which is obtained by the harmonic balance 
method is 

.../ q+3P · 
A 

2 
(5) 

A=2 for van der Pol's equation and A =2/ .../3 for Rayleigh's equation. For (1), 

A= 1. The former two amplitudes are not exact, but approximate. The latter is 
obtained without approximation. 

III. Nonlinear circuits corresponding to nonlinear 
differential equation ( 4) 

What kinds of circuits may be represented by the equation (1) or (4)? The dif­

ferential equation is of the second order, therefore it may be naturally supposed 

that the circuit contains one inductance and one capacitance. However no resonance 

circuit of L, C, and R, some of which have nonlinear characteristics is represented 

by the eq. (1) or ( 4). It is probably impossible to compose a circuit corresponding 

to such equations of simple two-terminal nonlinear elements. Then a slightly more 

complicated two-terminal nonlinear element must be considered. That is a mutual 

resistance which is defined as follows : 

i) A two-terminal nonlinear element whose voltage Vn depends on the current 

i in some other element, 

Vn =f(i). 

ii) A two-terminal nonlinear element whose current in depends on voltage v on 
some other element, 

in =g(v). 

Such characteristics often are found in vacuum tubes or transistors. 
Now consider a circuit composed of such elements and linear L and C and a 

(2) 
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simple two-terminal nonlinear element. An example is shown in Fig. 1. 

The equations of currents and voltages are, 

The notations are shown in Fig. 2. The nonlinear characteristics are 

1. 

Fig. 1. Fig. 2. 

Mutual resistonec. 

VN=/(ic) =/3Vn13
• 
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After simple calculation from these equations, a second order nonlinear differentinal 

equation for Vn is obtained, 

"+3g3 2 '+ f3 13 gl '+ 1 -0 Vn C Vn Vn LC Vn - LC Vn LC Vn- • (5} 

Normalize the time t by wt =-r, where w2 = 1/ LC and voltage by x =Vn/v0 where v0, 

is unit voltage. 
Then the equation (5) is reduced to 

where P=(3g3/gl)L, 

q=(f3/gl)/v'LC and e =gdv'LC. 

The dual circuit to this is shown in Fig. 3. 
It is also represented by the same type dif­
ferential equation. 
The plate tuned vacuum tube oscillator circuit 
is represented by such an equation. In Fig. 4 

( 3) 

(6) 

c 

Fig. 3. 
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t 

Fig. 4. Sinusoidal plate tuned oscillator. 

a nonlinear element has a saturation characteristic as 

• 3 
Vn=atL • 

The characteristic of the vacuum tube is represented by 

ip=-gv+g3v3 • 

The fundamental equations are 

ic=Cvp'. 

From these equations, the second order differential equation for h is obtained ; 

. "+3a. 2 • '+g3M. ,2 gM · '+ 1 . -O 
lL ytL lL LC ZL - LC lL LCZL- • (7) 

Normalize the time t=1:/w and transform the constants in this equation as follows 

P
_3a C . 2 ---lo gM , 

s=gMw. 

Then (7) is reduced to (6). If M 3g 3 =3aLC, then P=q=l and the solution of (7) 
is perfectly sinusoidal. 

IV. Forced oscillation to the equation (4) 

In forced oscillation of ( 4), the locking phenomenon of frequency is observed as 
in forced oscillation to the van der Pol's or Rayleigh's oscillator. 

The response curves are shown in Fig. 5. These curves are obtained by the 
harmonic balanced method. Substitute 

x=.£4 sin wt+B cos wt 

( 4) 
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x" + e (x2+x'2-l)x' +x=a sin wt, 
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where A and B are slowly varying time functions. Let A 2+ B2 = p and the response 
p for frequency w is expressed 

a2 = (l-w2
) p + (e /16)w2 p{ 1+3w2) p-4}2 

for (4). For van der Pol's equation 

a 2= (1-w2
) p + (e j16)w2 p { p -4}2, 

and for Rayleigh's equation 

a 2 =w2 p+(e/16)w2 p {3w2 p-4}2. 

The condition of stability for p are 

-v'l+3w2 p >2, 

( 5) 
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and 

The condition of stability for van der Pol's equation are 

p>2, 

and for Rayleigh's equation, 

v'3w2 P >2, 

V. The trajectories in the phase plane 

The trajectories on the phase plane for self-excited oscillation are shown in Fig. 6. 
a) is for the sinusoidal oscillator, b) is for Rayleigh's equation and, c) is for van 
der Pol's equation. These are obtained by analogue computer. 

The distortion of van der Pol's oscillator is larger than that of Rayleigh's oscil­
lator. The amplitude of van der Pol's oascillator is supressed by the nonlinear 
characteristic for x while in Rayleigh's oscillator x' suppresses its amplitude and x 

is its integration so it has a smaller distortion than x'. In a perfectly sinusoidal 

Fig. 6. 

{6) 

(a) 

oscillator, x2+x'2 control its 
amplitude ; there is no distor-
tion. 
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