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On a nonlinear but perfectly sinusoidal oscillator
(Received March 23, 1964)

Hiroichi FUJITA*

Abstract

Wave form of a nonlinear oscillator is usually distorded. But in this paper
some examples of nonlinear oscillators are shown whose wave form are perfectly
sinusoidal. The nonlinear differential equation for such oscillator and the exact
solutions are discussed.

I. Introduction

An oscillator contains generally some active elements, such as a transistor or a
vacuum tube. Energy generated from such active elements compensates for the
energy lost in passive elements. If the active element has a linear characteristic
and the dissipation is less than the supplied energy, the amplitude increases in-
finitely. If the loss from resistance in the circuit and the negative loss from the
linear active element were exactly balanced, then the amplitude would be constant.
But in such a condition the oscillation not being structurally stable can not be
realized.

An actual active element has a nonlinear characteristic. At the initial state of
oscillation, the amplitude is so small that the active nonlinear element may be
regarded as linear and the amplitude increases exponentially. For a considerably
large amplitude, the nonlinearlity of the active element suppresses the amplitude
and the oscillator is maintained constantly. So the wave form of a nonlinear
oscillator is usually distorted.

However such distortion need not necessarily occur in nonlinear oscillation.
In other words, there may be a nonlinear oscillator whose wave form is perfectly
sinusoidal. In this paper, some examples of such sinusoidal nonlinear oscillators
will be shown and discussed.

II. The nonlinear differential equation with sinusoidal solutions

Nonlinear differential equation

x”+e(x?Fx2—1)x'+x=0 ¢y}
has sinusoidal solutions
x=sin{ or x=cost. (2)

*8 B X — Dr. Eng., Assistant Professor at Keio University.
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This can be ascertained by direct subsitution. (1) above is not linear; the sum
of the solutions is not its solution. But

x=sin (t+¢) 3)

is also a solution, where ¢ is an arbitrary phase angle.
This differential equation is considered as a special case of the equation

x”+e(px't4gx?—1)x'+x=0. (€))

If p=qg=1 in (4), it becomes (1).
If p=0 and ¢g=1, (4) becomes van der Pol’s equation.
If p=1 and ¢=0, it becomes Rayleigh’s equation.

Amplitude A of the solution of (4) which is obtained by the harmonic balance
method is

2
A = m—
NETETE (5)
A=2 for van der Pol's equation and A=2/4/73 for Rayleigh’s equation. For (1),
A=1. The former two amplitudes are not exact, but approximate. The latter is
obtained without approximation.

III. Nonlinear circuits corresponding to nonlinear
differential equation (4)

What kinds of circuits may be represented by the equation (1) or (4)? The dif-
ferential equation is of the second order, therefore it may be naturally supposed
that the circuit contains one inductance and one capacitance. However no resonance
circuit of L, C, and R, some of which have nonlinear characteristics is represented
by the eq. (1) or (4). It is probably impossible to compose a circuit corresponding
to such equations of simple two-terminal nonlinear elements. Then a slightly more
complicated two-terminal nonlinear element must be considered. That is a mutual
resistance which is defined as follows :

i) A two-terminal nonlinear element whose voltage v, depends on the current
7 in some other element,

va=f(7) .

ii) A two-terminal nonlinear element whose current 7, depends on voltage v on
some other element,

in=g ).

Such characteristics often are found in vacuum tubes or transistors.
Now consider a circuit composed of such elements and linear L and C and a

(2)
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simple two-terminal nonlinear element. An example is shown in Fig. 1.
The equations of currents and voltages are,
Li+vn—ovn=0,
i=Cvn' +in.

The notations are shown in Fig. 2. The nonlinear characteristics are

-
f in ~
e

ﬁ/\w t.

Fig. 1. Fig. 2.
Mutual resistonec.

fn= —&1Un +g31)n3 ,
vy =1 (i) =Bv."3.
After simple calculation from these equations, a second order nonlinear differentinal

equation for v, is obtained,

n38s 0y 0 B oy B,y 1o .
Un +C Vnvn +ch,. chn+chn 0. (5

Normalize the time ¢ by wt=r, where w?=1/LC and voltage by x=v,/v, where v,
is unit voltage.
Then the equation (5) is reduced to

' +e (pxi4gx'i—1)x'4+x=0, (6)

where p=(3gs/g1)L,

g=(B/g:)/~/LC and ¢ =g,/s/IC. | L )\
The dual circuit to this is shown in Fig. 3. c = , }
It is also represented by the same type dif-
ferential equation.

The plate tuned vacuum tube oscillator circuit
is represented by such an equation. In Fig. 4 Fig. 3.

(3)
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Fig. 4. Sinusoidal plate tuned oscillator,

a nonlinear element has a saturation characteristic as
Un=air®.
‘The characteristic of the vacuum tube is represented by
ir=—gv+g;03.
‘The fundamental equations are
' ictir=ip,
vp=vn+LiL,
i.=Cuvy’ .
From these equations, the second order differential equation for 7z is obtained;

gaM _&M .

LC LC 1L=0. (7)

iL”'l"?)I‘ i+ iz +

C

Normalize the time ¢=t/w and transform the constants in this equation as follows

S - iM
IL=1¢X, Ay \/3ac ’
=3¢ C ., :&_
gM 0 C

e=gMuw.

Then (7) is reduced to (6). If M3g,=3aLC, then p=qg=1 and the solution of (7)
is perfectly sinusoidal.

IV. Forced oscillation to the equation (4)

In forced oscillation of (4), the locking phenomenon of frequency is observed as
in forced oscillation to the van der Pol’s or Rayleigh’s oscillator,

The response curves are shown in Fig. 5. These curves are obtained by the
harmonic balanced method. Substitute

x=A sin wt+B cos wt

(4)
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to the differential equation
x'+e(x?+x"?—1)x'+x=a sin ot ,

where A and B are slowly varying time functions. Let A?+B*=p and the response
p for frequency w is expressed

@*=(1—0") p+(e/16)w?p{1+430?) p—4}?
for (4). For van der Pol’s equation

@?=(1—0w?) p+(s/16)w?p{p—4}2,
and for Rayleigh’s equation

a?=w’o+(e/16)w?p {30?p—4}2.
The condition of stability for p are

V14302 p>2,

(5)
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and

(1/16) {3(1+3w?)2p2—16(1+3w?) o+ 16} +(a) —1) > 0.
The condition of stability for van der Pol’s equation are

p>2, (1/16)3p2—16p+16}+ =D 5 o,

and for Rayleigh’s equation,

V302 0>2,  (1/16){3(30?) p? —16(3w2)p+16}+(w —1) >0,

V. The trajectories in the phase plane

The trajectories on the phase plane for self-excited oscillation are shown in Fig. 6.
a) is for the sinusoidal oscillator, b) is for Rayleigh’s equation and, c¢) is for van
der Pol’s equation. These are obtained by analogue computer.

The distortion of van der Pol’s oscillator is larger than that of Rayleigh’s oscil-
lator. The amplitude of van der Pol's oascillator is supressed by the nonlinear
characteristic for x while in Rayleigh’s oscillator x’ suppresses its amplitude and x
is its integration so it has a smaller distortion than x’. In a perfectly sinusoidal
oscillator, x*+x'2 control its
amplitude; there is no distor-
tion.
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