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On Virtual Mass of Water contained 

In a Rectangular Tank, whose 

Side-Walls are Vibrating-VIII. 
(Received May 22, 1963) 

Fumiki KITO* 

Abstract 

When side-walls of a rectangular tank, which is filled with water, are vibrating, 
the inside water will also make a vibratory motion. This motion of water low
ers considerably the natural frequency of vibration of side-walls of the tank. 
This effect is· conveniently expressed by "vir.tual mass" of water. In the pre
vious reports, I to VII, 0 of the same title, the author has made theoretical stud
ies on the value of "virtual mass" of water, and examined various factors af
fecting it. Especially, in the report VI, an approximate formula for the virtual 
mass was given for the case in which two opposite (rectangular) side-walls are 
vibrating in a mode which correspond to the case of "rectangular plate with 
clamped four-edges." The calculation was made, by assuming tentatively, the 
mode of vibration of the rectangular plate. 

The question of degree of accuracy of this approximate formula will naturally 
be raised. In the present report VIII, this question of degree of accuracy is 
taken up. The treatment may be said to be a case of hydro-elasticity. A set 
of normalized orthogonal functions (which correspond to the mode of free vibra
tion of elastic bar with fixed ends) is used. The transverse displacement w of 
the rectangular plate in vibration is expressed as a double infinite series of these 
set of. functions. Putting this expression into the equation of vibratory motion 
of rectangular elastic plate (wherein, the effect of vibratory water pressure is 
taken into account), a system of linear equations about the component ampli
tudes Aa; 13 (a, [3= 1, 2, 3, ...... ) is obtained. And, thence, equations for Aa;f3 is 
made, by means of which the values of Aa;f3 can be obtained by successive (it
erative) approximations. We start with An= 1, and all the others ( Aaf3 ) = 0, 
which we regard as the zeroth approximation. And, we are to calculate first, 
second, ...... , approximate values. 

Numerical examples for the case of (A). B :H: L = 1:1:2, and (B). B: H: L 

= 1: 1: 1, are shown. It is seen that the values of A 12 / An, Aa1 / Aw ...... , are com

paratively small, but not so small enough to say that we may neglect them at 

all. It is concluded that, we may use the approximate formula given in our 

report VI, for practical purposes, on the undererstanding that they give olny 

approximate values. 

*~ ~ _R ~ Dr. Eng., Professor at Keio University. 

1> F. KITO This Proceedings; I, Vol. 11, No. 40 (1958); li, Vol. 12, No. 46 (1959); 

TIL Vol. 12, No. 47 (1959); IV, Vol. 13, No. 49 (1960); V, VI, VII, Vol. 15, No. 56 

(1962). 
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On Virtual Mass of Water contained in a Rectangular Tank- VIII. 67 

I. Introduction 

The author has already made seven reports under the same title as the present 

paper. In the reports I to VI, approximate formulae for natural frequency of vi
bration of rectangular elastic plates, which constitute side-walls of rectangular 

water tank, have been given for different cases. It is to be noted that approximate 

formulae in these reports were obtained by calculation of kinetic energy (of water 

and the plate) and the potential energy (of the plate), assuming tentatively the 

mode of transverse vibration of the rectangular plate. 
In the report VII, a consideration was given about the degree of accuracy of 

the approximate formula, restricting ourselves to the case of side-walls which are 

in state of "rectangular elastic plate with simply supported four edges." Now, in 
the present paper, we shall take up the case of side walls which are in the state 
of "rectangular elastic plate with clamped four edges. " And, shall examine the 
degree of accuracy of the approximate formula (already given in the report VI) 
for the natural frequency of vibration. 

The conclusion is, in a word, that the degree of accuracy of the approximate 
formula given in the report VI, is not so good as in the case of "simply supported 

four edges," but that it may serve as a practical approximate formula. The cal
culation throughout is made, by assuming water (or, other fluid) to be an incom
pressible non-viscous fluid, and that the vibration amplitude is infinitesimally small. 

Our treatment may be said to be dealing with a problem of hydro-elasticity. 

II. Notation 

Generally, the same notations as in our previous reports, will be used here. 
It is to be noted that here we use a system <prx ( ~ 1) of normalized orthogonal func
tions, as defined below, and some coefficients arx~, F If.;/ L, G11 j/ H, Qrxf3, etc., which 
are related to them are also used. We refer to a rectangular water tank as shown 

z 

H 
~--------~--~--,r-X 

l_IIL..-----"1 jah 
I L 1/B~ r--- . I /~!. 

Fig. 1. A sketch of rectangular 
water tank. 

in Fig. 1. 
L =length of the rectangular water tank, 

H =its height, B =its breadth, V =its in
side volume, cp =velocity potential which 
represent the vibratory motion of water. 
(x, y, z) =rectangular coordinates, w = 
transverse displacement of the rectangu
lar elastic plate, which constitute side
wall of the tank, A =amplitude of vibra
tion of the rectangular plate, w 0 =wA = 
amplitude of diplacement velocity of ditto, 
w =angular frequency of natural vibra
tion, t =time, Pw =density of water, 

(31) 



68 Fumiki KITO 

Pm =density of the material composing the plate, h =thickness of the plate, D =its 
flexural rigidity=(1/12)Eh3/(1-2J 2), £=Young's modulus, lJ=Poisson's ratio, 
p =water pressure due to vibratory motion of water, yr2 =Laplacian operator= caz 

;ax2)+(a2jaz2), m 1, m 2 , •••••• =eigenvalues defined below, e 1 =(x/L)-(1/2), r.~=(z/H) 
-(1/2). m=rr:/L, s=rr/H, nti=[(im) 2+(js)2Jll2. 

III. Fundamental equations of our problem 

Let us consider a rectangular water tank, as shown in Fig. 1, inside which water 
is filled up. In this report VIII, we mainly take up the case of two opposite side
walls (LxH) vibrating in phase, or in opposite phase, each other. The top sur
face at z =H will be considered as a free surface. We restrict ourselves to the 
case of infinitesimally small vibrations of an incompressible, non-viscous fluid. 
Furthermore, we assume that two panels (L x H) of side-walls are in the state of 
"rectangular elastic plate with clamped four edges. " 

The fundamental equation for our problem of free vibration is taken in the 

form:-

00 00 

w =I: I: A/-41lcpfl(el)cp11(Cl)sinwt, 
J.!.=l 11=1 

q, =I: I: Bii/ii(Y) cos mix cos sjz cos wt. 
i j 

(1) 

(2) 

(3) 

(4) 

(5) 

Equation (1) is the equation of transverse vibration of the a rectangular elastic 
plate, wherein the effect of (vibratory) water pressure p acting on it is taken into 
account. Equation (2) gives the value of the water pressure p in terms of the 
velocity potential cj>, for the case of small vibrations. (5) is the solution of Laplace's 
equation yr2cj> =0, together with boundary condition of our problem. (3) gives the 
value of p as derived from (5). We are to take i =0, 2, 4, ...... ; j = 1/2, 3/2, 5/2, 

•.•... • We take 

[i1 (y) =cosh(ni1y), 

for the case of opposite-phase vibration of side-walls, while we take sinh (niiY), 

instead of cosh (n0 y). Also, we have 

We use a doubly-infinite series of the form (4) to express the transverse 

(32) 
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displacement w of the rectangular plate. The set of functions cpp. ( ~ 1), cp. (s 1) are 

defined below : 

~ 
The set of functions cpp.(~ 1 ) are to be 

solutions of linear differential equations 

··~~=_!_~ I ~=~0 d4cpp.(~ 1) =m 4cp (!! ) 
d~14 p. p. '>.1 , 

! 5'; (t,) together with the boundary conditions 

Fig. 2. A Set of fuuctions cpiXI C~1). 

where we take f1 = 1, 2, 3, ... . . . . mp. are 
the value of .u-th eigenvalue. For odd 
p, cpb cp3, ..••.• are even functions, while 
for even p, cp2, cp4, •••••• are odd functions. 
(see Fig. 2). 

CfJp. ce 1) (p = 1, 2, 3, 4, ...... ) are to conststute a set of normalized orthogonal 

functions. Actual expressions for cpp.C~1) are as shown below: 

( i ) . Case of even functions (p = 1, 3, 5, ...... ) , 

(6) 

AP. = (1/Cp.)sinh ( ~ mp.), B~~- = (1/C~~-) sin ( ~ mp.), 

[2Cp.] 2 =coshm~~--cosmp.+3(coshmp.-1) sinmp. +3(1-cosmp.) sinhmp. . 
mp. mp. 

(ii). case of odd functions (1J =2, 4, 6, ...... ), 

CfJv(~ 1) =Avsinmve1+Bvsinhmll~b (7) 

A11 =(1/Cll)sinh(~mll), Bli=-(/C~)sin(~ mv), 
[2Cv] 2 =Coshmll-cosmv-3(1-cosmll) sinhmll_ (coshm11 -1) sinm11 • 

m11 m11 

For both cases of (6) or (7), by putting the boundary conditions to them, we 

see that mp. must be roots of the equation 

1 =coshm · cosm. (8} 

IV. Coefficients appearing in the expansion about cpp.(~ 1 ), cp.(s 1) 

The values of mp. have already been given, in connection with the problem of 

free-vibration of an elastic bar with fixed ends. So, we have 

3rr m 1 = 4. 7300 = 2 +0. 0176, 

(33) 
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3 5nmz=7.85 = 2 -0.0009, 

Fumiki KITO 

7n-m3 = 10. 996 = 2 + 0. 00001, 

That the set of functions <p"(~ 1), <p"(~ 1) are orthogonal to each other, and that 
we can expand a given function F ( ~ 1) in an infinte seres of Fourier's type (of 
course, on some restrictions about the nature of function F(~ 1) ), have already 
been pointed out. (see, for example, A. Kneser, Integralgleichungen). In the fol
lowing calculations, we require some coefficients which depend on <p" (~ 1). We 
shall here mention them, giving their expressions. 

It is to be noted that a"a =aa". Also, that (i) when a is odd but p. is even, or 
(ii) when a is even but p. is odd, we shall have a"a=O. (iii)when p., a are odd 
(that is, <p" and <pa are even functions), we have 

- (m")2 
a"fXI- C"CfXI • A, 

A
1
+A

4
= -[sinhm"sinhmfXIl· [sinHm"+mfXI) + sinHm"-mfXI)J 

2 2 ~ m"+mfXI m"-mfXI 

+[sin m"sin mfXI] • [sinhHm"+mfXI) + sinHm"-mfXI)J, 
2 2 m"+mfXI m"-ma 

A A _ -2 [ · hmfXI · hm"{ . mfXI m" . m" ma,} 2+ 3- (m") 2 +(mf11) 2 sm 2 sm 2 mf11sm 2 cos 2 -m"sm 2 cos 2 

+sin ~a, sin~" { m" sinh~" cosh ~a~ -mfXIsinh ~a~ cosh~"} J · 

Also, following coefficients F"i/L, for i=O, 2, 4, ...... , and G ... j/H, for j=1/2, 3/2, 

5/2, ...... , are required; 

F. SL 1 L~ = 
0 
<p/l.(~1)cos(mix)dx • L' c ... j JH cr) . a 1 I[= 0 <p ... ~1 COSSJZ z. H • 

Their actual values are : 
For an odd value of p., 

(34) 
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For an odd value of lJ, 

+ B 1r j 2 [ · h mv rrj · h mv · 1r j] 
licos 2 . (mv)2 + (7rj) 2 mvsm ycos 2 +nJ cos ysm 2 . 

(iv). When lJ and a are'even (that is, Cf!v and cpa, are odd functions), we have 

where A=Av+A2+A3+A4, with 

Al+A, =-[sinhmvsinhm~»J. [sin! (mli-m~») _sin! (mli+nt~»)J 
2 2 m11-m~» m11+ma 

+[sin mvsin ma] [sinh t (mli+ ma)- sinhl(mv-ma)]' 
2 2 mli+ma mv-ma 

A +A 2 [ . h mv . h ma { . ma mv + . mv ma} 
2 3 = (mv) 2·+Cma) 2 sm 2 sm 2 · -mvSm 2 cos 2 masm 2 cos 2 

+ sin masin mv {m sinh mvcosh ma -m sinh macosh mv} J 
2 2 a 2 2 11 2 2 • 

Also, we have, for even values of lJ, (cpv(c;l)being odd functione), 

F,.; =0 (i =0, 2, 4, ...... ), 

Gvi = -A11 sin nj[sin! (mli-,nj) _sin! (mv-f:rrj)J 
H 2 m11-n} m11+rr; 

B . rrj[ . nj hmv · nj · hmv] 2 
- 11Sln -

2 
mv Sln -

2 
COS -

2 
-TCJ COS -

2 
Slll -

2 
• (mli) 2 + (nj) 2 

(j = l' 3/2, 5/2, ...... ) 

Lastly, we have, 
for odd values of a; 

= _!_ ( B ) 2 [ 1+ sinh ma] aaa 2 ma a ma . 

while for even values of lJ ; 

1 ( B) 2[sinhm11 J a1111=- m11 v ----1 
2 m11 

1 ( A ) 2 [ 1_sinmv] - 2 m11 11 m;- · 

V. The solution of fundamental equation of vibration in 
form of a doubly infinite series 

71 

At first, we transform the value of water pressure p which act on the face of 

side-wall, as given by (3), into a doubly infinite senies of the form of expsession 

(35) 



72 Fumiki KITO 

( 4). For that purpose, we write down the condition that on side-wall we have 
aq,;ay=aw;at, from the equations (4) and (5), thus; 

="f~BiJ!'iJ( ± ~) cos(mix)cos(sjz)cos wt 

Next, multiplying by cos (mix) cos (sjz), the both sides of this equation, and 
integrating for x=O to x=L, and z=O to z=H, we have, 

wherein we are to take s =2 if i =0, but s =4 if i =1=0. Putting the values of BiJ 
thus obtained into the equation (5), we have, 

"' _ "' "' s lo ( B I 2) ;., ;., A F G 
'~"- L~ L~ LH f'. (v/2) L~ L~ pv pi vj 

~ J ~j D p=l ").=1 

cos(mix)cos(sjz) • w cos wt 

= ~ ~Ca.s~a(,;l)~.s(sl) wcoswt 
a, fJ 

(9) 

(9a) 

The coefficients Ca.a can be obtained by multiplying both sides of equation (9) 
by ~a(,;l) ~.sCs1) and integrating, thus; 

(10) 

where we put, 

As before, we are to take i=O, 2, 4, ...... ;j=1/2, 3/2, 5/2, ....... a and {3 arein-
tegers. We put the value of (9a) into the fundamental equation (1), taking into 
accaunt the equation (2). Furthermore, we have, by multiplying by ~a(,;l) • ~p(sl), 

and by integration; 

[n (~:4 

+ n;4

) -kw2](LH)Aa.a 

2D 00 00 

+ LH~ ~ apaav,sApv-Pww2 (LH)Ca.a=O 
p=lll=l 

(11) 

where we put k = Pmh. 

This equation (11) is a homogeneous linear equation with respect to coffi.cients 
Aap, which represent different component amplitudes of vibration of flat plate (con
stituting side-wall of rectangular water tank). (11) has a system of non-all-zero 

(36) 
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values of Aap as the solution only for specified values of w. This eigen-value of w 

is a root of determinantal equation ~ =0, the determinant ~ being constructed by 
the array of coefficients of Aap in equation (11). This determmant ~ is of infnite 
orders. For a practical estimation, we shall have to take only finite number of 
coefficients, for a= 1, 2, ...... n, and f3 = 1, 2, ...... n, thus making the determinantal 
equation ~ =0 an algebraic equation of order n with respect to w 2• 

In the numerical illustration given in the following section, we do not adopt this 
procedure, in order to avoid heavy numerical calculations. We can show that the 
approximate evaluation given in our report VI, is just the same as assuming A 11 

=1 and all the other Aap's=O, in the equation (ll), and thence obtaining an ap
proximate estimate for w2• So that, if we could show, by some means, that actu-
ally the values of the ratios of component amplitudes Aap/ Au (for a> 1 and f3> 1) 
are very small, the approximate formula given in report VI may be said to be 
accurate. Thus the values of Aa,a/ A 11 (for a> 1, f3 > 1) would give us a measure 
about the degree of accuracy of our approximate formula given m report VI. The 
estimation of numerical values along this line of thoughts will be given here. 

For this purpose, it is convenient to rewrite the equation (ll) in the following 
form:-

(12) 

VI. Tables of numerical coefficients 

For making the numerical evaluation mentioned in the previous section, we re
quire numerical values of various coefficients involved in equation (12). First, 
putting 

where we have 

(.B)2 B) 112 
noB=n[ zL + ( JH J , 

we need the numerical values of the coefficients defined by 

H· 1·=_!!_ · Zi1·=niiBtanh(_!_nt1·B). 
' rrZ0 ' rr 2 

We take up two cases (A); B: H: L=1: 1: 2, and (B); B: H: L=1: 1: 1. Nu
merical values of Zii for the case A is given in Table 1,. while Table 2 gives us 
those values of Zii for the Case B. Next, the numerical values of Q"fJ, defined by 

QafJ = (f) 4ma4+m,a4 

(37) 
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are given, in Table 3 for the Case A, and in Table B for the Case B, respectively. 

Values of a"""' F"d L and G"i/H are shown in Tables 5, 6 and 7 respectively. It is 
to be noted that numerical values of Tables 5, 6 and 7 are independent of the 
proportion B: H: L of the rectangular tank. Lastly, some numerical values of 

afl 
the coefficients M;." have been calculated for the Case A, and are given in 

Table 8. 

Table 1. Value of Zii· 

CaseA; B:H:L=1:1:2. 

~'~I i=O 
I 

2 
I 

4 
I 

6 I 8 

1/2 I 0.3279 ~ 1. 053 I 2.062 I 2.06 
I 

4.03 
I 

3/2 I 1. 473 
I 

1. 791 I 2.50 
I 

3.37 
! 

4.27 

5/2 I 2.50 
I 

2.692 I 3.202 
I 

3.90 I 4.72 
I 

I 
I 

I I I 7/2 3.50 
I 

3.64 4.03 4.60 5.32 

9/2 I 4.50 
I 

4.61 
I 

4.93 
I 

5.41 
I 

6.03 

Table 2. Value of Z iJ· 

Case B; B: H: L=1: 1: 1. 

~~I i=O 
I 

2 
I 

4 
I 

6 
I 

8 

I I 

I I I 1/2 0.3274 
! 

2.062 4.031 6.02 8.01 

3/2 I 1. 473 
I 

2.50 
I 

4.272 I 6.18 I 8.15 

5/2 I 2·50 
I 

3.202 
I 

4. 717 
I 

6.50 I 8.38 

7/2 
I 

3.50 
I 

4.03 
I 

5.25 
I 

6.95 I 8.73 

9/2 
I 

4.50 
I 

4.93 
I 

6.03 I 7.50 
I 

8.98 I 

! 

(38) 
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Table 3. Value of Qa-f3. 

Case A; B/L=0.50, B/H=l.O 

I 
a=1 

I 
a=2 

I 
a=3 

I 
a=4 

I 

I 

I I 
f3=l 533 

I 

752 1255 3130 
I 

2 
I 

3833 
I 

4050 
I 

4555 
I 

6430 

3 
I 

12100 
I 

12350 
I 

12860 I 14730 
I 

4 
I 

39500 
I 

39750 
I 

40260 
I 

42100 

Table 4. Value of Qaf3. 

Case B; B/L=l.O, B/H=l.O 

I 
I 

I 

I 
a=1 

I 
a=2 

I 

a=3 a=4 
I 

{j=1 
I 

1000 
I 

4300 
I 

12600 
I 

40100 

2 
I 

3800 
I 

7600 
I 

15900 

• 

43300 

3 
I 

12100 
I 

15900 
I 

24200 
I 

51600 

4 
I 

39500 
I 

43300 
I 

51600 
I 

79000 

Table 5. Value of a~Lv· 

I 
,u=1 

I 
,u=2 

I 
,u=3 

I 
,u=4 

a=1 
I 

-12.3 
I 

0 
I 

-5.46 
I 

0 

2 
I 

0 
I 

-108.8 
I 

0 
I 

-0.038 

3 
I 

-5.46 
I 

0 
I 

-99.9 
I 

0 

4 
I 

0 
I 

-0.038 
I 

0 
I 

-257.0 

(39) 
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Table 6. Value of F p.i/L. 

I 
,u=l 

I 
,u=2 

I 
.u=3 

I 
,u=4 

£=0 
I 

0.828 
I 

0 
. 

-0.364 
I 

0 

2 
I 

-0.392 
I 

0 
I 

-0.409 
I 

0 

4 
I 

-0.0171 
I 

0 
I 

+0. 520 
I 

0 

6 
I 

-0.0031 
I 

0 
I 

+0. 0481 
I 

0 

8 
I 

-0.0010 
i 

0 
I 

+0. 0139 
I 

0 

Table 7. Value of Gvi/H. 

I 
Y=1 

I 
Y=2 

I 
Y=3 

I 
Y=4 

j=1/2 
I 

0.563 
. 

-0.0335 
I 

-0.209 
I 

+0. 0019 

3/2 
I 

-0.391 
I 

-0.666 
I 

-0.1076 
I 

+0. 025 

5/2 
I 

-0.170 
I 

+0. 521 
I 

-0.422 
I 

+0.0393 

7/2 
I 

-0.0198 
I 

+0. 375 
I 

+0.456 
. 

+0.280 

9/2 
I 

-0.0286 
I 

-0.1123 
I 

+0.238 
I 

-0.557 

Table 8. Va:lue of ~~(Case A). 

I I /1=1 I /1=2 I /1=3 

,u=1 I 1.740 I 0.169 I -0.471 
a=1 

I I I 
2 0.169 0.780 0.222 

A=1 

I I I 3 -0.471 0.222 0.363 

a=1} ,u=1 I -0.396 I 0.012 I 0.144 
A=3 

I I I 2 0.012 -0.035 -0.010 
a=3} 
A=1 3 I 0.144 I -0.010 I -0.058 

,u=l I 0.882 I 0.158 I -0.140 
a=3 

2 I 0.158 I 0.624 I -0.067 
A=3 

I I I 3 -0.140 -0.067 0.210 

(40) 
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VII. Numerical example of the coefficients A,~' of the component 
amplitudes of vibration 

Writing for shortnes 

kH4 PmhH4 

Kz=n=-n-, 

the equation (12) can be given in the form ; -

K.=PwH4B • D , 

[Qai.B-Kzw2
] AatS = K4w 2 [CatS! B] -2K3 I: I: apaavtSAJ-lll, 

iJ. ')I 

where we have, 

77 

(13) 

(14) 

By virtue of symmetry about x =L/2, we have AatS =0, for even values of a. 

Assuming, in equation (13), that a is an even integer, and noting that A~-'"=0 for 
p. = an even integer, the equation (13) becomes 0 =0, justifying the above men
tioned inference. From equation (13), we have, 

AatS =[ (K4w2
) ~~ (M:~/B)Apv-2K3~~ apaavtSAI-'v J 7 [ Qaifl-K2w2

] (15) 

(0). The zeroth approximation, 

If we assume that Au =1, while all the other coefficients A"" are equal to zero, 
we have, by putting a= 1, f3 = 1 into the equation (15), 

[ Q11 -K2w2
] + 2K3CaD =K4w (Mit/B) (16) 

From which, we can derive an approximate formula for K 4w2• We can see by 

retracing the calculation given above, that this value of K 4w2 will be just the 
value obtained by calculation of energies, the transverse displacement w being 

given tentatively by, 

w=so~C~~) so~C~~) sinwt. 

Actual value of K4w 2 will be slightly different from this approximete value. 

( I ) . The first approximation. 

Putting the values A 11 = 1, other Aa,a's =0, and also the approximate value of K 4w2: 

found above, into the "right hand side" of the equation (15), we obtain, 

Aap=[ K4w2 (M:~/B) -2K3 (a 1aa 1t9) J 7 [ Qaifl-K2w4J. (17) 

This is a set of values of Aap, which we may call the first approximate values. 
( l[). The second approximation. 

Next, putting the first approximate values of AatS into the "right hand side" of 

the equation (15), we obtuin values of AatS which may be called the second ap
proximation. 

(41) 
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We proceed further this process of the iterative evaluation, if necessary. 
It is to be pointed out that, for every step of calculation, we must also readjust 

the value of K 4w 2, in order to be exact. By carrying out some numerical estima
tions, we find that, so long as we are seeking after the order of magnitudes of 

ratios Aap/ A 11 , and not necessarily their exact values, we may stop at the second 
approximation, wherein the value for K 4w 2 is used as the value given by the equa

tion (16). We carried out this process of calculation for the Case A and Case B, 
as mentioned above. The values for the first approximation are shown in Table 9 
and Table 10. The second approximate values of Aap are shown in Table 11, 
which correspond to Case A. (The same table for the Case B is omitted, because 
it offers us no different inference. ) Looking at Tables 9 and 11, we note that 
actual values are considerably different, but that the order of magnitudes remain 

Table 9. Value of AAIJ.· 

Case A; First approximation. 

I 
,u=1 

I 
,u=2 

I 
,u=3 

A=1 
I 

1 
I 

0.0145 
I 

-0.0154 

A=3 
I 

-0.133 
I 

0.0158 
I 

0.0025 

Table 10. Value of AAIJ.• 

Case B; First approximation. 

I 
,u=1 

I 
,u=2 

I 
,u=3 

A=1 
I 

1 
I 

0.0325 
I 

-0.0177 

A=3 
I 

-0.0436 
I 

0.0097 
I 

0.00305 

Table 11. Value of A1J.r. 

Case A; Second approximation. 

I 
,u=1 

I 
,u=2 

I 
,u=3 

A=1 
I 

1 
I 

0.0104 
I 

-0.0109 

A=3 
I 

-0.098 
I 

-0.020 
I 

0.00393 

(42) 
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the same. Also, we see, faom Table 11, that there appear a value of A31 which is 

about equal to -0. 100, and which may be not said to be quite small. 

VIII. Concluding remark which follow from the numerical example 

As was mentioned obove, the values of Aafl(a>1, J3>1) are small compared with 
Au(which is taken=l), but, as there appear the value A3 h which amount to -0.10, 

we may not claim that we can quite neglect all of Aafl(a>l, J3>1) in comparison 
with A 11• This fact shows us that the value of K 4w 2 given by (16) [which cor

respond to the case of A 11 = 1, all the other Aafl's being =0], could not be said to 
be very exact. The state of matters is rather different from the case of rectan
gular plates (side-walls) whose four edges are simply supperted (and discussed in 

the report VII.) But, as we infer from the calculation of strain energy (given in 
the next section), the equation (16) may serve as an approximate formula for 

practical uses, without claiming that it is very accurate. 

IX. Strain energy of deformation 

When the displacement of the rectangular plate is given by (4), its strain ener

gy will be obtained by making estimation of the formtla, 

Pm=-D --+-- -2(1-v) ----- -- dxdz. 1 J J [ (iJ2w iJ2w) 2 {a2w a2w ( a2w) 2 } J 
2 ax2 az2 ax2 oz2 axaz (18) 

We have, for instance, 

In carrying out the integration indicated by the formula (18), we note that we 

have, 
1/2 1/2 

f cpa''(~ 1)cp>-.."(~ 1)d~ 1 =m>-.. •f cpa(~1)cp>-.. (~1)d~1 
-1/2 -1/2 

by virtue of the equation 

= 1 m1\ if a=.A, 

0, if a=F .A, 

and the boundary condition that cp>-..(±!) =0 and cp/(±!) =0. Also, we have, 

1/2 1/2 

f cpa'(~ 1) cp/ (~1)d~ 1 =-f cpa(~ 1)cp/'(~1)d~ 1 = -Ga>-... 
-1/2 -1/2 

(43) 
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Thus, it is seen that, 

1/2 1/2 

f d~1s ds1[(~) (~)- (~)
2

] =0 -1/2 -1/2 ax 2 az2 axaz . 

In this way, we obtain the final formula; 

Pm= ~ ~f(sin2 wt)[~f{(frma4 +m~4}A:~ 

+2 ( f r~~~~ aaAa~pAa~AAp J (19) 

Also we have, for the kinetic energy T m of the vibration of the rectangular 

plate; 

1/2 1/2 

Tm= ~ Pmh f _ 11f~1J _11 fs1(~~r = ~ Pmh(wcoswt)
2[ ~1 (Aa~) 2] (20) 

Suppose, for example, that A11=l, Aa~=o, and all the other Aa/S are all zero. 

Then we have 

Pm = ~ ~f (sin2 wt) [ { (f) 4m 1
4+m1

4
} + { (f) 4 

ma4 + m~4} 02 

+ ~ ( f r {Can) 2 +2Ca1aa1~) a+ (aa~) 2o2
} J 

and 

Tm =t Pmh(wcoswt) 2[l+o 2
] 

These formula may serve to judge what was said in the end of the last section. 
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