EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title

On virtual mass of water contained in a rectangular tank, whose side-walls are vibrating-VIII.

Sub Title

Author

588, 3 (Kito, Fumiki)

Publisher

BRORBAFEBFGESIEY

Publication year

1962

Jtitle

Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University (BER2 A F BRI T FIMAZFIRE). Vol.15, No.57 (1962. ) ,p.66(30)- 80(44)

JaLC DOI

Abstract

When side-walls of a rectangular tank, which is filled with water, are vibrating, the inside water will
also make a vibratory motion. This motion of water lowers considerably the natural frequency of
vibration of side-walls of the tank. This effect is conveniently expressed by "virtual mass" of water.
In the previous reports, | to VII, of the same title, the author has made theoretical studies on the
value of "virtual mass" of water, and examined various factors affecting it. Especially, in the report
VI, an approximate formula for the virtual mass was given for the case in which two opposite
(rectangular) side-walls are vibrating in a mode which correspond to the case of "rectangular plate
with clamped four-edges." The calculation was made, by assuming tentatively, the mode of
vibration of the rectangular plate.

The question of degree of accuracy of this approximate formula will naturally be raised. In the
present report VI, this question of degree of accuracy is taken up. The treatment may be said to
be a case of hydro-elasticity. A set of normalized orthogonal functions (which correspond to the
mode of free vibration of elastic bar with fixed ends) is used. The transverse displacement w of the
rectangular plate in vibration is expressed as a double infinite series of these set of functions.
Putting this expression into the equation of vibratory motion of rectangular elastic plate (wherein,
the effect of vibratory water pressure is taken into account), a system of linear equations about the
component amplitudes Aap (a,=1, 2, 3, ...... ) is obtained. And, thence, equations for Aap is
made, by means of which the values of Aap can be obtained by successive (iterative)
approximations. We start with A11= 1, and all the others (Aap)=0, which we regard as the zeroth
approximation. And, we are to calculate first, second, ...... , approximate values.

Numerical examples for the case of (A). B: H:L=1:1:2,and (B). B: H:L=1:1:1, are shown. It is
seen that the values of A12/A11, A31/A11, ...... , are comparatively small, but not so small enough
to say that we may neglect them at all. It is concluded that, we may use the approximate formula
given in our report VI, for practical purposes, on the undererstanding that they give olny
approximate values.

Notes

Genre

Departmental Bulletin Paper

URL

https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00150057-
0030

BREZFBAZZMERV AT NU(KOARA)IZEBEHEATVWAR AV TV OEEER., ThTNOEESE, ZLFTLFHRLWRTECREL. TOEIEEEEEICELST
RBEETNTVET, SIACHLE>TR., EFELZZEFTLTIRASEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

On Virtual Mass of Water contained
in a Rectangular Tank, whose
Side-Walls are Vibrating— VIII.

(Received May 22, 1963)

Fumiki KITO*

Abstract

When side-walls of a rectangular tank, which is filled with water, are vibrating,
the inside water will also make a vibratory motion. This motion of water low-
ers considerably the natural frequency of vibration of side-walls of the tank.
This effect is conveniently expressed by “virtual mass” of water. In the pre-
vious reports, I to VIL,P of the same title, the author has made theoretical stud-
ies on the value of ‘“virtual mass” of water, and examined various factors af-
fecting it. Especially, in the report VI, an approximate formula for the virtual
mass was given for the case in which two opposite (rectangular) side-walls are
vibrating in a mode which correspond to the case of “rectangular plate with
clamped four-edges.” The calculation was made, by assuming tentatively, the
mode of vibration of the rectangular plate.

The question of degree of accuracy of this approximate formula will naturally
be raised. In the present report VIII, this question of degree of accuracy is
taken up. The treatment may be said to be a case of hydro-elasticity. A set
of normalized orthogonal functions (which correspond to the mode of free vibra-
tion of elastic bar with fixed ends) is used. The transverse displacement w of
the rectangular plate in vibration is expressed as a double infinite series of these
set of functions. Putting this expression into the equation of vibratory motion
of rectangular elastic plate (wherein, the effect of vibratory water pressure is
taken into account), a system of linear equations about the component ampli-
tudes Aag (@, =1, 2, 3, ) is obtained. And, thence, equations for Aup is
made, by means of which the values of Asg can be obtained by successive (it-
erative) approximations. We start with A;;=1, and all the others ( Aug)=0,
which we regard as the zeroth approximation. And, we are to calculate first,
second, s+« , approximate values,

Numerical examples for the case of (A). B:H:L=1:1:2, and (B). B:H:L
=1:1:1, are shown. It is seen that the values of A;,/A;;, A3/ Ay, -+ , are com-
paratively small, but not so small enough to say that we may neglect them at
all, It is concluded that, we may use the approximate formula given in our
report VI, for practical purposes, on the undererstanding that they give olny
approximate values.

*B G 3 4t Dr. Eng, Professor at Keio University.
» F, KITO This Proceedings; I, Vol. 11, No. 40 (1958); II, Vol. 12, No. 46 (1959);

I, Vol. 12, No. 47 (1959); 1V, Vol. 13, No. 49 (1960); V, VI, VI, Vol. 15, No, 56
(1962).
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On Virtual Mass of Water contained in a Rectangular Tank — V. 67
I. Introduction

The author has already made seven reports under the same title as the present
paper. In the reports I to VI, approximate formulae for natural frequency of vi-
bration of rectangular elastic plates, which constitute side-walls of rectangular
water tank, have been given for different cases. It is to be noted that approximate
formulae in these reports were obtained by calculation of kinetic energy (of water
and the plate) and the potential energy (of the plate), assuming tentatively the
mode of transverse vibration of the rectangular plate.

In the report VII, a consideration was given about the degree of accuracy of
the approximate formula, restricting ourselves to the case of side-walls which are
in state of “rectangular elastic plate with simply supported four edges.” Now, in
the present paper, we shall take up the case of side walls which are in the state
of “rectangular elastic plate with clamped four edges.” And, shall examine the
degree of accuracy of the approximate formula (already given in the report VI)
for the natural frequency of vibration.

The conclusion is, in a word, that the degree of accuracy of the approximate
formula given in the report VI, is not so good as in the case of ‘“simply supported
four edges,” but that it may serve as a practical approximate formula. The cal-
culation throughout is made, by assuming water (or, other fluid) to be an incom-
pressible non-viscous fluid, and that the vibration amplitude is infinitesimally small.

Our treatment may be said to be dealing with a problem of hydro-elasticity.

II. Notation

Generally, the same notations as in our previous reports, will be used here.
It is to be noted that here we use a system ¢«(£,) of normalized orthogonal func-
tions, as defined below, and some coefficients aws, F.:/L, G.;/H, @, etc., which
are related to them are also used. We refer to a rectangular water tank as shown
in Fig. 1.

L =length of the rectangular water tank,
H =its height, B=its breadth, V=its in-
y side volume, ¢ =velocity potential which

—_ represent the vibratory motion of water,
T (x, v, 2) =rectangular coordinates, w=
H | transverse displacement of the rectangu-
J_ 0 /! lar elastic plate, which constitute side-

— /]/3/2 wall of the tank, A=amplitude of vibra-

5/52 tion of the rectangular plate, wy=wA=
] amplitude of diplacement velocity of ditto,
Fig. 1. A sketch of rectangular w=angular frequency of natural vibra-

water tank. tion, f=time, p, =density of water,

z

L

|
I
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68 Fumiki KITO

on=density of the material composing the plate, # =thickness of the plate, D=its
flexural rigidity=(1/12)Eh3/(1—»2), E=Young’s modulus, v =Poisson’s ratio,
p=water pressure due to vibratory motion of water, y?=Laplacian operator = (3?
/0x2) +(0%/0=%), m,, my, ...... =eigenvalues defined below, &,=(x/L)—(1/2), &;=(2/H)
—(1/2). m=r/L, s=r/H, ni;=[(im)*+ (js)*]/2.

III. Fundamental equations of our problem

Let us consider a rectangular water tank, as shown in Fig. 1, inside which water
is filled up. In this report VIII, we mainly take up the case of two opposite side-
walls (Lx H) vibrating in phase, or in opposite phase, each other. The top sur-
face at z=H will be considered as a free surface. We restrict ourselves to the
case of infinitesimally small vibrations of an incompressible, non-viscous fluid.
Furthermore, we assume that two panels (LxH) of side-walls are in the state of
“rectangular elastic plate with clamped four edges.”

The fundamental equation for our problem of free vibration is taken in the
form : —

’w _

DVZVZW—I- th atz p=07 (1)
0, 09
_ . (B . ..
=w), Z}Bﬁjf,j(—)cos mix COS Siz sin wft, (3)
T 7 2
w=3 % Awpu(E)e:(L)sinet, )
w= y=

o= ;Z]] B;jfi;(y) cos mix cos sjz cos wt. )
Equation (1) is the equation of transverse vibration of the a rectangular elastic
plate, wherein the effect of (vibratory) water pressure p acting on it is taken into
account. Equation (2) gives the value of the water pressure p in terms of the
velocity potential ¢, for the case of small vibrations. (5) is the solution of Laplace’s
equation v?¢ =0, together with boundary condition of our problem. (3) gives the
value of p as derived from (5). We are to take =0, 2, 4, ...... ; 7=1/2, 3/2, 5/2,
veeees We take

Sf1(y) =cosh(ny;y),

for the case of opposite-phase vibration of side-walls, while we take sinh (7;y),
instead of cosh (n;;y). Also, we have

nyB= [(iB/L)2+ (jB/H)Z]mrr.
We use a doubly-infinite series of the form (4) to express the transverse

(32)



On Virtual Mass of Water contained in a Rectangular Tank — VI. 69

displacement w of the rectangular plate. The set of functions ¢, (&)), ¢.(¢,) are
defined below:

' The set of functions ¢,(&,) are to be
, 3Gy solutions of linear differential equations
A. __7/2 ‘: ; +A’ & Z’je({fl) =mut0u (&),

ﬂ JAED) together with the boundary conditions
1\_ ’ 1\_
N4 (ed)=s wfxd)=o

fp(g ) ' where we take p=1, 2, 3, ...... . m, are
3 1
’ the value of #—th eigenvalue. For odd
'r\/ } \/—} Y P13y eenenn are even functions, while
for even p, ¢, o, ...... are odd functions.
Fig. 2. A Set of fuuctions ¢« (&1)- . t Po P ¢ tnction
(see Fig. 2).
0. (&) (=1, 2, 3, 4, ...... ) are to conststute a set of normalized orthogonal
functions. Actual expressions for ¢,(&,) are as shown below :
(i). Case of even functions (¢=1, 3,5, ...... ),
0.(&1) =A,cosm,&+ B, cosh mué,, (6)
. 1 . (1
A.=(1/C,)sinh (7m,.), B.=(1/Cy) sin (77":5)
[2C,.]?=coshm,—cosm,+3(coshm,—1) Slnm“+3(1 —cosm,) ——=2 sinhm,
,a
(ii). case of odd functions (»=2, 4, 6, ...... )R
oy (&) =A.sinm,é,+ Bysinhm, ¢, %
. 1 _ (1
A,=(1/Cy)sinh (7m> B,= (/C,)sm( ! m)
[2C,]?=coshm, —cosm,—3 (1 —cosm,) ﬂr;};—m” — (coshm, —1) smmy |

For both cases of (6) or (7), by putting the boundary conditions to them, we
see that m, must be roots of the equation

1=coshwm « cosm. (8)
IV. Coefficients appearing in the expansion about ¢,(¢&,), ¢.(€,)

The values of m, have already been given, in connection with the problem of
free-vibration of an elastic bar with fixed ends. So, we have

m, = 4.7300 =32—”+O.0176,

(33)



70 Fumiki KITO

my=1. 853 =‘§2§—0. 0009, my =10. 996=%"+0.00001,
m=14137+ 2 my=17.279+ 2 7.

That the set of functions ¢,(&,), ¢.(&,) are orthogonal to each other, and that
we can expand a given function F(¢&,) in an infinte seres of Fourier’s type (of
course, on some restrictions about the nature of function F(&,)), have already
been pointed out. (see, for example, A. Kneser, Integralgleichungen). In the fol-
lowing calculations, we require some coefficients which depend on ¢, (&,). We
shall here mention them, giving their expressions.

a= [T o (e va(eNd,,

an =" o (EDes(LdL.

It is to be noted that a,.=a... Also, that (i) when a is odd but z is even, or
(ii) when « is even but p is odd, we shall have a,.=0. (iii)when p, o are odd
(that is, ¢, and ¢. are even functions), we have

— (my)*
(73 c‘uCG . A,

where A=A,+A4,+A;+A4, with

— i P iy Mo siny (m,+ma) | sing (m,—ma)
At A= [sth"smhzj.[ Mot ma m,,—#m., ]

mm] ) [Sinhi-(m;,+ma) sing (m,—ma)

LU / /TP
+ [sm—"sm——
2 2 mu+ma My—Ma

’

. . . m
7—"—“s1nhm7” {m,, smmT‘”cos % — m,sin ™« cos J}

-2 .
At s = Gy G S0 2 %2

in?@sin " inh 2% Ma _ 4 sinh 7 mul ],
+ sin 5 Sin {m,, sinh 5 cosh 5 meSinh 5 cosh 5 }:l

Also, following coefficients F,.:/L, for i=0, 2, 4, ...... , and G,;/H, for j=1/2, 3/2,
5/2, ...... , are required;

Fu_ (* ) dx - L Gy _ (" zdz- L .
Tﬂ_jogo“(gl)cos(mzx)dx I = _fo ¢v(By)cossjzdz »

Their actual values are :
For an odd value of g,

s M+l o Mu—7nl
EH“_i:(—l)“zA,,[sm 5 sin ]
mu+mi m,—nt

+ (=B, -

2 s My T
mmP sinh - cos

(34)
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For an odd value of v,

in(™ ™\ gip (M7
Gt — A cos TS ‘n(2+2)+51n(2 7)
H Y 2 my+ my—nj
0,2 my ™ in 2
+ B.cos R ORI [mysmh *cos W -I-ﬂ,'] coshZrsin =+ 5

(iv). When » and o are even (that is, ¢, and ¢s are odd functions), we have

Where A=Ay+A2+A3+A4, with

A, +A4, ——[smh *sinh ma] [sm 3 (my ma.) __sin} (my+ma)

mv+ma
My Mg [sinh ¢ (m+ m,,) smh}(m,,—ma)
+|:81n 2 sin 2 ]I: Myt M - My—Ma ]’
_ 2 ma _ Ma My
A+ A, = ) E )2]:smh =Zsinh = { mysin ™ 5 =cos +masm7005 —}
my
+s1n7-s1n 3 {ma sinh 7% cosh —mysmh zcosh }] .

Also, we have, for even values of », (¢,(&,)being odd functione),
F/u‘=0 (120’ 2’ 45 """)’
Gy _ —A, smﬂ] siny (my—rj) sin} (m,,+7z])

H 2 my,—zwj my+mj
_ ] 5 77,'] h -. _ cos niy 2
B,sinZ£ [m sin 22 5 COS T s smh :l _—(mv) )

(j=%, 3/2, 5/2, ...... )

Lastly, we have,
for odd values of «;

_1 2 sinhm.] _ 1 2 sin m,
Qaa _g(maBa) [1"" 'Ta'-:]. ? (m‘,Aa) [1+—7_na—:|,
while for even values of v;
_1 .['sinhm,
=7 (mBy) [ m, “1]
1 o[ 1_sinm,7 |
2 (ms As) [1 m, ]

V. The solution of fundamental equation of vibration in
form of a doubly infinite series

71

At first, we transform the value of water pressure p which act on the face of
side-wall, as given by (3), into a doubly infinite senies of the form of expsession

(35)



72 Fumiki KITO

(4). For that purpose, we write down the condition that on side-wall we have
0¢/0y=0w/ot, from the equations (4) and (5), thus;

||D18

% Ao (€0 (L) - wcoswt

Il

ZEBuf (5 ) cosmix)cos (sjz)cos ot
J

Next, multiplying by cos (mzix) cos (sjz), the both sides of this equation, and
integrating for x=0 to x=L, and z=0 to z=H, we have,

©

HBi.if’ii(‘g;) =§ 20 AnF iGyjo,

1y=1

wherein we are to take e =2 if =0, but ¢ =4 if i%0. Putting the values of Bij
thus obtained into the equation (5), we have,

¢ fi;(B/2) ¢
= EZ’LH 75 (BI2) /:Z1 .,Z"IAP’FMGW

cos (mix)cos(sjz) + w Cos wt (9

= %I %Cap% (&Des(C) wcos wt (9a)

The coefficients C.g can be obtained by multiplying both sides of equation (9)
by ¢.(£;) ¢s(f,) and integrating, thus;

Cas= %, ZZ AWM (10)

p=1v=1
where we put,
a8 . Efz] (B/Z) 1
M,, = 53| 7B/ FuCnFCo i -
As before, we are to take /=0, 2, 4, ......; j=1/2, 3/2, 5/2, ....... @ and B are in-
tegers. We put the value of (9a) into the fundamental equation (1), taking into

accaunt the equation (2). Furthermore, we have, by multiplying by ¢.(&,) « ¢s(Z,),
and by integration;

4

[0 (3 + ) o't .

2 D © Y 2 1

_I—{Zj gla,mavaw-— 0ww?(LH)C.p=0 (11)
where we put k= pnh.

This equation (11) is a homogeneous linear equation with respect to cofficients
A.s, which represent different component amplitudes of vibration of flat plate (con-
stituting side-wall of rectangular water tank). (11) has a system of non-all-zero

(36)



On Virtual Mass of Water contained in a Rectangular Tank — V. 73

values of A.; as the solution only for specified values of w. This eigen-value of w
is a root of determinantal equation A=0, the determinant A being constructed by
the array of coefficients of A.; in equation (11). This determmant A is of infnite
orders. For a practical estimation, we shall have to take only finite number of
coefficients, for a=1, 2, ......n, and B=1, 2, ...... n, thus making the determinantal
equation A=0 an algebraic equation of order » with respect to w2

In the numerical illustration given in the following section, we do not adopt this
procedure, in order to avoid heavy numerical calculations. We can show that the
approximate evaluation given in our report VI, is just the same as assuming A,
=1 and all the other A./s=0, in the equation (11), and thence obtaining an ap-
proximate estimate for «? So that, if we could show, by some means, that actu-
ally the values of the ratios of component amplitudes A.;/A;; (for a>1 and B>1)
are very small, the approximate formula given in report VI may be said to be
accurate. Thus the values of A.;/A;; (for a>1, f>1) would give us a measure
about the degree of accuracy of our approximate formula given in report VI. The
estimation of numerical values along this line of thoughts will be given here.

For this purpose, it is convenient to rewrite the equation (11) in the following
form: —

[(%) mat + mg! ———~w ]Aaﬁ +2( ) 2 ZawavﬁA#V

—~ Pew? s D[C""](BLH) =0 (12)

VI. Tables of numerical coefficients

For making the numerical evaluation mentioned in the previous section, we re-
quire numerical values of various coefficients involved in equation (12). First,
putting

sz'.'f(B/Z) coth(n;;B/2) |
Si;(B/2) (n:;B) B,

o= ()" ()"

we need the numerical values of the coefficients defined by

where we have

Hi]‘=

B . n,]B
TC_—Z”‘ 5 Zij tanh( ij)

We take up two cases (A); B: H: L=1:1: 2, and (B); B: H: L=1:1: 1. Nu-
merical values of Z;; for the case A is given in Table 1,. while Table 2 gives us
those values of Z;; for the Case B. Next, the numerical values of @°8, defined by

Q= (%) 4ma4+mﬁ4 |

(37
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are given, in Table 3 for the Case A, and in Table B for the Case B, respectively.
Values of a,,, F,.;/L and G,;/H are shown in Tables 5, 6 and 7 respectively. It is
to be noted that numerical values of Tables 5, 6 and 7 are independent of the
proportion B: H: L of the rectangular tank. Lastly, some numerical values of

the coefficients M:f have been calculated for the Case A, and are given in

Table 8.

Fumiki KITO

Table 1. Value of Zjj.

Case A; B: H: L=1: 1: 2,

\;7\\\\\\i\ i=0 2 4 6 8
1/2 0.3279 1.053 2.062 2.06 4.03
3/2 1.473 1.791 2.50 3.37 4.27
5/2 2.50 2.692 3.202 3.90 4.72
7/2 3.50 3.64 4.03 4.60 5.32
9/2 4.50 4.61 4.93 5.41 6.03
Table 2. Value of Z;;.
Case B; B: H: L=1: 1:1 1.
\i;\\\\\\\j\\ i=0 2 4 6 8
1/2 0.3274 ‘ 2.062 ‘ 4.031 6.02 8.01
3/2 1.473 2.50 | 4.272 6.18 8.15
5/2 2-50 3.202 4.717 6.50 8.38
7/2 3.50 4.03 5.25 6.95 8.73
9/2 4.50 4.93 6.03 7.50 8.98

(38)
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Table 3. Value of Qe8,

Case A; B/L=0.50, B/H=1.0

a=1 a=2 a=3 a=4
p=1 533 752 1255 3130
2 3833 4050 4555 6430
3 12100 12350 12860 14730
4 39500 39750 40260 42100
Table 4. Value of QaB.
Case B; B/L=1.0, B/H=1.0
a=1 a=2 a=3 a=4
g=1 1000 4300 12600 40100
2 3800 7600 15900 43300
3 12100 15900 24200 51600
4 39500 43300 51600 79000
Table 5. Value of a...
pr=1 p=2 7=3 r=4
a=1 -12.3 0 —5.46 0
2 0 —108.8 0 —0.038
3 —5.46 0 -99.9 0
4 0 —0.038 0 —257.0

(39)
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Table 6. Value of F,;/L.

i=0 0.828 0 —0.364 0
2 ~0.392 0 —0.409 0
4 —0.0171 0 +0.520 0
6 —0.0031 0 +0.0481 0
8 —0.0010 0 +0.0139 0
Table 7. Value of G,;/H.
v=1 y=2 v=3 v=4
j=1/2 0.563 —0.0335 | —0.209 +0.0019
3/2 ~0.391 —0.666 —0.1076 | +0.025
5/2 ~0.170 +0.521 —0.422 +0.0393
7/2 ~0.0198 | -0.375 +0.456 +0.280
9/2 —0.0286 | —0.1123 | +0.238 ~0.557
Table 8. Value of My (Case A).
| =1 | =2 | 8=3
p=1 1.740 \ 0.169 ‘ ~0.471
a=1
2 ’ 0.169 j 0.780 ‘ 0.222
1=1
3 ] —0.471 ; 0.222 ] 0.363
a=1 p=1 | ~0.396 ] 0.012 ‘ 0.144
1=3
2 ’ 0.012 ‘ —0.035 ’ ~0.010
a=3
1=1 3 } 0.144 ] ~0.010 —0.058
p=1 0.882 ‘ 0.158 ~0.140
a=3
2 0.158 0.624 f —0.067
1=3
3 | ~0.140 ~0.067 | 0.210

(40)
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VII. Numerical example of the coefficients A;, of the component
amplitudes of vibration
Writing for shortnes

_kH* _ pn.hH* - (H\? _powH'B
K=bE =t K= (7)) K=tepE

the equation (12) can be given in the form; —
[Qwﬁ_KZ wz:l Aaﬁ = K40J2 [C'Xﬂ/B] - 2K3 Z Z Qpa avﬁAyv, (13)
®oY
where we have,

ColB=33 (M"f,f/B) A, (14)

By virtue of symmetry about x=L/2, we have A.;=0, for even values of a.
Assuming, in equation (13), that « is an even integer, and noting that A, =0 for
p£= an even integer, the equation (13) becomes 0=0, justifying the above men-
tioned inference. From equation (13), we have,

Ay =] (Kiw?) Py (M2 /B) Ap—2K, b3 Guatts A | + [@«r—Ki0?] (15)

(0). The zeroth approximation,
If we assume that A,;=1, while all the other coefficients A,, are equal to zero,
we have, by putting a=1, =1 into the equation (15),

[Qu _ szz] + 2K (a?) = Kyw (M}}/B) (16)

From which, we can derive an approximate formula for K,«?. We can see by
retracing the calculation given above, that this value of K,w? will be just the
value obtained by calculation of energies, the transverse displacement w being
given tentatively by,

w=p,(&;) (&) sinwt.
Actual value of K,w? will be slightly different from this approximete value.
(1). The first approximation.

Putting the values A;,=1, other A./s=0, and also the approximate value of K,w?
found above, into the “right hand side” of the equation (15), we obtain,

Ay =[ Ko (M11/B) = 2Ky (@naip) |+ [ QP —Krwt . a7

This is a set of values of A.; which we may call the first approximate values.
(IL). The second approximation.

Next, putting the first approximate values of A.,; into the “right hand side” of
the equation (15), we obtuin values of A,; which may be called the second ap-
proximation,

(4D



78 Fumiki KITO

We proceed further this process of the iterative evaluation, if necessary.

It is to be pointed out that, for every step of calculation, we must also readjust
the value of K,w? in order to be exact. By carrying out some numerical estima-
tions, we find that, so long as we are seeking after the order of magnitudes of
ratios A.s/Ay;, and not necessarily their exact values, we may stop at the second
approximation, wherein the value for K,w? is used as the value given by the equa-
tion (16). We carried out this process of calculation for the Case A and Case B,
as mentioned above. The values for the first approximation are shown in Table 9
and Table 10. The second approximate values of A., are shown in Table 11,
which correspond to Case A. (The same table for the Case B is omitted, because
it offers us no different inference.) Looking at Tables 9 and 11, we note that
actual values are considerably different, but that the order of magnitudes remain

Table 9. Value of Aj,..

Case A; First approximation.

lu:l }":2 #_—_3
i=1 1 0.0145 —0.0154
i=3 —0.133 0.0158 0.0025

Table 10. Value of Aj..

Case B; First approximation.

oope=1 p=2 ‘ n=3
i=1 1 0.0325 ‘ —0.0177
1=3 —0.0436 0.0097 ’ 0.00305
Table 11. Value of A;.
Case A; Second approximation.
p=1 p=2 p=3
i=1 1 0.0104 —0.0109
A=3 —0.098 —0.020 0.00393

(42)
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the same. Also, we see, faom Table 11, that there appear a value of A; which is
about equal to —0. 100, and which may be not said to be quite small.

VIII. Concluding remark which follow from the numerical example

As was mentioned obove, the values of A.;(a>1, >>1) are small compared with
A, (which is taken=1), but, as there appear the value A;,, which amount to —0.10,
we may not claim that we can quite neglect all of A.(a>1, 8>>1) in comparison
with A,;,. This fact shows us that the value of K,w? given by (16) [which cor-
respond to the case of A;;=1, all the other A,s’s being=0], could not be said to
be very exact. The state of matters is rather different from the case of rectan-
gular plates (side-walls) whose four edges are simply supperted (and discussed in
the report VII.) But, as we infer from the calculation of strain energy (given in
the next section), the equation (16) may serve as an approximate formula for
practical uses, without claiming that it is very accurate.

IX. Strain energy of deformation

When the displacement of the rectangular plate is given by (4), its strain ener-
gy will be obtained by making estimation of the formtla,

P. __fo a2w _2(1_ ) {32w ’w (32w_>z}]dxdz. (18)

axz azz ox? 0z% 0x02

We have, for instance,

L4 (Z2) = inton) DL T AuAnes (€002 () 0r(E) 9.6,

L*H? <g:}> (-_) =(sin*wt) ZZZ%: Anp AcpPe ’(51)Sox(fl)ﬂoﬂ@l)ﬂop”(tl)

In carrying out the integration indicated by the formula (18), we note that we

have,
1/2 1/2

[ e @povende=me | | ouenentende
md, if a=2,
={ 0, if a1,
by virtue of the equation
IV (£1) =mitea (€,

and the boundary condition that ¢a(% %) =0 and ¢;/(£ %) =0. Also, we have,

1/2

1/2
[ plerendsi==[_ o.(ene(¢0dei=—au.
-1/2 -1/2

(43)
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Thus, it is seen that,

-1/ 2d$ di_’, [( ox? ) (5;2@:)) - (g;g)z’)z] =0.

In this way, we obtain the final formula;

Po =g Ginton| ZZ{(T) it A
+2( ),;%;; o @ a,aAM] (19)

Also we have, for the kinetic energy Tw» of the vibration of the rectangular
plate;

1/2

Ta=toun|_ def :/lz/gcl(%%)z:?pmh(w cosw)?| T3 (4:p)7] (20)

Suppose, for example, that A;;=1, A,=39, and all the other A.;’s are all zero.

Then we have
L sintwt) [{ (ZL) ‘mustmth +{ (3L)" mat + myt} o2

) {(a") 2+2(@1015) 0 + (@ap) 252}]

Pp=

+

v = o}

(

and
Tw=1%pnh(wcoswt)?[1+0%]

These formula may serve to judge what was said in the end of the last section.
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