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Stability Problem of a Resonant Circuit 

with Variable Parameters 

(Recieved March 26, 1963) 

Chikara SATO骨

Abstract 

Paramet廿ri記ca叫lly.噸必向

dealt with i泊n t出hi詰s pape訂r. Investigation is made on the stability of the circuits 

by an analog computer. Mathematical formulation of these circuits leads to 

linear variable coefficient di任erential equations. These di飴rential equations 

(so-called generali~ed Methieu equations) are given as the following equations: 

さf41+aryl=(α1山十 α12Y2) ∞s t , 
dt 

d2
Y2 -:.if2十 .Q2 2Y2= (α21Yl+α22Y2) cos t • 

dt 

In this paper the transition curves from stability to instability are obtained 

under the special conditions in the above equations. 

1. Introduction 

Tne continuing research for the analysis of parametrically-excited drcuits and 

their applications have been made in recent years. The mathematical formulation 

of these circuits leads to either linear or nonlinear variable coe伍cient di妊erential

equations. Van der Pol and Strutt (1) have treated the di旺erential equation of Hil1 

type , and MaLachlan，∞ Stokerωand Mandelstamωhave treated Mathieu type 

equatson of the second order, and they have given the transition curves from 
stability to instability for the equation. Cesari， ωCoddington ， ωHale， (7) Zadeh (8) 

and M:llkin (9) have investigated the linear or nonlinear di百erential equations of the 

higher order. However, none of them have given the transition curves from staｭ

bility to instability for the variable coe伍eicnt di任erential equations of the higher 

order. In this paper the author treated the variable coe伍cient di百erential equation 

of the fourth order (two simultaneous equations of the second order) by an analog 

computer under special conditions , and the transition curves from stability to inｭ
stability are obtained. 

骨佐藤 力 Assistant Professor at Keio University. 
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II. Mathematical formulation 

Let us consider the parametrically-excited linear resonant circuit of two-loops 
shown in Fig. 1. The discussion for its dual circuit shown in Fig. 2 is eliminated 
here since the circuit equation is the same as the former. In Fig. 1 three induct­
ances are L 1 , L 2 and L 3 , and three variable capacitances are assumed to be as 
follows: 

( 1) 

c, 

I 

'-Z 
L, 

Fig. 1. Resonant circuit of two-loops 
containing time-variable c•s. 

Fig. 2. Resonant circuit of two-node-pairs 
containing time-variable L's. 

The circuit equation i9 given by 

( 2) 

where 
. dql . 
ql=dt=ll, 

Assuming that 

( 3) 

.and if we transform qlo q2 to Yt. y 2 by a nonsingular linear transformation: 

[ql] = [Pu P12] . [Y1] ' 
q2 P21 P22 Y2 

(4) 

(13) 
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equation (2) is reduced to the form: 

( 5) 

where parameters il1
2, il2

2, a 11, a 12 , a12, a 217 and a 22 are all obtained from the cir­
cuit parameters L 17 L 2 , L 3 ; D 17 D2 , D3 ; dt. d2 , and d3 • In the equation (5) we can 
put w=l without loss of generality, therefore the equation (5) can be rewritten 
as follows, 

(6) 

Yz+ilz 2 Yz = (aztYt +azz Yz) COSt. 

This equation (6) is a generalized Mathieu equation, because if we put a 12 =a21 =0 
then equation (6) is variable-separated and becomes two independent Mathieu 
equations of the second order. 

Now we are able to reduce the problem of the parametrically-excited resonant 
circuit to the mathematical equation (6). Therefore we will investigate equation 
(6) in the following section. 

III. Solutions by analog computer 

The ultimate aim of this section is to obtain the transition curves from stability 
to instability under the special conditions. Using an analog computer we obtain 
the solutions Y1 and Yz in equation (6). The solutions Y1 and Yz are shown in Fig. 3, 
Fig. 4, and Fig. 5, under the common initial condition at t =0, 
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Fig. 3. Solutions y 1 (above) and y 2 (below) in equation (8) 
when a=O.l. 
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Fig. 4. Solutions y 1 (above) and y2 (below) in equation (9) 

when a =0.1. 
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Fig. 5. Solutions y 1 (above) and y2 (below) in equation (10) 
when a=O.l. 
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(7) 

Putting au =a22 =0 and a12= a 21 =a in equation (6), we have the following equation, 

Yt +.0t 2 Yt =ay2 cost, 

Y2+.Q2 2 Y2 =ayl cost. 
(8) 

The solution curves of equation (8) with the initial condition (7) and with a =0. 1 
are shown in Fig. 3. Putting au =a12= a2 1 =a and a22 =0, we have the following 
equation, 

_;;t+.Qt2 Yt =a(y1+Y2) cost, 

Y2+.Q2 2 Y2 =ay1 cost, 

(15) 

( 9) 
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and their solution curves with a =0. 1 are shown in Fig. 4. Putting a 11 =a12 =a21 

=a22 =a we have the equation 

YI+DI 3Y1=a(yi+y2) cost, 

Y2+Q2 2 Y2=a(y1+Y2) cost, 

(10) 

and their solution curves with a =0. 1 are shown in Fig. 5. From these figures we 
can easily recognize whether solutions y 1 and y 2 are stable or unstable (divergent). 
The stable solutions oscillate within the values of order 1 which is equal the in­
itial value, on the other hand unstable (divergent) solutions grow up oscillatory 
beyond the value of order 1. The typical solutions are shown in detail in Fig. 9. 
According to these solution curves the transition curves from stability to instabil­
ity are obtained in Fig. 6, Fig. 7, and Fig. 8, using several other solution curves 
near the transition curves, although these curves are not shown in Fig. 3, Fig. 4 and 
Fig. 5. For symmetricity some solution curves are abreviated in Fig. 3 and Fig, 5. 

From the transition curves in Fig. 6, we know that instability occurs near D1 +D2 

= 1. From the transition curves in Fig. 7, we know that instability occurs near 
D1+D2=1 and near D1 =0. 5. The instability near D1+D2=1 is of the same kind 
as in Fig. 6, on the other hand the instability near D1 =0. 5 belongs to the insta­
bility of 1/2 sub harmonic in Mathieu equation of the second order, because of the 
coefficient a 11 =i= 0 in equation (6). Similarly, it is easily known that the following 
equation 

Y1 +D1 2 Y1 =ay2 cost, 

j'2+D2 2Y2=a(y1+Y2) cost, 

1.0 r--~-----.-------?· 
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Fig. 6. Transition curves from stability to instability 

in equation (8) when a =0.1. 

o stable point, x unstable point. 
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Fig. 7. Transition curves from stability to instability 
in equation (9) when a =0.1. 
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Fig. 8. Transition curves from stability to instability 
in equation (10) when a =0.1. 

o staole point, x unstable point. 

(17) 
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y, 

J\J\[\[\1 
(a) 

y, 

cost 

(b) 

Fig. 9. Solutions y1 and y 2 in equation (8), when a=O.l, .!21 =0.8, .!22 =0.5 

for (a), when a =0.1, .Q1 =0. 65, .!22 =0. 35 for (b). 

has instability near f2 1 +f22= 1 and near f22 =0. 5. Fig. 8 shows three kinds of in­
stability near f2 1+f22=1, near Ql =0. 5 and near f22=0. 5. Therefore equation (10) 
has mixed character of instability of both equations (9) and (11). 

IV. Mechanical models 

Let us consider a mechanical model and an electro-mechanical model of the above 
electrical circuits. A mechanical resonant system of two degrees of freedom with 
varible parameters has also three kinds of instability if the conditions are satisfied. 
A coupled swing shown in Fig. 10 is a mechanical model, if at least one of the 
boys swings his body periodically. If the frequency of vertical periodic motion by 

(18) 
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the boy is equal to twice a resonant frequency, 
then the oscillation of the coupled swing grows 

up. If the frequency of the vertical motion is 
equal to the sum of two resonant frequencies, 
also oscillation of coupled mode grows up. When 
the amplitudes of these oscillations become 
large then nonlinearity in the system must be 
considered. <lo) 

An electro- mechanical model is shown in 
Fig. 11. A coupled resonator has a variable 
parameter by the A C-electromagnet. In these 

Fig. 10. Mechanical model. 

55 

cases mathematical formulation is the same as an electrical circuits shown in Fig. 1. 
Many other dynamic models may be thought which corresponds to the equation (6). 

1 
er-AC-Magnet 

Iron Pfllet 

Fig. 11. Electro-mechanical model. 

V. Conclusion 

We have treated the solutions of equation (6) under the three special conditions. 
Under these special conditions it is possible for the equation (6) to have three 
kinds of instability: (i) near D1=0.5, (ii) near D2=0.5 and (iii) near D1 +D: 

= 1. The results obtained by an analog computer would be applicable only to the 
restricted conditions and would not be wide unless analytical approach were made. 
Fortunately, these results obtained here agree with the analytical results in the 
previous paper <Io) which assumes all the variable parameters a 111 a 12 , a 21 and a 22 

are small. 
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