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Stability Problem of a Resonant Circuit
with Variable Parameters

(Recieved March 26, 1963)

Chikara SATO*

Abstract

Parametrically-excited resonant circuits of two-loops or two-node-pairs are
dealt with in this paper. Investigation is made on the stability of the circuits
by an analog computer. Mathematical formulation of these circuits leads to
linear variable coefficient differential equations. These differential equations
(so-called generalized Methieu equations) are given as the following equations:

d2
7;—;5 +82:%y1=(auyi+ay,) cos t,

d*y, 2
ar +25 v = (@ y1+ agpy;) cost.

In this paper the transition curves from stability to instability are obtained
under the special conditions in the above equations.

I. Introduction

Tne continuing research for the analysis of parametfically-excited c{rcuits and
their applications have been made in recent years. The mathematical formulation
of these circuits leads to either linear or nonlinear variable coefficient differential
equations. Van der Pol and Strutt ¢V have treated the differential equation of Hill
type, and Malachlan,® Stoker ¢ and Mandelstam ¢ have treated Mathieu type
equatson of the second order, and they have given the transition curves from
stability to instability for the equation. Cesari,® Coddington,® Hale,” Zadeh ®
and Malkin ¢ have investigated the linear or nonlinear differential equations of the
higher order. However, none of them have given the transition curves from sta-
bility to instability for the variable coeffieicnt differential equations of the higher
order. In this paper the author treated the variable coefficient differential equation
of the fourth order (two simultaneous equations of the second order) by an analog
computer under special conditions, and the transition curves from stability to in-
stability are obtained.

* O 71 Assistant Professor at Keio University.
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II. Mathematical formulation

Let us consider the parametrically-excited linear resonant circuit of two-loops
shown in Fig. 1. The discussion for its dual circuit shown in Fig. 2 is eliminated
here since the circuit equation is the same as the former. In Fig. 1 three induct-

ances are L;, L, and L,, and three variable capacitances are assumed to be as
follows :

Dl +d1 CcOS (.Ut

) (t)
Cz(t) Dz+d2 Ccos wt ( 1)
Ca(t) =D;+d,; cos wt.
C, CZ Cg

Fig. 1. Resonant circuit of two-loops Fig. 2. Resonant circuit of two-node-pairs
containing time-variable C’s. containing time-variable L’s.

The circuit equation is given by

{LH‘Lz —L, :i [é;:‘+IiD1+Dz —D, J [41}
-L, L,+L, Q2 -D, D,+D; q:

di+d, —d, q:
+ cos wt . =0, (2)
*“dz d2+d3 qZ
‘where
dq, _ _dg, _

Assuming that
L,+L, —L,

#+0, (3)
—L, L,+L,

and if we transform g¢,, ¢, to y,, y, by a nonsingular linear transformation :
a4, Pu b Y1

- . , (1)
Lg2 D21 D2 Y2

13)
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equation (2) is reduced to the form:

.y.l 22 0 Y1 [« STRNN ST I
v | . = oS wi . , (5)
Y2 0 27 Y2 Ay Qg Y2
where parameters 2,2, 2,2, «,,, ®,,, a1, &y, and a,, are all obtained from the cir-
cuit parameters L,, L,, L;; D,, D,, D;; d,, d,, and d;. In the equation (5) we can

put =1 without loss of generality, therefore the equation (5) can be rewritten
as follows,

_.3;1+912y1= (A yi+agy;) cost, (6)

:3;2+sz Yo=(@y Y1+ ) COS L.

This equation (6) is a generalized Mathieu equation, because if we put a;;,=a;, =0
then equation (6) is variable-separated and becomes two independent Mathieu
equations of the second order.

Now we are able to reduce the problem of the parametrically-excited resonant
circuit to the mathematical equation (6). Therefore we will investigate equation
(6) in the following section.

III. Solutions by analog computer

The ultimate aim of this section is to obtain the transition curves from stability
to instability under the special conditions. Using an analog computer we obtain
the solutions y, and y, in equation (6). The solutions y, and y, are shown in Fig. 3,
Fig. 4, and Fig. 5, under the common initial condition at ¢=0,
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Fig. 3. Solutions y, (above) and y, (below) in equation (8)
when a=0.1.
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Fig. 4. Solutions y, (above) and y, (below) in equation (9)
when a=0.1.
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Fig. 5. Solutions y, (above) and y, (below) in equation 10)
when a=0.1,

y1=y:=1, J.’1=J.’z=0- (7)
Putting @y =a,,=0 and a,,= @, =« in equation (6), we have the folldwing equation,
3;1+Q12y1 =a); CoSt,

.. (8)
Y2+ 2.2 y,=ay, cos £,

The solution curves of equation (8) with the initial condition (7) and with «=0.1

are shown in Fig. 3. Putting a;,=a;,=a,=a and a,;=0, we have the following
equation,

i+ 22y =a(9,43,) cos t,

.. (9)
Y2+ 2.2y,=ay, cos ¢,

(15)
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and their solution curves with a=0.1 are shown in Fig. 4. Putting a;=a,=a,,
=aj,=a we have the equation
:3"1"“-912)’1:“( y1ty.) cost,

(10)
:3;2+922 yo=a(y+y,) cost,

and their solution curves with a=0.1 are shown in Fig. 5. From these figures we
can easily recognize whether solutions y, and y, are stable or unstable (divergent).
The stable solutions oscillate within the values of order 1 which is equal the in-
itial value, on the other hand unstable (divergent) solutions grow up oscillatory
beyond the value of order 1. The typical solutions are shown in detail in Fig. 9.
According to these solution curves the transition curves from stability to instabil-
ity are obtained in Fig. 6, Fig. 7, and Fig. 8, using several other solution curves
near the transition curves, although these curves are not shown in Fig. 3, Fig. 4 and
Fig. 5. For symmetricity some solution curves are abreviated in Fig. 3 and Fig, 5.

From the transition curves in Fig. 6, we know that instability occurs near 2,+92,
=1. From the transition curves in Fig. 7, we know that instability occurs near
2,+92,=1 and near 2,=0.5. The instability near 2,+£,=1 is of the same kind
as in Fig. 6, on the other hand the instability near 2,=0.5 belongs to the insta-
bility of 1/2 subharmonic in Mathieu equation of the second order, because of the
coefficient a,,#0 in equation (6). Similarly, it is easily known that the following
equation

Yt yi=ay, cost, (11)

..1;2"'9223’2:“(3’1‘,'?2) cos ¢,

Qe
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Fig. 6. Transition curves from stability to instability
in equation (8) when a=0.1.
o stable point, x unstable point.
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Fig. 7. Transition curves from stability to instability
in equation (9) when a=0.1.
o stable point, x unstable point.
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Fig. 8. Transition curves from stability to instability
in equation (10) when «=0.1.
o stapnle point, x unstable point.
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Fig. 9. Solutions y; and y, in equation (8), when a=0.1, 8,=0.8, 2,=0.5
for (a), when a=0.1, 2,=0.65, 2,=0.35 for ().

has instability near 2,+2,=1 and near £2,=0.5. Fig. 8 shows three kinds of in-
stability near 2,+2,=1, near 2,=0.5 and near £2,=0.5. Therefore equation (10)
has mixed character of instability of both equations (9) and (11).

IV. Mechanical models

Let us consider a mechanical model and an electro-mechanical model of the above
electrical circuits. A mechanical resonant system of two degrees of freedom with
varible parameters has also three kinds of instability if the conditions are satisfied.
A coupled swing shown in Fig. 10 is a mechanical model, if at least one of the
boys swings his body periodically. If the frequency of vertical periodic motion by

(18)
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the boy is equal to twice a resonant frequency,
then the oscillation of the coupled swing grows — ___ ~ I
up. If the frequency of the vertical motion is [

equal to the sum of two resonant frequencies,
also oscillation of coupled mode grows up. When

the amplitudes of these oscillations become
large then nonlinearity in the system must be
considered.®

An electro-mechanical model is shown in

Fig. 11. A coupled resonator has a variable Fig. 10. Mechanical model.
parameter by the AC-electromagnet. In these

cases mathematical formulation is the same as an electrical circuits shown in Fig. 1.
Many other dynamic models may be thought which corresponds to the equation (6).

AC-Magnet

Iron Pellef
Fig. 11. Electro-mechanical model,

V. Conclusion

We have treated the solutions of equation (6) under the three special conditions.
Under these special conditions it is possible for the equation (6) to have three
kinds of instability: (i) near £,=0.5, (ii) near £,=0.5 and (iii) near 2,+2,
=1. The results obtained by an analog computer would be applicable only to the
restricted conditions and would not be wide unless analytical approach were made.
Fortunately, these results obtained here agree with the analytical results in the
previous paper 1® which assumes all the variable parameters ay;, oz, a5 and a,,
are small.
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