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On Virtual Mass of Water Contained 

in a Rectangular Tank, whose 
Side-Walls are Vibrating-VI 

(Received December 13, 1962) 

Fumiki KITO骨

Abstract 

When side-walls of a rectan思11ar tank, which is f�led up with water, are vi圃

brating, the inside water wil1 also make a vibratory motion. This motion of 

water lowers considerably the natural frequency of vibration of side-walls of 

the tank. This effect is convenient1y expressed by “ virtual mass" of water. In 

the previous reports, 1 to V, of the same title, the author has made theoretical 
studies about the value of “ virtual mass" of water, and examined various factors 
a妊ecting it. In the present report, which is the continuation of the same study, 
the case is examined wherein two opposite (rectangular) side-walls are vibrating 

in a mode which cotrespond to the case of “ clamped four edges" Approxjmate 

formula for the fundamental frequency of free-vibration of the system (consisting 

of rectangular elastic plates and inside-water) is given. The result is shown as 

graphs, which give values of con町icient M of virtual mass of water, for di妊er
ent values of B/L and B/H (Bニ breadth， L= length, H = height, of the rectan思1・

lar water tank). 

In addition, a case is examined, wherein the upper edge-lines of the tank is 
slignt1y vibrating, instead of being kept immovable. The result is illustrated 

by a numerical example. 

The treatment throughout is made, on the assumption that water is an incomｭ
pressible, non-viscous fluid, and that the vibration amplitude is infinitesimal1y 

small. 

1. Intoroduction 

Let us consider a rectangular tank, inside of which water is fiUed up. When 

side walls of the tank vibrate, the inside water will also make a vibratory motion. 

Owing to this fact , there appears, on natural frequency of vibration of side-walls, 

an e百éct called the “ virtual mass" of water. In the reports 1 to V 1)2)3)4)5) of the 

骨鬼頭史城 Dr. Eng.; Professor at Keio University. 

1) F. Kito , This Proceedings , Vol. 11 , No. 40 (1958) 
2) F. Kito , ditto , Vol. 12 , No. 46 (1959) 
3) F. Kito , ditto , Vol. 12, No. 47 (1959) 
ρF. Kito , ditto , Vol. 13 , No. 49 (1960) 
5) F. Kito , ditto , Vol. 15 , No. 56 (1962) 
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same title as the present report, the author has made theoretical studies about 
this effect, and examined various factors affecting it. In the present report, 

which is the continuation of the same line of study, the case is examined wherein 
two opposite (rectangular) side-walls are vibrating in a mode which correspond 
to the case of "clamped four edges." 

Approximate formula for the fundamental frequency of free vibration of the 
system (consisting of rectangular elastic plates and water) is given. The result is 
shown as graphs, which give value of coefficient M of virtual mass of water, for 
different values of B I L and B I H. It may be pointed out here, that for a case of a 
single rectangular elastic plate (not in contact with water), which is in free vi

bration under the condition of "clamped four edges," the mode of vibration is not 
given in rigorous expression (at least in the compact form which admit us of 
easy handling). So that we had to start with the approximate expression for the 
mode of vibration (which is given in usual text-books6)). The question of degree 
of accuracy of the formula worked out below, by the author may be raised. This 
question will be discussed in the future report under the same title. 

In addition, a case is examined, wherein the upper edge-lines of the tank is vi
brating, instead of being kept immovable. The result is illustrated by numerical 
example. 

The treatment throughout is made on the assumption that water is an incom
pressible, non-viscous fluid, and that the vibration amplitude is of infinitesimally 
small magnitude. The following notations (which is mainly the same as for the 
previous reports) is used here:-

</>=velocity potential of the vibratory motion of the water, w =transverse dis
placement of the plate, A=vibration amplitude of ditto. w=angular frequency of 
free vibration of ditto, L=length of rectangular water tank, H=its height, B=its 
breadth, Pm=density of material composing the flat plate, Pw=density of water, 
W0 =wA=amplitude of transverse velocity of vibration of the plate, T m=kinetic 
energy of vibratory motion of the plate, T w =kinetic energy of vibration of water, 
Pm=strain energy of the rectangular (elastic) plate, D=flexural rigidity of the 
plate, h =thickness of the plate, V = LBH =volume of the rectangular tank. Also 

we put 

II. Evaluaton of the kinetic energy of water, for the case of plate 

with clamped edges 

Referring to Fig. 1, we taKe the case in which two side-walls with the dimen
sion H x L are vibrating (together with the inside water). Each one of the plates 

6l S. Timoshenko, Theory of Elastic stability, 1936, p. 364 (Me Graw-Hill Co.) 

(19) 
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Fig. 1. Sketch of the Rectangular Water Tank. 

being in state of "clamped four edges" the 
mode of vibration will be as sketched in Fig. 2. 
For the case of a single plate (when there is 
no water), this state of vibration is represen
ted approximately by the following expres
sion6) :-

dw -=W0 coswt 
dt 

· ! ( 1-cos 
27) ( 1-cos 

2
;/) • (1) 

Wa (A) 

Fig. 2. Mode of Vibration of 

clamped-ends Type. 

It is to be noted that this is not the exact expression, but is an approximate 
one. But since we are given no exact expression, which enable us of easy handling, 
it was thought that we must be content to start whih this approximate expres
sion (1). 

One panel at y = + B/2 (see Fig. 1) of side walls being in state of vibration 
given by (1), let us firstly take the case in which the other panel at y= -B/2 is 
vibrating with the same mode but in "opposite phase," that is, minus sign attached 
to the expression (1). The remaining two end-walls and the bottom wall being 
assumed to be immovable, the motion of water inside the tank, which is caused 
by the vibratory motion of two side-walls may be expressed by a velocity poten-
tial of the following form (as in the previous reports):

c/> = I: I: Bij cosh ( niiY) cos (mix) cos (siz), 
i j 

(2) 

(i = 0, 1, 2, ...... ; j = 1, 2, 3, ...... ), which saisfies the following boundary condi-
tions:-

(20) 
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at x=O. or=L, 

at z=O, 

oo//ox=o. 

ocf>/oz=O, 

at z=H, -o2cf>/ot 2 =g(ocf>/oz). 
(condition of free-surface) 

21 

According to the last condition, we have Sj= e i/H, where e j are roots of the equa
tion e i =- K cote i (K = w 2H I g). Expressing the fact that transverse velocity of 
rectangular plate coinside with that of water, at two faces y= +B/2 and y= -B/2, 

we have the equation, 

I: I: Biiniisinh (nii B/2) cos(mix)cos(siz) 
i j 

1 ( 2rrx) ( 2rrz) = W 0coswt · 4 1-cos--y- 1-cosH . (3) 

In actual cases which we meet in practice, the value of K is very large in com
parison with unity. Confining ourselves to such cases, we have approximately, 

s j = _!!...._ ( 2o- + 1 ) 
H 2 · 

(o-=0, 1, 2, ...... ) 

Treating the equation (3) quite similar to that case of double Fourier series, we 
·obtain, 

B·J· = W 0 coswt(LHB) ( s 2rr ) (± 1 J ) 
' (noB) sinh (niiB/2) · 4rr2 • LH · 2 cr , 

(4) 

where i=O and 2; j= (2o-+1)/2, (o-=0, 1, 2, 3, ...... ) The +sign in the r. h. s. of 
eq. (4) is to be taken for i =0, while we have to take the- sign for i=2. 

Kinetic energy T w of water (alloted to each one panel of side-wall) will be 
given by 

1 JL JH ocp T w = T p w 
0 
dx 

0 
cf> 0 y dz, 

from which we have, after evaluation of the integral, 

T w = __!__ Pw(Wocoswt)2 (LHB). I;I;-s-[]cr]2coth(ntiB/2) (5) 
2 i u 16rr2 ntiB 

(i=O and 2; o-=0, 1, 2, ...... ; s =2 for i=O, s =4 for i=2). Thus the kinetic 
energy of water can be expressed in the form; 

(6) 

where we put, 

(7) 

This coefficient 1l1 is the coefficient of virtual mass. It is to be remarked that the 

(21) 
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expression (6), (7) gives only an approximate value, in two senses. Namely, the 
mode of vibration (1), which was our starting point, gives only an approximate 
value. Next, the modification of mode of vibration due to the effect of water is 
not taken into account. (It may be expected to be of small amount, as we saw in 
report II. ) Nevertheless, we ventured this calculation to be carried out, because 
there was demand for practical formula for virtual mass coefficient, even though 
it may be a rough estimate. The author is now preparing a report, wherein the 
degree of approximation of these rough estimates is discussed, and which, the 

author hopes, will appear in the near future. 
Lastly, for the case of vibration in which two side-walls are in uibration "in

phase" each other, the formula similar to (6), (7) holds, the only difference being 
that we should take tanh instead of coth in the formula (7). 

III. Remarks about the natural frequency of the system 

For a rectangular elastic plate, which is in vibration prescribed by the eqation 

0.5 

0.4 

--B~ 

00 05 1.0 1.5 

Fig. 3. Value of coefficient M of Virtual Mass, 
when side-walls are in state of clamped Four 

Edges. (Case of Opposite phase Vibration) 

(22) 

(1), the potential (or strain) ener-
gy Pm is given by, 

Pm = n 4 [Asinwt] 2 f.t3 

(8) 

while its kinetic energy is given 
by, 

(9) 

The natural angular frequency w 

of the system consisting of elastic 
side-walls and inside water, will be 
given by the equation 

(10) 

where the bar- above the letters 
mean their (timely) mean val
ues. If the mode of vibration (1) 

was exactly given, the equation 
(10) will furnish us exact value of 
the natural (angular) frequency w 

of the system. But, due to above
mentioned reason, it will give only 
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an approximate value. In Figures 3, and 4, the numerical values of the coeffi
cient M of the virtual mass are shown as graphs . 

.1}_= 
L 

OtL------~1 ___ a_h_H~------~ 
o os 1.0 rs 

Fig. 4. Value of coefficent M of Virtual Mass, 
when Side-Walls are in state of clamped 
Faur Edges. (Case of In-phase Vibration) 

IV. Evaluation of the kinesic energy of water, for the case 
in which upper edge-lines are slightly vibrating 

In this section, the case will be considered, wherein (a) two opposite side-walls 
are vibrating, either "in phase" or "opposite phase" each other, the edges being in 
state of supported edges, (b) but the upper edge lines are slightly vibrating, in
stead of being kept immovable. The water will be supposed to be filled up, the 
upper (top) surface being in a state of free surface. For this case. we assume 
that the rectangular plate situated at y= + B/2 is vibrating in a mode which is 
expressed by, 

dw W · · S t dt = 0 sm mx sm z cos w , (11) 

where S=n/(H+JH). The velocity potential</> of the vibratory motion of water 
caused by the vibration of side - walls, will be expressed by (2), as before. 

(23) 
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The condition of coincidence of transverse velocities of plate and water, at the 
surface y= +B/2, is given by, 

(12) 

(i=O, 1, 2, ...... , j=1, 2, 3, ...... ) From this equation, the value of coefficient Bii 

is found to be, 

where we put, 

u.-1+cos(ei+J9) 1+cos(ei-J9) , ki= 1 - K1 sin2~h 
J- ei+J9-n - ei-J9+n 

ei being roots of the equation ei=-Kcosej, and K=w 2H/g, S=(n-{3)/H. 

(13) 

Corresponding value of kinetic energy of water contained in the tank can be 
expressed in the following form, as before ; 

T w = + Pw [wo cos wtr (LBH) • M, (14) 

where the coefficient M has the value ; 

(15) 

for the case in which two side-walls are vibrating in opposite phase each other. 
The summation I: I: in the above expression (14) is to be taken for i = 0, 2, 4, ...... ; 
j=1, 2, 3, ...... ,and s=2for i=O, but s=4 for i=t-0. Kinetic energy Tw of eq. 
(14) is the value alloted to each one panel of side-wall. 

For the case in which two side-walls are vibrating "in phase" each other, the 
same formula applies, the only difference being that we have to write tanh instead 
of coth in the expression (15). Moreover, it is to be remarked that, the value 
(15) was obtained by evaluation of the integral 

1 JL fH acp T w = T Pw 
0 

dx 
0 

cf>dy dz. 

There is left an integral over the top (fre~"surface). This value can be estimated 
as in the previous report, 4) and we have, for the additional term, 

~Tw= + Pw [K] (LBH) ( ~) 
2
[W0 cos wt] 2 

(16) 

wh~re we have i = 0, 2, 4, ...... ; j, k = 1, 2, 3, ...... and s = 2 if i = 0 but s = 4 if 
i=t-0. The coefficient Kijk has the same valu~ as for the case of report IV. This 

(24) 
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expression (16) correspond to the case of opposite phase vibration of side-walls. 

For the case of in-phase vibration, we have to put Miik instead of Kiik in the 

above expression (16). 
We have, for the case of opposite-phase vibration, 

Bij s [ uj J 1 
B = rrki (i2-1) (niiB) sinh(niiB/2) 

while we have, for the case of in-phase vibration, 

V. Remarks about the natural frequency of the system, 
for the case of previous secction 

Since the kinetic energy of the water was evaluated, the approximate value of 
(fundamental) natural frequency of vibration of the systen can be obtained, as 
was pointed out in section III. In connection with this, the value of strain ener
gy of flat plate is given by, 

Pm=7t4 [Asinwt] 2 f/;3 • 

(17) 

where we have put, 

_ sin2j3 
,u-1+ 2(rr-j3) (18} 

Also we have, for the kinetic energy T m of the plate, 

1 2 LHh 
T m = 2 Pm [WoCOSwt] -

4
- ,u (19} 

Now, we saw in previous reports, that when the value of K is large in compar

ison with unity, we may replace the boundary condition at the top surface, 
namely 

by a more simple condition that at z=H, <P= 0. In this case, the matter is much 
simplified, since we have ~i= (2a-+l)/2, (a-=0, 1, 2, ...... ), and the additional 
terms iJT w disappear. For this simplified case, the author has made some numer
ical calculations and has shown the result in graphs of Fig. 5. 

(25) 
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Fig. 5. Value of coefficient M of Virtual Mass, 
when the Top-edge Line is slightly vibrating. 
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