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Theoretical study of the Electromagnetic Wave
Propagation and Termination Concerning
the Helical Type Delay Line

(Received November 20, 1962)

Hiroichi FUJITA*
Hiroshi KASHIWAGI**

Summary

In recent years, the Helix properties are analized by solving Maxwell’s equa-
tionV~®, but the determination of the terminal condition is very complicated.
Usually we use the Helix combined with other microwave circuits, such as wave-
guides or coaxial cables. So, it is important that terminal impedance should be
defined.

The helix has a continuous and a periodical properties. In this paper, two
approximation methods are discussed. One is the distributed-line method, of
which equivalent circuit has a continuous property, but not periodical. The
other is the lumped-circuit method, of which equivalent circuit has the contrary
property to the distributed-line.

The Helix properties would not be perfectly represented by both methods but
characteristic impedance, propagation constant and terminal condition can be
easily determined by these approximation methods.

I. Introduction

The Helix used in various H. F. devices, for example T. W. T, antenna®, cavity,
filter and wave-guide.

The purpose of this paper is to discuss the case of delay circuit, (1> circum-
ference of the Helix, i.e. quasi-stational condition is satisfied in 1 turn of the Helix.y
This condition is satisfied circuit constants could be defined.

At the end of the Helix, the caluculations to get these propaties are complicated,

because :

*5E M [ — Ph. D., Assistant Professor at Keio Univ.
i = N # Graduate Student at Keio Univ.
» J, R. Pierce, “Traveling-Wave Tubes” D. Van. Nostrand Co., Inc.. New York
N. Y.; 1950.
2 C, C. Cutler, Proc. I. R, E. Vol. 36, pp. 230—233, Feb. 1948,
- §, Sensiper, Proc. I. R, E. Vol. 43, pp. 149-161, Feb. 1955,
¢ J. D. Kraus, “ Antenna ” Mc. Graw-Hill Book Co. Inc., New York. N. Y.; 1950.
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1. The Mutual Inductance and the Mutual Capacitance (in this paper, axial com-
ponent of the capacitance is called the Mutual Capacitance) are distributed not
symmetrically.

. The Self Capacitance (ordinate component of the capacitance is called the Self
Caracitance) of the Helix increases nearer to the end.

3. The multireflection waves raise at the vicinity of the end.

II. Determination of the characteristic impedance and
the propagation constant

Approximation by the infinite line with distributed parameters has symmetric
distribution of the Mutual Inductance and the Mutual Capacitance.
II-1. Fundamental equations

The model of the Helix is shown in Fig. 1.

L(x-%)
; (z)’/_\ i The current at the point & induces the voltage at the
m point x, as follows.
Voo 1 Ues) V=L (x—&) @L((%Q (1-1)
_’ﬁz i $ Where L (x—¢) is the Mutual Inductance [H/m?*], bet-
Fig. 1 ween the point x and the point &, L(x—¢&) decreases

with the distance |x—¢&| the Mutual Inductance is an
even function of it. Therefore, the induced voitage at
the point x is given by an integration of Eq. (1-1) from —oo to oo,

Model of the Helix.

aV(Jr) fL( g)al(f o 1) de (1-2)

As for the current along the axis, when we consider the electro-static capacity
K (x—¢), the ordinate displacement current I is given by

L= [ K(x—g) Warvol g, (1-3)

Where K (x—&) decreases with the distance |x—¢| and it is an even function of
it. At the point x, abscissa current through the self capacitance C, is

1.=C, a'gp (1-4)

hence, the total current varing with distance is given by following equation.

al(x) aU.L' vz ov -
" Tox ”+fK(" iR - %P de -9

Eq. (1-2) and Eq. (1-5) are the fundamental equation of the line,

(2)
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II. 2. Solution of the equation
Before the caluculation of the fundamental equation, we set up the following
assumption ;
i) 7(x,¢), v(x,t) sinusoidally varies with time (e/*t)
ii) 7(x,t), v(x,¢) varies with distance. (¢~7%)
iii) Definition of the characteristic impedance Z,(x) is shown

Zy(%) =gga>) (1-6)

where Z,(x) is the function of the distance x. For the usual line, the charac-

teristic impedance Z, has a constant value, but when the distribution of im-

pedance is dissymmetrical, Z, varies with distance.
iv) The properties of the mutual inductance L (x—¢)

and Mutual capacifance K (x—¢) are shown in Fig.

2. and the followings.

a) Mutual Inductance

L(p)=M,e~" for N=¢&—x>0
L(p)=L,o(y) for 7=0 7
L(n)=Me*” for 7<0

Fig. 2. Distribution of
where ¢ is Delta function. Physical meanings of L(x—¢) and K(x-¢)
these functions are as follows from the Neuman’s

formula at =0, L(0)=oco then right hand of Eq. (1-2) is

Jo L(x—¢) i(x) 0o,

Delta function must be used for this reason.
b) Mutual Capacitance

K () =K,e for 7>0
K () =K et for 7<0

Physical meanings of K(7) are as follows, K(7) has an infinite value at »=0, but
in Eq. (1-5), {vy—wv) tends to zero, then the products of them will have a finite

value.
Substituting the above assumption into Egs. (1-2) and (1-5)

1Zye77" = jo f L(x—&)e~vtde (1-7)

Te—vr:jwcozoe-vr+jwzofK(x—f)e“”ds—ijofK(x—g)e"‘/i dx (1-8)

Multiplying e+, then eqs. (1-7) and (1-8) are

(3)
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1Zo=jo [ Lx—§) e ¢ de=jo L(7) (1-9)
r=JjwZ(Cot [K(x—8) de—K(1) (1-10)

where L (y) and K (y) are Fourier Transformations of L (x—¢) and K (x—¢). El-
iminate Z,, then from Egs. (1-9) and (1-10) then

rt=—w? L(N[Co+ [ K(x—§)de—K(1)] (1-11)

The above equation is the determinantial equation of the propagation constant
7, and from Eq. (1-9)

Z=LjoL(n

L(y), K(y) are determined by the assumption (iv) as follows.

—_ Mo 2(1 __1
L(n=L{1+ 70 52} (1-13)
K@) = I;’;_’zf{?oz (1-14)
and
fK(rz) dn= z—b—K (1-15)
Substituting the above relation into Egs. (1-11) and (1-12),
then
a__ [w)\? 2a ___2Kry? 1-16
r (wo) {HkaZ—rz}{l b(b2~r2)} (1-16)
where

wy?=1/LyC,, k=M,/L, K=K,/C,

Usually #%>7y?; y is pure imaginary or pure real number.
hence
2K71%/b(b?—y?) =2Ky2/b3 (1-17)
solving the Eq. (1-16) for the propagation constant y. it will be shown as follows

1

TZ: m [02—02{1—2K0'a(a+2k)}

+4/[a2— 012K, a(a+2k) } ]2+ 40%a(a+2k) 1 —2K,Q1?) (1-18)
where Q=w/w, K/=K/b

(4)
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For

Qz<§[§ ( <‘/2L0Ko)

a?— 02 {1-2Kya(a+2k)} <a/[a*—Q*{1—-2K ) a(a+2k)} 1*+4Q%(a+2k) 1—2K,/ Q%)

there are two waves. The one is a propagation wave, the other is an attenuation
wave.

For > ZK’ (o>Vstzr 2L0K0>

a’*— Q01 —-2K ) a(a+2k)} > o/La*— OV {1 2K/ a(a+2k)} ]2+402a(a+2k) (1—-2K,/ 0%

Moreover the denominator of Eq. (1-18) is negative, So, there are only attenuation
waves. On the other hand, from the Eq. (1-12) the characteristic impedance is
determined as follows:

Zi=—w?L? _{1 +124 0 azzfr } (1-19)

Egs. (1-18) and (1-19) are determinantial equations of the propagation constant
v and charcteristic impedance Z,. These properties are shown in Figs. 3 and 4.
It is evident that the charcteristic impedance Z, is a function of the frequency.
This result will be useful for the termination.

/3'——rad/ans per pitch
T
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- ¥
R / 2
- [0]
/r 1500 ’
/ N
10———1 7 EmEan 1000
7
y4
/
] .
L y .
N S G 500
il TS
{ a
0 x0T &0 100 2 5 10 10 20 50" 10° 210" 510° 10°
Frequency — frequency [c/s]
Fig. 3. Frequency characteristics of Fig. 4. Frequency characteristics of
the Phase Constant g. the characteristic impedance

properties.
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III. Approximation by lumped constant circuits
IIT1 - 1. Fundamental equation

Equivalent circuits are shown in Fig. 5.

My My My~ My

Un-2 2k, Vazx ?/';wgl(/ Uriy? ™ Vn2kyUn-nyf = U ki Veyrnz
T 2% | ] 2k 2% %
L 7 Loy ZLlo2 ZLo/2 ,

o Myp — LMy, . L__MVZ__J LMy, — L:M}/2 o
1Co 1¢, 1Co G

Fig. 5. Equivalent Circuits of the Helix.

In Fig. 5, the magnetic field on the Helix is represented by inductances, and the
electric field is represented by electrostatic capacitances, where self-inductance L,
and self-capacitance C, are indicated by vertical components of magnetic field and
electric field. Similarly, mutual inductances and mutual capacitances are represented
by the axial components of magnetic field and electric field. The value of L, and
C,, is given by every turn of the Helix and M, and K, is given by the distance
between neighbore-turns and their shape.

Kirchhoff’s equations for the z-th junction and the #-th loop will be described as
follows :

. d .
~ln+2K1d—t {vo—0nynt1} =tn+ Co(%f Unynt1+ 2K, dit (Wnynt1—Unt1) (2-1)

Lod . ,M,d ,. .
Vn=Unyn+1+ —2—0 d—tln‘l‘Tl i (ln—l+1n+1) (2_2)
L . ..
Vny n+1:vn+1+ 70 dit z71-*-1"" % dit (zn+ln+2) (2"3)

III . 2. Solution of the equations

In order to solve the equations following properties are assumed:
1) Current and voltage varies
with time, (e/*t)
with section. (e’ (n=integer))
2) Characteristic impedance (internal impedance) is defined as follows,
Z,= Va_ Vyelet=2yn

—E - Ioejwt—z'yn

(2-4)

Substituting the assumption 1), 2) into the fundamental equations, then following
results are obtained:
i) w0 .

+/ [l +£Ck—1)} +112+H4Q2x k[ Q2 (1+2£) —2]) (2-5)

(6)
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i) w=0
cosh 2y=1 (2-6)

iii) @ tends to infinity ; in this case, Eq. (5) has a limited value,

cosh 2y = Z}Tx ({k+xQk—1)} o/ {k+r(2E—1) 2 +4xk(1+2r)) (5-7)

The characteristic impedance is given by following equation:

Zy= é_o [{1—02 1 4;4"} 4+ k{2—0Q2(1+4r)cosh 27} —k2Q2 (1+4x) cosh? zr] (2-8)
0

In the Eq. (5), the right hand has a value which is larger than 1. So y is a
real number, and there are attenunation waves only.

If cosh 2y has a value bet-
ween —1 and 1, v is an im-

aginary number, and so there a e
are propagation waves. When . 3.0 7 7
. e < ’
cosh 2y is equal to 1, this %% //[ e / F/S ;
frequency is called cutoff fre- &5 / L
Aol 3 / —
quenCy. QQ), 320 // . 4
Let, k=0, K=0. This is the o I N3
/ < P S
wellknown L,, C,—ladder net- §'§ / 72V
work. If k%0 K=0, this is | Fr0[- A #
. . . ' / / .02
called Pierce’s delay circuit. XN pZ JR Bt
The properties of the propa- y / ,/|-4.o
k=0
gation constant and the char- 0 " L 20
acteristic impedance are shown Frequency — ""
in Figs. 6, and 7. Fig. 6. Property of the propagation constant.
/
£ /
& /

10 Te—. / RZ‘,("O‘)
7‘\\ P—— K=0r |
$302 -
1 i -
RO 1| NGzt
05 ]
| N
/ e
0 10 20 g,
Frequency

Fig. 7. Property of the Characteristic impedance.
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IV. Determination of the input impedance

In the foregoing paragraph, the line has an infinite length, but in this section
we will analyze semi-infinite distribution line (0 to «) and its input impedance.
IV . 1. Fundamental equations

The fundamental equation is led by substituting C¢s,=C,+Dye~?* into C,. In Eq.
(1-15), C(s is the selfcapacitance about the Helix end. In this case the integrand
is from 0 to oo, hence

_av.r . . _ ai(evt) —_
—a;—’—ofL(x o Bsbae (#-1)

ala(;?) C av(x) +D av(x> +f K(x 5) 6v(x,d§ fK(x &) aU(S) df (4_2)

IV - 1. Solution of the equations
In respect of the equation, we set up the following assumptions;

i) 7 (x,¢) and v (x,¢) sinusoidally varies with the time. (ei*t)

ii) As the wave properties are unknown, the propagation constant is set y. Thejas-
pect of the propagation is e 7=, So, the equation are solved by Laplace
transformation.

From that formula, left hand of Eq. (4-1) is

—L[ V=Vl
where V., is Laplace transformation of the function Vi,
V., is voltage at the point x=0,
then right hand of Eq. (3-1) is

©

fe‘f’ dij(x—e) (&) de

0

And set ¢77¢ in the integrand of &,

jwa(x—e) (&) er*dédx

The procedure of integral can be changed as follows.

o

fi(é)dst(x——f) e dx

Considering that the property of L (x—¢) is exponentially distributed (reff, §1-2,
assumption iv), above equation leads to the following equation.

(8)
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2a 1
L [(1 28 Vl— 11 ]
0 +az——7’2 159} —@

Where I, is Laplace transformation of the function 7 (x), and I, is the value
in the case of y=a in I,, then I,, is a constant value.
Accordingly, Laplace transformation of Eq. (4-1) is

-V —vel= jﬂ)Lo{(l-l‘ aTz_{il—ﬂ) Loy, — ai 7 ](a)} (4-3)
Similarly, Laplace transformation of Eq. (4-2) is as follows

—[rln—ig]=je [{ (Co 2K°) bzszo } Var+Do Vin

K V v+ t5—= V(b)] (4-4)

Eq. (4-4) contains V(+4y, and V4,), then this is a finite difference equation.
It is difficult to find the values of I.y,, V(, hence the characterstic impedance is

determined as follows,

=1lim Y& _
Zw IZI_T HE)) (4-5),

Inverse transformation of Eq. (4-3) is

Ve =v(o)—ja)L0[_[“‘ {—1‘ +—-22—i—755) [(Y)}_.Z—l {;Gl—_—r—)'l(w}]

7 r(a
mvosols f AG=n i dr—1—e)w} (4-6)
where
A =Lt

= (241) ua(@) — = (e Fem)

and u_,(x) is Unit Step.
Similarly, iw, is obtained from Eq. (4-4)

iw=io—jok [@@—momdr+3 [uaG=m o emdy
0 0

— 1 [unG=myp(nerrdy+ 5 (1=e) Vo | -7y
0

then
(9)
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1 L . > 1 ar
Ze=lim g2 [ =it dr— 20— Yew)

+{jg1(x—n)v(n)dv—%ju;l(x-—n)v(n)e—bndﬂ

+Do
Ko u

u(x—m) e dy + (=) Vo | (4-8)
As Eq. (4-8) is the indefinite form, then we differentiate Eq. (4-8), and let x=0.

Zo =g Gewtlw) [{(EFER2 + 1) vo— Vo) (4-9)
Where 7 (x), v is unknown, then, I, Vs, will be determined by the approach.

Ve =f Veey e dE (4-10)
0

When the distance is large enough, v, vanishes.
As b is large enough, ¢7*¢ is influenced by the vicinity of the origin, then

Vo =f vpye de= U_l;o)_ (4-11)
0

On the other hand « is not so large, that the similar way can not be used for
the I,,. When x tends to zero, integral vanishes, if the integrand tends to zero,
then this integral is neglected as a higher order of zero.

Therefore in the vicinity of the point x=0, Eq. (4-7) are

i =i —jo K| ot Rt (1=e ) = f(1—e)t f(1=e") Jow  (4-12)

and

I =f i e dx
0

1(0) C 1 D, 1 — 2 .7 -
—Jjw K"[K a2+IToa(a+q) b(az—bz):l VAR (4-13)
substitute Egs. (4-11) and (4-13) in Eq. (4-9), then
Z¥pt2wé Zgy—n=0 (4-14)
where
LO Co Do . 2KO
¢ sCaDy et D~ ha=)

7= cf]fD0 {1+4)

(10)
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Therefore,
Zy=—jol—n—w?&? (4-15)
In Eq. (4-15), imaginary part is always negative, because ¢ < b, hence input
impedance of the Helix is capacitive.
When we take the termination with two terminal elements, the conjugate value

of Eq. (4-15) should be used.
In Fig. 8 is shown the frequency characteristics of the input impedance,

(2]
800

700
600
c

§500 ////,

£400
3

3 300 /r ]

2200 ////;”4 R a—
100 1 - -\

0 50 100 150 200 250
Frequency —— MGs]

Fig. 8. Frequency characteristics of the input impedance.

V. Conclusion

We have discussed the Helix properties by the equivalent circuits. This is a good
approach for the propagation constant and the characteristic impedance in a fair
approximation.

We have caluculated the terminal impedance, which is capacitive value, but it
is not satisfied nonreflection condition. Also the multi-terminal termination is nece-
ssary, it is very difficult to be determined under our caluculation.

In the next report, it will be explained the nonreflection termination in using the
lumped constant network.
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