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Potential Flow Accompanied with Vortices
about Rotating Impellers
with Radial Vanes.-1.

- (Received May. 27, 1961)
Fumiki KITO*

Abstract

Two-dimensional potential flow through an impeller having radial vanes is
considered by using the complex velocity potential. The impeller consist of
radial straight vanes arranged symmetrically about center of impeller, and it
rotates with a uniform angular velocity about the center. Itis assumed that
isolated vortices are set up at points lying between the vanes. The flow is
to consist of four parts, namely; (a) discharge flow issuing from the center
of impeller, (b) so-called channel vortex flow, or the flow caused by the pushing
action of moving blades, (c) circulatory flow about each vane, (d) flow caused
by isolated vortices, whose vortex centers lie at some point between the vanes.

By consideration of combined flow caused by these four component flows,
and imposing the condition of finitude of flow-velocity at two edges of each
vane, the relation between the discharge, amount of circulation and strength of
isolated vortex is deduced. The result is explained by a numerical example..

I. Introduction

It is long years ago that the problem of rotating impellers with radial vanes has
been studied, by using the complex velocity potential.¢> Here the author intends
to treat the similar problem for the case in which there exist isolated vortices at
points lying in between the radial vanes. The author is not aware whether this
case has ever been treated. Nevertheless, the author has recently studied this
problem, since he felt the growing tendency of use of impellers with radial vanes
in some recent engineering fields.

II. Conformal transformation for the impeller
with radial vanes

In Fig. 1, the four complex planes z, z;, z; and z; are shown.
The relation or correspondence between these four planes are given by,

1 1 : ”
21=7(2+7>’ Z;=p+qz, 2z3=(2)'", (1)

where p and g are positive constants, and n is the positive integer representing

*® 5§ s ik Professor at Keio University.
(0 See, for example, Hydraulische Probleme (Julius Springer), 1926.
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number of vanes of impeller. From these relations, we see that the unit circle
z=e¢* in the z-plane is transformed

A into a straight line of length 2 in the
77%/ zi-plane, which again is transformed
into the straight line of length 24, in

% // Zplane  1e z-plane. Finally, this straight
line AB of length 2¢g in the z,-plane

is transformed into an array of radial
blades, arranged symmetrically about

§N ®

the origin, in the z;-plane, consisting
z — y z,-plane of n vanes.
10 Denoting by r; and 7r,, the inside
{__? _Iyﬁ and outside radii of the impeller, we
have
A, —-].B zy-plane v
« r=(p—V"
P 7:=(p+ V"
So that, if we put ¢ =7,/7,, then we
shall have

. g/p=1—e)"/(1+¢)"

\ j 0{ ;’ z3-plane

Fig. 1. Conformal representation of Impeller with radial vanes
in z;-plane from unit circle in z-plane.

p=ri(1+4).

III. Complex velocity-potential for the flow around
the impeller with radial vanes

The flow around the rotating impeller having radial vanes is here thought to be
composed of the following component flows.

(a) Discharge flow issuing from the center of impeller, as sketched in Fig. 2(a).
The complex velocity potential representing this flow will be given by,

Wa=%[(1 +ztan y) log (z —2z,)+(1—itan 7) log (—zl——zo)], (2)

where @ is the discharge or quantity of flow. If the flow is one which converges
into the center of impeller, Q is to be taken a negative value. y is the angle which
repesents the degree of rotation of the issuing (or, converging) flow. For a positive
value of 7, the flow will rotate in clockwise direction. z,is a point in the z-plane,

(2)



Flow about Radial Impellers 3

which is the source-point. We put z,= —c, where c is a positive real number greater
than 1.

(b) Channel vortex flow, or,
the flow generated by action of 1 ( a) 1 ( g )
the rotating blades. The com-
plex velocity potential repre-

senting this flow will be given w
by, %
T R e
(3) 0' nQ 0
where o is the angular velocity il
of rotation of the impeller. a;, N J (C) _ (d)
Ay eooee are unknown constants ¢
(real numbers) to be deter- i
mined later.  is taken positive ) ]
when the impeller rotates in [:1
clockwise direction. @
(c) Circulating flow around
each vane, which is given by 0 ) o
the complex velocity potential Fig. 2. Four component flows through
J rotating impeller with radial vanes.
W”"zm logz. (4)

When J is positive, the circulation will take place in counter-clockwise direction.
(d) Flow due to isolated vortices which exist behind each vanes, represented by

Wd:%logzi—(/i)' (5)

A

I', being the strength of isolated vortex, is positive when the rotation takes place
in clockwise direction. A is a complex number which represents the center of the
isolated vortex. A4 is the complex number conjugate to A.

The combined flow is given by the complex velocity potential W,, where

W3=Wa+Wb+Wc+Wd- (6)

IV. Determination of constants a, a,, ...... for the channel vortex flow

The velocity at any point in the z; plane, of low W, is to be obtained by the
equation,

V,—iV,,—dW"—dW" dz _ [_ s Man dz (7)

~ dz. dz dz. moy 2L

dzs dz dz;

(3>
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while we have

(8)

1 _dz_dz;dzda dz _ 21, yi-i/n
(dz/dz,)  dz dz,dz dz dzs, q ?

__*
(z—1/z)
Or, on the surface of the vane, we have,

z=e, 2z, =cos 4, zZ,=p+qgcosd,

and so, by (7) and (8), on the surface of the vane which lie along the real positive
axis of z;-plane;

Vie—iVy= —w[2 man(cos md —i sin m6)]
m=1
l 1-1/n 1
x(q)(p+qcosn9) sin 0

Equating the value V, obtained from the above equation (which is the normal
velocity to vane surface), to —wR, where R is the radial distance from the origin,
we have

©

mamsinm0=%(p-{-qcosﬁ)?/""sinﬁ. 9)
1

m=

This equation tells us that the values of ma. (m=1, 2,...... ) are to be obtained
as Fourier coefficients of right-hand side of (9). This is what has already been
shown®. Now, integrating both sides of this equation (9), we obtain

% an (1—cos m0)= L [(p+@)"—(p+qcos )] (10)
Also, putting 6 == into this equation (10), we have
a+a;+as+ ... =%[(p+q)z/n_(p_q)2/"]. 1)

Further, multiplying by cos m8 both sides of equation (10), and integrating with
respect to 6, from =0 to 6 =2z, we have

e

where we put for shortness,

cos mb sing-dﬂ , 12)

£(0)=2[Ch+a)"—(p+gcos 6)*"].

Now, from the formula

1 0) —sin (m—%)ﬁ,

2 cos mb sini = sin (m+1—7

2

we have

(4)
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M 0 . D A VIR |
2n§1 cos m@ 51n7—sm(M+1 7)49 sm70

And so, by summing up both sides of equation (12), we have,

Zan= g [ L(p+0)¥"—(p+qcos0)¥~]do . (13)
Or, by putting .

3 an=1iM, (@1 +as+ @5+ )=1IN (149
we have,

M=Il7;(l_+1___%)mf:' (1+%)2’" (1+‘1 cos )] o, /(15)

N= %(ITI%—)?/?[(I“L%) (-4 (16)

V. Determination of conatants I'; and J.

For the velocity of flow V.+:V,, on the z;-plane, for the combined flow W,=W,
+Wo+W.+Wa, we have '

VI_lVyzd;W_ﬁ=%(ii—[(l+l tanT)

d23 dz d 4 2 Z— zo

— Q(_1_ 2z
+a ztanr)zn( 4 l—zoz)

] 1 1Fa 1 _ 1 gi
—wi Tt r %= z_—l/,q) ‘

2ni 2 an
As we see from the equation (8), the value of dz/dz; becomes infinitely large for
z=e"*, and =0 and 0=z, that is at both ends of each blade. In order that the
velocity of flow V.47V, at two edges, on the z;-plane, be of finite values, the values
of dWs/dz must also vanish at these two ends. Namely, we put

Q _ il's  —(a*—1) J _
(ztan T) wi Z Imt o 1+a®—2a cosa T omi 0. as)

Q. 1 e
27:0 tan r)l_c wz;élamcosmn

il'y —(a*-1) J -
* o 1+a*—2acos(z—a) ' 2z 0. a9

(55
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From these equations, we find that,

'y dacosa(a*—1) _ ‘Q 2¢
2_,: (1+a2)2_ia2 COS)Z o (2_71.‘) (CZTI) +2w(ai+as+as+...... ) (20)
J __{Q\[2 \a’+142acosa  (Q\( 1
2 (27:) (c2—1> 4acosa . (27:) (1+c) tan 7
2
+ 2w(a+az+as...... )‘%g_w(al+a2+a3 ..... )’ (21)

which enables us to determine the values of I'; and J.

VI. Numerical example

As a numerical example, let us take up the case of #=6, and »,/r,=¢=1/2
In this case, we have

g [ (L) 1)7=
g -[1-(3) [1+(3) ] o
Firstly, the center of isolated vortices at the z;-plane, which corresponds to the
point A=ae'*, will be given by calculation of the formula,
1+ 4

(5
b

Actual values, obtained from (22), for the case of #=6 and ¢=1/2, are shown in
curves in Fig. 3.

Let us take, as a possible case, a=1.50,
a=135°. Inthis case, we have,

VzH%%@w+%fﬂ

(22)

a’+1+2acosa __ (o966
4a cos « )

(1+a®)?*—4a*cos’ a _ —118
(a*—1)-4acosa '

Next, the graph of the curve

Y= (1_‘_%)2/»_ (1+%

being as shown in Fig. 4, we find,

f:i[(l+%)2/"r— (1+% cos 0)2/7;].

2/n
cos 0)

0 25 060708 09 10
d0=2.38 Fig. 3. A;a=12, a=165°.
And, B;a=1.5 a=135°.
C;a=2.0, a=80°.
M= 238 0.151 Position of Center of Isolated Vortex
T 4rx1.253 7 T for Different Values of ¢ and a (n=6).

(6)
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arr
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as

o4

23

" L ) 1 " " ] I " °
g 30° 60° Q0° 200 1500 780
Fig. 4. Graph of the Curve
_ b 2/n_ _ ;] 2/n
y‘(”q) (1 7°°”)

_ 0939 _
N_m 0-188-

The value of ¢, being given by
?(H—?) D
we find, for our case, ¢c=1.25 and 2¢/c?*—1=4.45.

F=(Q) L

2/ wr:’

Noting that @ is the discharge per each vane of impeller, the total discharge is
seen to be equal to nQ. Also, we have (#nQ)/(2n7;)=vm;, Where vm, is the mean
radial velocity of flow at the circumference of radius 7,. From these considerations

we obtain,
— Um2 2
F, it (23)

Thus, the values of I'; and J, for the present case, are given by,

(7)
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I's\ 1 _ _ _ _ B
(ﬁ)w—?;—[ 445F,+ 0188 x 2] (—1.18)= 5.25 F, — 0.444
(i) L = 445F, % (~0266) + ;L tan F,+2x0.188
2/ ory ' 2.25 :

X(—0.266)— 0.151 = (0.118 + 0.445 tan 1) F, — 0.251
The values of I'y and J given by these equations are shown as graph in Fig. 5.

a

-Qo2
~qoa - \ Vearor—

- gERYaVAN J =0
06 - 21)\wi

' J _10

~aro o e

i ~05
-0/2 - tant y=0.
-o0/4 tan F=¢

Fig. 5A. Chart for I'; and J. (n=6, e=1/2, a=1.2, a=165°)

[~F ] |

T |
0, a'az 0.04 aloé 208 a0
—aer tany=0
- EVEY e — tanf=05
—pa (2 oz ‘ tarf=10

— a6

—07

-
ot

“n I

Fig. 56B. Chart for [, and J. (n=6, e=1/2, a=1.5, a=135°)

(8)
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From this graph we see that when F, is as small as 0.05, both I’y and J have
negative values, while when F, is as large as 0.10, I'; may become positive.

VII. Concluding remarks

In the above treatment, it was possible to examine the nature of flow through
rotating impeller with radial vanes, the flow being assumed to consist of four
component flows W,, W,, W. and Wa. It is to be noted that the isolated vortices
are not in equilibrium, but will tend to move. Thus the flow is not a steady one,
but is only a representation of state of flow at some instant. It would be a very
interesting thema to study the motion of isolated vortices. Also, it may be inter-
esting to study the state of flow when there exist more than one isolated vortices
in water region lying between the two adjacent vanes. These questions are left
for future studies. The amount of torque required to keep the impeller in steady
rotation with the angular velocity w, will be discussed in the Report II of the same.
title as the present paper.

(9)



