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Contribution to the Theory of Systematic Sampling 

and Bedding Methods in Quality Control 
(Recieved Apri1 12, 1961) 

Heihachi SAKAMOTO 

R駸um� 

Contribution � la th駮rie d'馗hantillonnage syst駑atique et du proc馘� 

de “ bedding" dans le damaine du control de quα lité. 

L'馗hanti11onnage syst駑atique et la m騁hode de “ bedding" de la mati色re masｭ

seuse se sont d騅elopp馥s notamment dans le domaine du controle de qualit� depuis 

peu de temps. Surtout, comme en sidérurgie, quand on doit manier une 駭orme 

quantit� de matière, il est tr鑚 di伍cile de tirer un 馗hantillon al饌toire ou de melanger 

la matiらre en grande échelle, et on est amen� � 騅iter cette difficult� par plusieures 

m騁hodes. Par exemple, pour tirer un échantillon, il est recommend� d'馗hantillonner 

sur la courroie de transport, ou pour m駘anger un gros lot on a introduit la m騁hode 

de “ bedding". On peut donner un modらle math臼latique 主 ce proc馘� d'馗hantillonｭ

nage syst駑atique ou de bedding. M麥e en cas o� la mati鑽e n'est pas homog鈩e 

et que la composition en grandeur de graines se di百ére consid台ablement d'une partie 

主 l'autre， on peut d駑ontrer que, si l'on 馗hatillonne syst白natiquement par un petit 

intervalle, l'馗hantillon r駸ultat s'approche � un 馗hantillon al饌toire d'un lot bien 

m駘ange. Ce mod鑞e math白natique s'applique aussi � 1活chantillonnage en grappe 

d'une matiらre bien m駘ang馥 par le proc馘� de "bedding." Ce type d'馗hantillonnage 

syst臼latique se r自luit math臼latiquement � un cas sp馗ial de la th駮rie ergodique. 

jusqu'ici, la plupart des auteurs qui ont tra咜� ce probl鑪e admettaient � priori un 

mo品le stochastique, un processus stochastique stationnaire par exemple, pour la 
variation de qualit� de la mati鑽e. L'auteur essie de construire une th駮rie d'馗hanｭ

ti110nnage du point de vue microscopique en n'admettant qu'une hypoth鑚e assez 

g白lérale sur r句artition de graines de la mati鑽e. 

1. Introduction 

The systematic sampling and bedding methods of bulk material have recently 

been developed in the field of quality control, particularly in the iron and steel 

industry, because of their convenience in daily work and their advantages over the 
methods based on a randomized scheme in case a tremendous amcunt of bulk 

material is surveyed and handled. 

Operation plans are mapped out on the basis of the average quality of the raw 

materials fed into the manufacturing processes. The discrepancy between the 
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112 Heihachi SAKAMOTO 

estimated and actual values of the average quality of these materials is expected 
to disturb to a considerable degree the uniformity of finished products. For 

instance, the quality of cast iron is much dependent on the average quality of the 
ingredients charged into the cupola. It is necessary, therefore, to work out the 
means of evaluating the average quality of materials handled in bulk, within rela

tively closed limits. 
If material is gathered from several sources, its quality often differs from 

one source to another. So material from each source must be sampled and mea
sured separately, or materials from various sources must be thoroughly mixed in 
order to achieve the satisfactory uniformity of quality throughout the whole lot. 

If the purpose of sampling is to evaluate the average quality of such bulk ma
terial, it is convenient to take samples, each composed of a series of increments 
systematically taken from material flow on a conveyor belt. Moreover, for quality 
control, we must obtain information about the average quality of each sublot of 
raw material fed into the manufacturing processes at one time, instead of the 
average quality of the whole lot piled in storage. 

It is not necessarily economical to take from every sublot such samples as may 
provide sufficiently accurate estimates about the average quality. Therefore, va
rious types of piling, known as " layering" or "bedding", are adopted to achieve 

satisfactory uniformity in quality throughout the whole lot piled in storage. In one 
of these types, material is spread on the storage yard like a large number of para
llel noodles. Each sublot of the material fed into the manufacturing processes 
from the storage consists of the slices vertically cut off from the noodle-like piles 
of material. It is obvious that each sublot of the material will be more homoge
neous if we mix again the slices by the bedding method before we feed the sublot 
of slices into the manufacturing processes. In any case, the material can thus be 
mixed fairly well. And it will be homogeneous to some extent in quality when it 
is fed into the production lines. 

In this bedding method, the average quality of a sample of adequate size, com
posed of the vertically cut off slices, would provide a desired accurate estimate 

about the average quality of every sublot. It is to be noted here that there is 

similarity between the physical composition of the sample taken from such material 
piles and that of the sample composed of a series of increments systematically 

taken from material flow on the conveyor belt from a ship to the storage. 

There are two methods of piling, namely ordinary bedding and " switch-back" 

or " zig-zag" bedding. In the former method, material flow is spread on the storage 

yard in a parallel way in the same direction, but in the latter method in the 

opposite direction alternately one after another. 

In both methods, the lot to be fed into the manufacturing processes consists of 

the slices perpendicular to the parallel lines. 

(2) 



Theory of Systematic Sampling and Bedding Methods 113 

We can construct a mathematical model which will represent the physical com
position of the sample taken from the Jot of material piled by the bedding method 
or that of the sample composed of a series of increments systematically taken 
from material flow on the conveyor belt. By establishing such a mathematical 
model, we can show that, if we take a systematic sample with a sufficiently small 
sampling interval from the flow of material, the sample thus obtained may be treated 
as a random sample taken from the lot which was mixed fairly well by the bedding 
method. The mathematical model for the systematic sampling method or bedding 
method, in its extreme case where the sampling interval is sufficiently small or 
the number of parallel noodles is sufficiently large, may be considered as an example 
of the application of the ergodic properties. 

So far, many writers have treated this problem from the macroscopic point of 
view, assuming a priori that the fluctuation of the quality of material on the 

conveyor belt is subject to a stochastic model such as a stationary stochastic 

process. 
In this paper, the author will try to construct a theory for the systematic sam

pling and bedding methods from the microscopic point of view, taking into 
consideration the heterogeneity of the distribution of piece sizes and contents in 
bulk material on the conveyor belt. 

First: The author will explain this subject by illustrative exmples. Then, the 
problems to be solved from the mathematical point of view wi11 be put forth. 

Second: The author wilJ establish a theoretical model, which describes the state 
of material flow on the conveyor belt. Thus, the mathematical formulae will be 
introduced for the variance of the numbers of a given category found in increments 
systematically taken from material flow. The time series which represents the 
initial state of material flow may be assumed to be considerably evened and local1y 

randomized, if the material has been locally mixed by a mixer while the material 
is being carried to the storage by the conveyor belt. 

Third : The author will discuss a stochastic model more complicated than the 

above model. Herein will be studied a lot in which the distribution of piece sizes 
and contents is represented by a mixture of pieces classified into a limited number 

of categories. 
Fourth: The author will set up a theoretica11 model, which describes the phys

ical composition of the interpenetrating samples, each composed of a series of 
increments systematica11y taken from material flow. By using the results derived 
from this model, we can investigate into the nature of the lot mean estimate (ash 
content, humidity, etc.) calculated from the systematic samples of bulk material. 

Fifth : The author will discuss the relations between randomness and the oper
ration of statistical control, mainly taking into consideration the operation of 

statistical control for attaining uniformity in the quality of raw material. Thus, 

the mathematical theory of randomness, which clarifies the relations between the 
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physical aspects of the state of control and the quantitative aspects of the data 
obtainable under a given state of control, will be developed. 

Sixth: Using the well-known method of arbitrary functions, the author will 
discuss the mixing mechanism of the bedding method. This discussion will, natu

rally, throw much light on the stochastic theory of systematic sampling and 

bedding methods of bulk material. The mixing mechanism of the bedding method 

is somewhat like the process that is employed by the baker in making puff pastry. 

The mixing mechanism in making puff pastry was investigated in detail by E. Hopf 

and others. Their fruitful results can be utilized for the study of the mixing mecha

nism of the bedding method and the mathematical structure of the systematic 
sampling method. But some modifications must be introduced in their study of 
the mixing mechanism, if material is locally mixed either spontaneously in transit 
or by a properly designed mixer while the material is being carried to the storage. 
In this case, it would be better to study the mixing mechanism of the bedding 

operation which is applied to the locally mixed material flow on the conveyor belt. 

Lastly, it should be noted that the theory developed here will also be applicable 
to the grinding and subdivision process of samples - an indispensable operation 
to obtain material suitable in size for analysis. To avoid the fine grinding of a 
large amount of material, grinding and subdivisicn operaticn is often carried out 
in several stages. Thus, in sampling bulk material we have to consider not only 

the errors of the original sampling operation but also those of the subsequent 

subdivision. Besides, we must pay attention to the fact that bulk material is mixed 
fairly well by the grinding process, for this helps us to apply tl:e stochastic theory 

of the systematic sampling and bedding methcds to the grinding and subdivision 
process of samples. 

II. Sampling from material in motion 

To take a representative sample from material in motion, such as coal or iron ore 
on a conveyor belt, is a problem far easier than sampling from stationary bulk. 
The ordinary practice is to collect increments of the material at regular intervals 
as it passes at a certain point: these increments may afterwards either be mixed 
together in a single gross sample or analyzed separately. It is to be noted here 
that such separate analysis is not necessarily economical in daily work. 

In order to treat this subject properly from the statistical point of view, we must 
take out the essential points of the problem from the practical data that have so 
far been collected. 

Fig. 1 shows the changing quality represented by the percentage ash content of 
each increment of coal which is sampled at regular intervals from the conveyor 
belt as it passes at a certain point. 

A smooth sinuous curve might be drawn to represent the changing level of quality: 

(4) 
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the points representing test values from successive increments wov..ld be scattered 
around this curve, not lying precisely on it owing to sma11-scale lccal variation in 
quality superimposed on the main trend. This small-scale local variation appears 
even between the contents of two increments taken in rapid succession. 

- increment No. 

Fig. 1. 

It can be readily seen that the changing level of quality is caused by the hete

rogeneous distributions of piece sizes and contents in bulk material carried by 
the conveyor belt. It appears that the main trend represented by the smooth 
sinuous curve and the small-scale local variation along the main trend have been 
brought by some kind of small-scale mixing cperation (for example, by grinding 
operation) of bulk material while it is being carried to the storage by the conveyor 
belt. Thus, we may consider such material £ow on the conveyor belt as a kind of 
locally randomized material flow. 

We will discuss the systematic sampling method as well as the mixing mecha
nism by the bedding method for such material flow from the statistical point of 
view. In order to investigate into the variability of material flow on the conveyor 
belt, we must test each increment separately. 

But in practice, a single measure of the average quality of the whole lot is 
usually obtained, by mixing together the systematic increments into a single gross 
sample, which alone is tested. If the local variation superimposed upon the main 
trend is small, as in this illustration, a very reliable estimate of the average quality 
may be obtained from the gross sample. 

As was pointed out by Dr. E. S. Pearson, the most important point is that if 
sufficient increments are collected, the reliatility of the estimate as a measure of 
true avarage quality of the whole lot will depend on the magnitude of the devi
ation from the trend curve, and not on the exent of the fluctuations of the curve 
itself. 

The author will explain this point by a set of practical data representing the 
percentage ash contents in 27 pairs of increments systematically taken from a lot 
of coal. The sampling method adopted here is shown in Fig. 2. The 27 pairs of 
increments were collected from material flow on the conveyor belt at regular intervals 
(ten-minute intervals), where a and b correspond to the two paired increments 
taken in rapid succession. The data in table 1 are the percentage ash contents 
of the 27 pairs of increments. 
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In the following discussion, we will assume that the sizes of the collected increments 
were nearly the same, although in practice it is very difficult to take increments 
of exactly the same size. 

I I ____ __,_ _____________ ...._, _____________ -'-'----
! 10 min. I 10 min. I 
l l I 
I a b I I 
1 I' ~ •a b• tW4zQzi-·--
~~~ ~~J ~-· 
!4/IJJ, 1dl'Jl' '4/'Ji! 

Fig. 2. 

Table 1. 

Increment No. 1 
I 

2 I _3_1_4 _ _ 5 1_61_7 _8_/_~9~ 
a 4.3 2.3 3. 6 2. 2 5. 7 3. 2 3. 9 5. 6 14.5 

b 2.0 5.6 2.8 2. 7 6.3 ~~4.7 Uj~ 
3. 20 12.45 3.10 14.30 

----:-
combined 3.15 3.95 6.00 s. so 1 4. os 

Increment No.I 10 11 12 13 14 
I 

15 16 17 18 

16.2 
--

a 8.1 8.2 7.9 11.9 9.1 8.3 7.3 5.4 
----------

b 16.3 8.6 7.8 17.2 8.9 9.1 8.1 8.3 5.5 

16.25 8.ooj7.55 
-

combined 8.35 10.4 9.10 8.20 8.80 5.45 

Increment No./ 19 20 21 1 22 23 24 i 25 26 I 21 

2. 7 2.1 7.21~ 7.2 
I 

7.214.8 a 
--:-

b 2.3 3.0 8.4 3. 6 7.4 10.3 8.1 6.8 5.6 
----

~~~ 
--,----j-

combined 2.50 2.55 7.80 3.80 7.30 10.801 8. 75 7.00 5. 20 

First we divide the 27 pairs of increments into 18 interpenetrating samples as follows, 

I'a={1a, lOa, 19a}, 

II' a= {2 a, 11 a', 20 a}, 

nn'a={3a, 12a, 21a}, 

N'a={4a, 13a, 22a}, 

V'a={5a, 14a, 23a}, 

VI' a= {6 a, 15 a, 24 a} , 

W' a= {7 a, 16 a, 25 a} , 

\11I' a= {8 a, 17 a, 26 a} , 

IX' a= {9 a, 18 a, 27 a} , 

I'b={lb, lOb, 19b}, 

II'b={2b, llb, 20b}, 

][' b = { 3 b, 12 b, 21 b} ' 

N' b= { 4 b, 13 b, 22 b} , 

V'b={5b, 14b, 23b}, 

VI' b= {6 b, 15 b, 24 b}, 

W'b={7b, 16b, 25b}, 

Vlll' b = {8 b, 17 b, 26 b} , 

IX' b= {9 b, 18 b, 27 b} • 

The calculated percntage ash contents in the interpenetrating samples thus composed 
are shown in Table 2. 

(6) 
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Table 2. 

Inter.penetrating I I 

I 

ll' liT' IV' V' VI' v1I' WI' JX' sample No. 
--------------

a 4.40 4.17 6.33 4.70 8.27 7.87 7.20 6.70 4.90 
------------------

b 3.53 5.73 6.33 4.50 7.53 7.47 6.97 6.83 4.90 
----------------/-

combined inter- 3.97 4.95 6.33 4.60 7.90 7.67 7.09 6.77 4.90 
penerating samp. 

Then, we divide the 27 pairs of increments into 6 interpenetrating samples as follows, 

I"a={la, 4a, 7a, lOa, 13a, 16a, 19a, 22a, 25a}, 

I II b= { lb, 4b, 7b, lOb, 13b, 16b, 19b, 22b, 25b} , 

TI"a={2a, 5a, 8a, lla, 14a, 17a, 20a, 23a, 26a}, 

TI"b={2b, 5b, 8b, llb, 14b, 17b, 20b, 23b, 26b}, 

]l"a={3a, 6a, 9a, 12a, 15a, 18a, 21a, 24a, 27a}, 

]I" b= { 3b, 6b, 9b, 12b, 15b, 18b, 2lb, 24b, 27b}. 

The calculated ash contents of the interpenetrating samples thus composed are 
shown in Table 4. 

Table 4. 

Interpenetrating sample No. I" ll" ][" 

a 5.43 6.38 6.37 

b 5.00 6.70 6.30 
1-

combined 5.22 6. 54 6.34 

Lastly we divide the 27 pairs of increments into 2 interpenetrating samples as 
follows, 

I "'a={la, 2a, 3a, ...... , 27a}, 

I'"b={lb, 2b, 3b, ...... , 27b}. 

The calculated ash contents of the interpenetrating samples thus composed are 6.06 

for I'" a, 6.00 for I 111b, and 6.03 for the combined interpenetrating sample of 
I "'a, I '"b. 

We will make the analysis of variance for these data to measure the degree 
of variability between the interpenetrating samples composed of these systematic 
increments. 

The first step is to test the significance of the "between pairs" variance compared 
with the " within pairs" variance. Here, the " within pairs" variance may be 
considered as an approximate measure of variability between the increments taken 
from the thoroughly mixed lot. 

(7) 
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This is presented in Table 5. 

Table 5. 

d. f. s. s. m. s. =u2 

Between pairs 26 327.66 12.60 

Within pairs 27 18.51 0.68 

Totals 53 346.17 

The second step is to divide the "between pairs" variance into "between combined 
interpenetrating samples" variance and "within combined interpenetrating samples" 

variance. 
The result of such analysis is presented in Table 6, in case we treat the combined 

interpenetrating samples I', ll ', ill', ··· ··· IV'. 

Table 

d. f. 
Between combined 

interpenetrating samples 8 
Within combined 

interpenetrating samples 18 
Totals 25 

6. 

s. s. 

99.76 

227.70 
327.66 

12.50 

12.65 
12.60 

The result of the analysis is presented in Table 7, in case we treat the combined 
interpenetrating samples I", ll", ][". 

d. f. 
Between combined 

interpenetrating samples 2 
Within combined 

interpenetrating samples 24 

Totals 26 

Table 7. 

s. s. 

17.82 

309.84 

327.66 

m. s.=u2 

8.91 

12.91 

12.60 

By such analysis of variance, we can investigate into how the variance between 
the contents of the interpenetrating samples decrease as the number of increments 
in each sample increase, and we can determine how many increments should be 
taken in order to assure a certain degree of reliability for the estimate calculated 
from the sample composed of such systematic increments. 

If the original lot of material has been thoroughly mixed before we take the 
systematic increments, then the variance between contents of the interpenetrating 

samples composed of systematic increments will decrease in inversely proportional 
to the number of increments in such samples. This is shown by the dotted curve 
in Fig 3. Together with this dotted curve, the estimated decreasing tendency of 
the variability between the contents of the interpenetrating samples is shown by 
the solid curve. 

(8) 
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~/ 
/ 

3.0 ~/ 

0.5 

0 1 

Estimated decreasing tendency of the .variability 
between contents of the interpenetrating samples 

/, 

The sampling error for the 
Interpenetrating samples 
from the thoroughly mixed lot. 

I 
I 

I 
I 

I 
---- I I -----------·----L _______ •--
10 15 20 25 

Fig. 3. 
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From the above analysis of practical data, it can easily be supposed that the 
variability in ash content of samples composed of systematic increments (with each 
increment's weight as w) can be represented as 

a .2 
a 2- a 2+ 1 
o- N Nw' 

where o'i2 is the variance for a sample of unit weight from a thoroughly mixed lot, 
and a'N 2 represents the variation due to the systematic sampling method which is 
applied to the main trend. 

The first term of the right-hand side of the above formula seems to converge to 
zero rapidly as N is increased, particularly when the main trend in quality level 
is represented by a smooth curve. 

From the above analysis, it can easily be supposed that a N 2 decreases to zero 

rapidly compared with the magnitude of ;.;: as N is increased, where the magni

tude a i 2 is nearly independent of N. 

For sufficiently large N, we may write 

which shows the variability in ash content of a sample of size N w taken from a 
2 

thorough1y mixed lot. The term a 0 2 = a N 2 + }/w corresponds to the solid curve in 

Fig. 3. And the term ;i: corresponds to the dotted curve in Fig. 3. It is to be 

noted here that the solid curve has a tendency to approach asymptotically to the 
dotted curve as N is increased. 

Now, how many systematic increments should be taken so that a sample composed 

(9) 
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of such systematic increments might be regarded as a random sample taken from 
the homogeneous material flow? In the systematic sampling of bulk material it 
is often advantageous to take two or more interpenetrating samples composed of 
systematic increments, as was illustrated by the above example. If the error vari
ance for the discrepancies between the contents of the interpenetrating samples is 
significantly large compared with the "within paires" variance, we cannot regard 
such samples as random samples taken from the thoroughly mixed lot. So we can
not treat the pooled mean of the percentage contents of the interpenetrating samples 
as if it were a mean of the percentage contents of samples taken from the homo
geneous material flow. In such a case, we cannot estimate directly the variance of 
the pooled mean of the percentage contents of the interpenetrating samples. We 
must este mate it indirectly by an extrapolation method, making use of the above
mentioned decreasing tendency of the variance between the contents of the inter
penetrating samples. In order to solve this problem, it is desirable to establish a 
statistical theory for pooling data along the lines of the works ·developed by 
Dr. T. A. Bancroft, Dr. T. Kitagawa, and others. 

We have sofar discussed the systematic sampling method in the field of quality 
control and pointed out many valuable problems to be solved from the mathematical 
point of view. But these problems have been found not only in the' field of quality 
control, but also in other fields such as timber and social surveys. It has been 
pointed out in many examples of various fields that systematic sampling, when used 
on the type of material for which it is suitable, is likely to have an error variance 
which is somewhat less than random sampling with one unit per stratum. We will 
discuss these points in detail in the following sections. 

III. Theoretical models of sampling at regular intervals 
from a conveyor belt 

Let us suppose that conditions are as described in the examples in the previous 
section. The equation to the trend curve, which may be discontinuous, is usually 
represented by 

y=f(t) 

The unit for t may be taken as an interval in time, supposed constant, between 
the colJection of k successive increments. 

To begin with, we will discuss the sampling problems along the line of the 
theoretical models, which have been developed by many authors from the macrosco
pic point of view. The values of the characteristic under consideration as obtained 
from these increments by chemical analysis or otherwise will be written x 1, x 2 , x 3 , 

•••••• , Xt, •••••• , x~c. Further, the difference between Xt and the trend curve will be 

denoted by Zt, so that 

(10) 
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In many cases of practical sampling it is considered only necessary to obtain an 
averaged measure of quality for the whole lot. This average measure will really 
be represented by the total area under the trend curve, or by the integral 

k 

l= if f(t)dt 
0 

The average measure obtained from the k increments will be, 

The first expression on the right-hand side of the above equation is based on the 
sum of equidistant ordinates of the trend curve, that is to say, provides a first 
approximation to the integral I. The second term is the mean value of deviations 
from the trend curve, and its probable difference from zero will be measured by 
a standard error aijk, assuming that zh z2, ...... , z" are the realized values of k 
independent random valiables z1o z2, ...... , z~o:, all having the same distribution Fz (x) 

with the mean value 0 and the standard deviation a z. 

It follows from the above model that the reliability of X" as an estimate of I will 
depend on two factors ..... . 

(i) Whether, taking into consideration the fluctuations and discontinuities in the 
trend curve, sufficient ordinates are being used to provide an adequate quadrature 

of the area under this curve ? 
(ii) What is the magnitude of deviations from the trend curve due to the more 

local variations in quality? 
The above-mentioned theoretical aspects of sampling from material flow are 

suggested by Dr. E. S. Pears'Jn. On sampling from processes depending upon 
a continuous parameter, many papers have been published by Dr. T. Kitagawa~ 
Dr. A. E. Jones, Dr. G. H. Jowett, and others. 

Especially, Dr. T. Kitagawa treated the sampling problems in the case of the non
stationary stochastic process in more generalized form. In any case, it would be 
better to assume the following mathematical model. 

where Zt represents a stationary stochastic process. 
The results obtained from the mathematical model established for one-dimensional 

material flow will easily be extended to the 3-dimensional case representing the 
actual state of bulk material. As was pointed out by Dr. E. S. Pearson, if incre
ments are drawn from different points chosen at regular space intervals in stationary 
bulk material, the problem may be regarded as one of cubature of the volume under 
a 3-dimensional surface in a 4-dimensional surface in a 4-dimensional space. But, 
for simplicity, we will treat mainly the mathematical model representing the one 
dimensional material flow in the following sections. The author wi11 discuss the 
sampling problems from a slightly different angle in this paper. 

(11) 
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IV. Theoretical models of the bedding operation for material 
flow (non-stochastic models) 

We will first derive the mathematical formulae for the time series which represents 
the quality level in the generated state of material flow by tne ordinary bedding 
method. Let A' (t) denote the original (non-stochastic) time series which represents 
the quality level in the initial state of material flow, A' (t) is the first order deriva
tive of a non-decreasing absolutely continuous function A (t) defined on the closed 
interval [- rr, rr ]. 

Then, the time series r~c (f) which represents the quality level in the state of mate
rial flow generated by K-fo1d ordinary bedding operation can be expressed as follows, 

(1) 

where k h=2rr, -rr~t~rr. 

In practice, we may assume that A1(t) is a square summab]e function defined on the 
closed interval [ -rr, rr ]. 

Then the series 

(2) 

is the Fourier series of the function A' (t), where 

7t 7t 

an=! J cos nt A1 (t) dt, bn=! J sinnt A1 (t)dt. (3) 
-7t -?t 

In this case, the time series r~c(t) defined on the closed interval [ -rr, rr] which 
represents the quality level in the state of material flow generated by k-fold ordinary 
bedding operation can be expressed as follows, 

r~c(t)=_!_f .-1'{-rr+(i-..J--) 2
77: +..!....} 

k i=l 2 k k 

(4) 

where 

A + ;. k { ( · . 2nrr . -. 2nrr) b ( -. 2nrr . 2nrr)} io=ao ~~nrr an smtk-slnt-lk + n cosz-lk-costk , 

(12) 
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n 
( -1)m-

A "' k { ( · .2mr · -. 2nn-) b ( -. 2nn- . 2nrr)} 
im= E1 { (~ r -m2}rr an stnz T -stn z-1k + n COSz -1 k -cosz T ' 

B;m= ~ { (~ ~)m m} {-a.( cos i -1 
2Zn -cos i 2Zn) +b.( sin i 2zn- sin i -1

2Zn)} (5) 
n-1 - -m2 1r 

k 

It is to be noted here that we put 

(6) 

when n=mk. 
From the relations (4), (5) and (6), we can easily derive the next relation, 

(7) 

Now we will derive the formulae for the variance of the original time series A.' (t). 

Since A.'(t) is a square summable function defined on the dosed interval [ -rr, rr], 

it is obvious that 

1t 1t 

2~f { ).' (t)- 2
17rf ).' (t) dt r dt= ~ El (an 2+bn2) (8) 

-1t -1t 

Next we will derive the formulae for the variance of the generated time series 

rk (t). 

Since rk (t) is also a square summable function defined on the closed interval 
[-rr, rr], we can easily derive the next relation 

1t 1t 

a~. b (k) = 21rrf {rk (t)- 2
1rrf rk (t) dt r dt= ~ ~1 (a 2km +b2km), (9) 

-1t -1t 

where the suffix 0 · b (k) means a k-fold ordinary bedding operation. 
Thus we can compare the variance of the generated time series rk (t) with that of 

the original time series A.' (t). 

It is obvious that a~. b <k) = ~ m~1(akm 2+ bkm2
) (k= 1, 2, ...... )is a monotone decrea-

sing sequence and tends to 0 as k --. oo. 

(13) 
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And if the Fourier coefficients an, bn decrease rapidly as n is increased, the effi
ciency of the bedding operation will be very large even for small values of k. 

For the switch-back bedding operation, we obtain the next formula, 

2 - 1 ;. 2 
a s•b(2k) --2 £...j a21:m 

m=l 

where the suffix s • b(2k) means a 2k-fold switch-back bedding operation. 

(10) 

From the relation (10), it will be obvious that the efficiency of the switch-back 
bedding operation for a time series which has a monotone decreasing or increasing 
smooth trend is generally large even for sm1ll values of k, since the Fourier coeffi
cients an of such time series has a tendency to decrease rapidly as n is increased. 

1 00 1 00 

In any case, we can estimate how the magnitude 2 f,}a
2.tm+b2~.:m) or 2 f, 1ai~.:m 

decreases as k is increased, from the properties of the Fourier coefficients of the 
periodic function A' (t). If the periodic function A' (t) is continuously differentiable 
up to the k-th order and the (k+ 1)-th derivative A <k+l) (t) satisfies the Dirichlet's 
conditions, then the Fourier coefficients an, bn of A' (t) satisfy the next inequalities, 

I ani ~:H; I bnl ~ ~1 ' (11) 

where M is a positive numbers. 
If we put A'(t)=at for the interval [ -n, n], then the Fourier coefficients an, bn 

of A' (t) are calculated as follows, 

for all n; 

2( -1)n-1 
bn= a. 

n 

. d 1 ;. ( 2 b2 ) • • b 1 4 ;. 1 2 n 2 
2 d Hence the magmtu e 2 ~1 a ~.:m+ tm Is giVen y 2 k2 m7;

1 
m 2 a = 

3
k 2 a, an we 

can easily estimate the decreasing tendency of a&.bct) as k is increased. 
If we put A' (t)= at 2 for the interval [ -n, n ], then the Fourier coefficients an, bn 

of A' (t) are calculated as follows, 

4 an=( -1)n 2 a, for n=1, 2, 
n 

bn = 0, for all n. 

1 oo • • b 1 16 ;. 1 2 _ (2n)4 
2 d 

Hence the magnitude 2 m"fl(a2~.:m+b2~.:m) IS given y 2 k4 m7;1m4 a -180k4a ,an we 

can easily estimate the decreasing tendency of a&.bck) as k is increased. 
If A' (t) is considerably smooth and may be developed in Maclaurin's series up to 

(14) 
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the higher order term in the interval [- rr, rr], 
A' { -rr+ ( i- ~) h+ k} can be written as the following formula, 

A'{-rr+ (i-_!_)h+j_} .. ;, BP(!){A<P>£-n+ih}-A<P>{-n+(i-1)h}} 2 k ~0 p ! h ( 12) 
where 

BP (!) = bo(! r + (f) b1 (! r-l h+ ( ;) b2 (! r-2 
h 2+ ...... +bphP. 

Here A <P> (t) denotes the p-th derivative of A (t), and b0, b~t b2, •••••• are the Bernoulli 
numbers. 

Hence 

Bo(!)=1, B~(!)= k- ;, B2(!)=(!r-(!) h+~2

, 

B3 (!)=(!f- ~ (!r h+ ~ (!)h2, ..... . 
From (1) and (12), we can easily derive the next result, 

( )= ~BP (!) {A<P>(rr)-A<P>(-rr)} 
T~c t . LJ p I 2 

P=O • 7r 
(13) 

or 

r~c(t)-_!_j1C ).'(t)dt=~ BP(f){A<P>(n)-J.<P>(-n)} 2rr P=l P ! 2rr , (14) 
-?C 

Here we can write 
1C 1C 

T:c = 2~ J r!c(t) dt = 2~ J ).' (t) dt= l' . 

Then the formula for the variance of the generated time series r~c (t) will be given 
as follows, 

(15) 

From (15), we can easily derive the ne:x;t formula for sufficiently Jarge value of k, 

assuming that the effects of the higher order terms are negligible, 

a2 = _!_{).'(rr)-J.'(-rr)}. 2 (2rr)2 _!_{J."(rr)-A"(-rr)}2(2rr)' 
o·b<k> · 12 2rr k I + 720 2rr k 

_ __!__ {A' ( rr)- A1 
( -rr) A11 (rr)- A" ( -rr )} (2rr)' 

360 2rr 2rr ' k (16) 

(15) 
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For the case of switch-bedding operation, we can obtain easily the next formula 
for sufficiently large value of k, assuming that the effects of the higher order terms 
are negligible, 

2 __,_ 1 {A."(n)-A."(-n-)} 2 (2rr) 4 

cr s·b< 2k) --=-- 720 2n k (17) 

The variance given by a~.b<k) may also be considered as the variance of the mean 
of a random sample composed of k values at k points systematically taken from 
the material tiow on the conveyer belt by random start method. 

Similarly the variance given by a~·b<2 k) may be considered alsQ as the variance 
of the mean of a random sample composed of 2k values at 2k points (zig-zag) 
systematica1ly taken from material flow on the conveyor belt by a random start 
method. 

V. Theoretical models of the bedding operation for material 
flow (A lot composed of a given category) 

First we will derive mathematical formulae for the variance of the numbers of 
pieces of a given category found in the increments of a fixed size ill taken from 
the material flow, the state of which is described by a Poisson process. Even if 
the original time series which represents the initial state of material flow cannot 
be assumed to be a well-known stochastic process, we have a sufficient reason to 
assume that the time series which represent the state of materi" 1 flow going out 
through a properly designed mixer will be a stochastic process with a considerably 
smooth mean value function. If we discuss the accumulated number function of 
of pieces of a given category found in the material flow on the conveyor belt, such 
time series may be assumed to be a realization of a Poisson process approximately. 

Here it is supposed that for every pair t<s, X(s, w)-X (t, w) is integral valued, 

which 

e-P Cs)-l <OJ p (s)- A. (t)} 11 
Pr {X(s,w)-X(t,w)=l-1}= 

1 
(1.1=0, 1, 2, ······) (18) 

l-1 . ' 

where A. (t) is a non-decreasing absoiutely continuous function defined on the inter
val [ -n, n]. 

Now we put 

{ 

X(t+ill, w)-X(t, w), 

Y(t,ill,w)= X(n,w)-X(t,w) 

+ X(ill-2n+t, w)- X(- n, w), 

1t: 

Y (ill, w) =If {Y(t, ill, w)} = JnJ Y (t, ill, w) dt 
-n 

(16) 

when - rr ;£ t ;£ rr -ill 

(19) 

when n-il/ ;£t;£n. 

(20) 
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tt: 

{S (.dZ, w)}2 = ~ {Y (t, .dZ, w)- Y (.dZ, w)}2 = 
2
1nJ {Y (t, .dZ, w)- Y (.dZ, w)}2 dt (21) 

-1t 

Then Y (.dZ, w) and {S(JZ, w)}2 may be considered, respectively, as the mean and 
variance with respect to t of the numbers of particles found in the increments of 
a fixed size .dZ taken from the material flow, the state of which is described by a 
Poisson process. 

Next we put 

V (.dZ, -r, w)=E [{Yp(t+-r, .dZ, (v)-Y (.dZ, w)}{Y (t, .dZ, w)-Y (.dZ, w)}] 
t 

tt: 

= 
2
1nJ { YP (t+-r, .dZ, w)-Y (.dZ, w) }{ Y(t, .dZ, w)- Y (LIZ, w)} dt, 

-7C 

where 2n~-r>0, and 

l Y(t+-r, LIZ, w), 
Yp(t+-r, LIZ, w)= 

Y(t+-r-2n, LIZ, w), 

when n~t+-r~ -n, 

(22) 

Then V (LIZ, -r, w) may be considered as the circular serial covariance between the 
numbers of particles founds in the two increments of a fixed size LIZ (with a cons
tant distance -r) taken from the above material flow. 

Hence we can easily derive the following results, 

E{Y(LIZ,w)}=
2
LIZ{A(n)-A(-n)}=l' LIZ; 

"' n 

tt: 

~ {S(LIZ, w)}Z= 
2
1
nf {(Ap(t+LIZ)-Ap(t))-l' LIZ}2dt+(l-~~) l' JZ; (24) 

-'ll 

tt: 

~ {V (LIZ, -r, w)} = 
2
1nf {(Ap (t+-r+.JZ)- Ap (t+-r ))-l' LIZ} 

-1t 

{(Ap(t+LIZ)-Ap(t))-l' LIZ} dt+cp(-r, LIZ)-~~ l' JZ; (25) 

where 

and 

J.'= 2~ {A (n)-A ( -n)}; 

l A (t)' 
Ap (t) = 

A (n)+ A (t-2n)- A ( -n), 

l 0' 
cp (-r, LIZ)= 

(1-l-ri/LIZ), 

(17) 

when -n~t~n, 

when n~t~3n; 

when 1-ri>LIZ; 

when LIZ~ 1-rl >0. 
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If we put ;.n (t) = ). (t+L1~~-). (t), then 

1t: 

~ {S(Ltl, w)}2= [ 2
17rj {).D(t)-1'}2dt](L1l)2 +(1-~~) 1' Ltl (26) 

-rc 

1t: 

~ {V(L1l, -r,w)}=[
2
17rf {ApD(t+-z-)-1'} {).pD(t)-1'} dt](L1l)2 

-rc 

(27) 

(i) If the time series represents the accumulated number function of pieces of 
a given category found in the material flow from a unifn.rm lot thoroughly mixed, 
which is assumed to be a realization of a temporally homogeneous Poisson process, 
then 

E E {Y(t, Ltl, w)} = E {:Y (Ltl, w)} = 1' Ltl, (28) 
(I) t (I) 

(29) 

E {V(Lil, -r, w)} = 1' Lll cp( -r, Lll)- L1
2

l1, Lll . 
(I) 71: 

(30) 

Hence the expected variance of the particles found in a sample composed of n 

non-overlapping increments of size Lll/n taken systematically will be given by the 
next formula, 

(31) 

which is equal to the expected variance E{S (Lll, w)P of the number of particles ., 
found in a sample composed of an increments of size Lll taken from the material 
flow. 

As will be easily calculated, the results (28), (29), (30), (31) obtained for a 
temporally homogenous Poisson process equally hold for a system of finite particles, 
each position of which is assumed to be a realization of a uniformly distributed 
(independent) random variable in the interval [-rr, rr]. It is to be noted here that 
we put 1 '=M /2n, where M is the number of particles. 

(ii) Let Z (t, w) be a generated process from the original process X (t, w) with 
). (t) by 2K-fold ordinary or switch-back bedding operation. 

Then we can easily prove that such generated process is also a Poisson process 
with ).*(t), where ).* (t) has been derived from the original function ). (t) by 
ordinary or switch-back bedding operation as has been shown in section 4. 

(18) 
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For the original process X (t, w) with .t (t), we have 

~~{Y(t,Lil,w)}=i'Lil=(~ao)Lil, (32) 

(34) 

where 

1 1C 
an=-f cosnt .t'(t)dt, 

1i:-1C 
bn=l_j sinnt .t'(t)dt, 

1i: -11: 

e ex)= (sin x) 2 
{ 1+4( sin ~ r} 1 X 2 

For the process generated by 2k-fold ordinary bedding operation, we have 

::~{ Y(t, J1, w)}= 1'.11= ( ~ a 0)Lil , (35) 

(37) 

For the process generated by 2k-fold switch-back bedding operation, we have 

~~ {Y(t, J1, w)} = i' .11 = ( ~ a0)J1 , (38) 

+ ~ ~~~ a~mk e (m.:11)] (.:11)2 . (39) 

+ ~ ~~~ a~mk (cosm!') .; 2 (m.:11)] (.:11)2 
• (40) 

(19) 
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From the results obtained above, we can compare the expected variance of the 
generated process with that of the original process. In any case, we can conclude 
that as k-H)O, 

( 
J l)-~{ Sb (k) (til, w)} 2~ 1-
2

n- A' Lll, 

f J l}-~{Vb <A:) (r, Jl, w)}~tso (r, Jl)-
2

n- A'Jl 

which are respectively the expected variance and expected circular serial covariance 

of Y (t, Lll, w) from a temporally homogenous Poisson process treated in case (i). 

Thus we can discuss the efficiency of mixing operation by the bedding method or 
the precision of the estimation obtained by a systematic or zig-zag sampling 

method for a Poisson process with mean value function A (t). 

If we divide a time series into two components, i. e. a systematic component 
and a stochastic component, then we can conclude that the effect of bedding 
operation for reducing the variability of the fluctuation of a time seri€s is con
siderably large for the systematic component, but not remarkable for the stochastic 

component. As was pointed out in the previous section, if the periodic function 
J.' (t) ~5tatisfies the Dirichet's conditions, then the Fourier coefficients an, bn of J.'(t) 

satisfy the next inequalities, 

whete M is a positive numbers. From these inequalities, we can easily estimate 

the decreasing tendency of a~·b<k) and a;.bc 2k) for sufficiently large value of k. 

VI. Theoretical models of bedding operation for material flow 
(a lot composed of mixture of pieces in a limited number 
of categories) 

We will discuss here a lot in which the distribution of piece sizes and contents 
is represented by a mixture of pieces classified in a limited number of categories. 

All pieces from a given category will be considered as having a constant content, 
cj (percentage), and piece weight, mj, characteristic of that category. 

Now we assume that the accumulated number function of pieces of a given cate
gory found in the material flow on the conveyor belt may be considered as a 
realization of a Poisson process X.i(t, w) with J..i (t) (j=l, 2, ...... , M). 

Besides, we assume that X1 (t, w), X 2 (t, w), ...... , Xm (t, w) are mutually inde-
pendent Poisson processes. 

Now let Z.i (t, w) be a generated process from the original process X.i (t, w) by 
k-fold ordinary or 2k-fold switch-back bedding operation. 

Then we can easily say that such generated process is also a Poisson process 

(20) 
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with ).J*(t), where ).J*(t) has been derived from the original function AJ(t) by 

bedding operation in section 4. 

And it is easily seen that Z1 (t, w), Z 2 (t, w), ...... , Zm (t, w) are also mutually 

independent Poisson processes. 
Besides, we have 

E{ZJ (s, w)-ZJ (t, w)} = ).J* (s)- AJ* (t) 
"' 

Thus we can easily derive the relations such as (32), (33), (34), (35), (36), (37), (38), 

(39), ( 40) for the generated Poisson proceEs Zi (t, w) with ).J*(t), (j = 1, 2, ...... , M). 

Now we will estimate the influence of pieces of various sizes and contents on 
the efficiency of mixing operation by heeding method or the variability of the con
tent in a sample composed of a series of increments systematically taken from 
the material flow on the conveyor belt. 

The content in the whole lot is given by 
M 

2: Ci mi {ZJ (1r, w)-ZJ ( -1r, w)} 
l;; ( w) = ;..:::.j=~~=------------

1: mJ {ZJ (1r, w)-ZJ ( -1r, w)} 
j=l 

The content in an increment taken at the interval (t, t+Jl) is given by 

M 

M 

I: cj mj zj (t, Jl, w) 
l;;(t, Jl, w)= ~j=::..;.~=--------

1: mj zj (t, Jl, w) 
j=l 

when I: miZi ( t, L1l, w) ~ 0 . 
j=l 

(41) 

(42) 

It is to be noted here that the material flow must be kept at a constant level 
as far as possible, i. e. 

Here ' (w) may be rewitten as follows, 

1 " M 

_ ( )- 277:!, l;; (t, Lit, w){j~ mJZi (t, ill, w)}dt 
l;;w- 1 ,Jt 

277: L ~~ mj zj u . .:1z, w)} dt 

(44) 

Now we put 

1 " 
' (L1l, w) =f' { l;;(t, dl, w)} = 277:!, l;;(t, Jl, w) dt (45) 

Then, we have the next approximation formula as the bias of the estimate '(L1l, w) 

from '(w), 

(21) 
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E {C(Jl, w)-C(w)} 
"' 

assuming that the effects of the higher order terms are negligibly small; where 

(47) 

As will be easily seen from ( 46), the bias of estimate ~(Jl, w) is considerably 

small if the material flow is kept at a constant level ; i. e 

(48) 

Here we put 

{S (L1l, w)P= 2~ l' {t;(t, L1l, w)- ~(w)}2 dt (49) 

as an approximate variance of the C(t, Jl, w). 

Then we have 

E{S(Jl,w)}2--;-C2 (1--) j=1 +-----..x"--'=-=-1
----

_ Jl { fcJ2 m/~/JZ fml~/Jl 
(J} \ 2n- CEl cj mj ~/)2 (.11)2 CEl mJ~/)2 (.11)2 

f cj ml ~/ J[ } { 2
1 J {f; Cj mj ( Aj*D(f)- ~/)}2 dt 

-2 M J=l_ M - +C2 _n-_-"_J=_l_ .... M _______ _ 

CI: CJ m1 l/) CI: mJA/) (Jl) 2 CI: C1 mj A/) 2 

J=l J=l J=l 

_!_ { {.f; mJ ( AJ*D(t)- ~/)} 2 dt 

+ 2n- -" J=l 

M -
(I: mJ A/)2 

j=l 

_
2
f,; l lt,c) m) ( ·:D(t)-~/)} ~~' m,_c l,*D(t)- if))d/} 

CI: cj mj A/) (I: mj A/) 
j=l j=l 

(50) 

(22) 
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assuming that the effects of the higher order terms are negligibly small. 

Next we put 

1 ,. 
V (-r, Jl, w) = 

2
n-l {Cp (t+-r, Lll, w)-~(w)} {C(t, Lll, w)-~(w)}dt , 

as an approximate circular serial covariance between the contents 

CP (t+-r, L1l, w) and C (t, L1l, w), where 

t - {'(t) ' 
CP C ) - C(t-2n-) , 

when -n-~t~n- , 

when n- ~t~3n- • 

Then we have 

E {V(-r, L1l, w)} 
"' 

_ [{ A 1} {£ Ci2 mi2 l/ (Jl) £ mi2l/ (L1l) * C2 cp ( '[' Lll) - :!.__ J=l M + J._=.::...-~----
21l" (~ ci m)/L1l)2 (~mill L1l) 2 

J=l j=l 

-2 E~ ci mj (L1l) }] 

ctl ci mil/ Lll) (J~l mill Lll) 

[2
1 /{t ci mi (A1: (t+-r)-l/)} {t Cimi (A1D (t)-l/)}dt 

+C2 ""-" J=t J=t 
M -
{~ Ci miA/}2 
j=l 

+ ~-lt~ mi (A1: (t+-r)-l/)} {~1mi(A1D (t) -l/)}dt 
M -
{~ mi A/}2 
j=l 

~-l {t
1 
Ci mi (A1: (t+-r)-l/)}{1~ mi (A1D (t)-l/)}dt 

M _ M _ 

{ ~ CimiA/}{ ~ miA/} 
j=l j=l 

_ ~L"{t1 Cimi (A1n (t)-l/)} ~~ mi P1: (t+r) -l/}dtl 
M M ' 
{~ Cimil/} {~mil/} 
j=l j=l 
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(51) 

assuming that the effects of the higher order terms are negligibly small. If the 
material flow is kept at a constant level, we have 

(52) 

(23) 
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(53) 

Here we put l/ ill= ni, which is the expected number of pieces of category j found 

in an increment of size Lll. Then we have 

(54) 

(55) 

(56) 

We will discuss here the effects of the systematic component on the total vari
ance by using Fourier series expansion of A./ (t). 

For the generated process by 2k-fold ordinary bedding operation, the systematic 
component of E{S (Lll, w)P may be written as follows, 

"' 

(57) 

(24) 
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and the systematic component of E{V (r, Lll, w)P may be written as follows, 

where 

M 

an=L:Cimjaj,n, 
j=l 

M 

f3n = I: cj mjbj, n • 
j=l 

135 

(58) 

(59) 

Similarly, for the generated process by 2k-fold switch-back bedding operation~ 

the systematic component of E{S (Lil, w)P may be written as follows, 
OJ 

(60) 

and the systematic component of E{V (r, Lll, w)P may be written as follows, 
OJ 

_ [
2
1 f: aink (cosnr) ~ 2 (nLit)J (Jl)2 

C2 n=l 

{~ aof 
(61) 

M 

Here we may regard an, f3n as the Fourier coefficients of f(t)= I: Cj miA./ (t). 
j=l 

M 

It should be noted here that g (t) =I: miA./ (t) is kept nearly at a constant level~ 
j=l 

so that we may regard as follows, 

M M 

I: mj aj, n I: mj bj, n 

j;;t ~ 0 ' j;l ~ 0 (n=1, 2, 3,- .. ···) 
I: mi ah o I: mi ah o 
j=l j=l 

We can easily derive the next inequalities, 

(62) 

(63) 

(25) 
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M M 

under the assumption that the relation I: m1 ah n=O , I: m1 bh n= 0 hold. 

If 

J=l j=l 

can be taken nearly 1, then 
M 

an= I: cj mj aj, n 
J=l 

M 

will be very small compared with ao = I: C1 m1 ah 0 • 
J=l 

and 

In any case, the effect of variability of the systematic component on the total 
variance will be negligibly small compared with that of the stochastic component 
if we take k sufficiently large. 

After all, it will be easily seen that, 

(64) 

f m~ni I; C1 m~n1 } + ;1 -2 M J=l M ' 

(J~ mj nj)2 (j~l cj mj nj) (~1 mj nj) 

(65) 

if a lot of material is thoroughly mixed by bedding operation with properly de-
signed mixer. We have also 

(66) 

as the bias of the estimate ~(ill, w) from ~(w). 
Now the increment of size LIZ considered here may be replaced by a random 

sample composed of (sufficiently large) 2k increments of size LIZ/2k systematically 
taken from the material flow on the conveyor belt by random start method. 

Besides, if the expected number of pieces in a sample of size LIZ is sufficiently 
large (LIZ/2n is sufficiently small) and the effect of each piece is individually neg
ligible to the tota1 variation of the sample, then C(t, LIZ, w)-~(w) may be considered 
as a random variable with normal distribution N{m*, ( a*) 2 } approximately, by 
applying the central limit theorem; where 

(26) 
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(67) 

_ { ~ C~m~n1 f m~n1 f C1 m~n1 } 
(<r*)2~C2 ic=1 + ~=1 -2 M J=1 M • 

(~1 cj mj nj) 2 (~1 mj nJ) 2 (~1 cj mj nj) (~1 mj nJ) 
(68) 

Now if we take two samples (t, t+Jl) and (s, s+Jl), then t;,(t, Jl, w) -C(w) and 
'(s, Jl, w) -C(w) may be considered as two random variables with normal distribu
tion N{m*, (a*)2}; the expected circular serial correlation coefficient between them 
is given by ¥J(ls-tl, Jl)-Jlj2n approximately. 

From the above discussion we may say that a lot of bulk material, whatever the 
initial state of material may be, will be considerably homogenous by k-fold bedd
ing operation with properly designed mixer (if we take k sufficien.tly large) during 
the material is being transported by conveyor belt. 

Finally, we can easily derive the following simplified approximation formula by 
summarizing the relations (55), (57) and (60) ; 

where 

a~= 

E{S(Jl, w)P ~a!+ka~ , 
(I) w 

for the ordinary bedding operation , 

_ [ 
2
1 f: a~nk c; 2 (nJl)] (Jl)2 

C2 n=1 

{~ aof 
for the switch-back bedding operation , 

M 

(69) 

is the variance for a s:tmple of unit weight Wo = L: m1 nJ,o taken from the thoroughly 
j=l 

mixed lot, and w means the weight of each increment in sample composed of k 

systematic increments. 
The relation (69) was suggested in section 2, when we treated the practical data 

on sampling from material in motion. In Fig. 3, it was remarked that the solid 
curve has a tendency to approach asymptotically to the dotted curve as the number 
of the increments in samples is increased. We can explain this fact as follows. 

(27) 
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As was discussed before, the systematic component a: of the approximate variance 

~ { S (LIZ, w)} has a tendency to decrease to zero in the order 0 ( k 2~+2) for suffi

ciently large values of k, if the periodic function f(t) is continuously dfferentiable 

up to the (m-1)-th order and the m-th derivative pm)(t) satisfies the Dirichlet's 

conditions. In practice, it may be natural to assume that f(t) satisfies only the 

Dirichlet's conditions. Then a i has a tendency to decrease to zero in the order 

0 ( k12 ) for sufficiently large values of k. In any case, the systematic component a i 

decreases rapidly to zero compard with the stochastic component ka~, which de

creases to zero in the order 0 ( k ) for fixed w. It is to be noted here that the 

function f(t) wi11 be considerably smooth if the material is locally mixed by properly 

designed mixer during its transportation. Hence it is easily seen that the mixing 

operation by bedding method will be considerably effective, when we apply this 

method to the locally randomized material flow which have a main trend curve 

having been smoothed by a mixing operation. 

VII. Theoretical models of interpenetrating samples composed 
of systematic increments taken from material flow 

In the illustrative example of section 2, we treated the interpenetrating samples 
composed of systematic increments taken from the material flow on a conveyor 
belt. The mathematical models will be established for such interpenetrating sam
ples. We wi11 treat r pairs of interpenetrating samples, each of which is composed 
of k increments systematically taken from the material flow by random start 
method. For such r pairs of interpenetrating samples, we consider 2r random 
variables as fo11ows, 

'(t+22;, LJZ, w), '(t+2
2
;+L1Z, L1Z, w), ······························ 

( r-1 ) ( r-1 z ) , ' t + -r-2n, LJZ, w , ' t + -r-2n+L1 , LJZ, w • (70) 

Here we put 

(71) 

Then, for sufficiently large value of JC, e (t, LIZ, w) may be considered approximately 

as a random variable with normal distribution N{O, (a**) 2}, where 

(28) 
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(72) 

Hereafter, we shall put 

(73) 

The expected circular serial covariance between and 

~(t+q 2;, Lll, w) is calculated to be 

[i: ( a~k:n + j3~kn) COS n (p-q) 2n { 1- COS (nLll)} ~ 2 (nLll)] c2 n=l r (L1l)2 

{ 
1 }2 . 
Tao 

(74) 

If the increment size Lll is taken sufficiently small compared with 2n, and f(t) 

is smooth to some extent, then the systematic componenis of (72) and (74) will 
be negligibly small compared with the stochastic component in equation (72) even 
though k is not so large. Hence we may write as follows, 

(a**) 2 : W, (75) 

which is approximately equal to 2 (a*) 2 and will be an estimate of the variance 

of a sample of size Lll taken from the same lot in its thoroughly mixed state. 

Thus ~(t, Lll, w), ~(t+ 2;, Lll, w), ~(t+2 2;, Lll, w), ...... , ~(t+r-; 1 2n, Jl, w) 
may be considered approximately as the normal multivariate distribution, with 
mean value 0 and variance-covariance matrix 

2(a*Y· 0 

(76) 
0 

...... ...... ....... 
............. 

...... 
'2(a*Y 

Next we put 

YJ(t, Lll, w) = '(t+Lll, Lll, w) + C(t, Lll, w)-2~ (w) (77) 

(29) 



140 Heihachi SAKAMOTO 

Then YJ(t, Jl, w), YJ(t+ 2;, Jl, w), YJ(t+2 2;, Jl, w), ...... , YJ(t+r-;12rr, Jl, w) 

may be considered as r random variables with mean m***=2m* and variance
covariance matrix 

where 

*** *'i'* *** Vo Vt --------------- Vr- 1 

*** v. 

*** *** *** v ... - 1------------ v 1 v 0 

{ 
Jl} - [ i (a~kn+J3~kn) {1+cos (nJl)} e (nJl) J 

Vo***= 1--;r W+C2 n=l ( 1 )2 (J/)2 
2ao 

(78) 

(79) 

"l _ [:E (a~kn+J3~kn) cos {pn 2rr} {1+cos (nJl)}~ 2 (nJl)] 
v.***=- =;,- W +C' •=• (; )' (JI)• (80) 

2ao 

Next, we put 

{S, (Jl, w)}2= r~1 [ {"f) (t, Jl, w)-'ij(Jl, w)P+ { YJ (t+ 
2;, Jl, w )- 'ij (Jl, w)fl+ 

........................ + {YJ(t+ r-;l, Jl, w) -'ij(Jl, w) }T (81) 

where 

{YJ(t,Jl,w)+rJ(t+ 2
rr, Jl, w)+ ...... +rJ(t+r-l2rr,Jl,w)} 

'ij(Jl, w)= r r r (82) 

Then 

E{S (Jl w)}2=v ***-2{(r-1) vt**+(r-2) vr**+ ...... +v~~1*} 
"' , ' 

0 r (r-1) 

[:ECa~kn+J3~kn) ~
1

(r-p) cos {pn2rr}{1+ cos (nJl)} e (nLll)J 
-C2 n=l p=l r (Ll/)2 (83) 

r (r-1) ( ~ aor . 
(30) 
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The expected circular serial covariance between e (t+P 2;, .Jl, w) and 'Y) (t+q 2;, 

.Jl, w) is calculated to be 

From the variance-covariance matrix (76) we may assume that eCt, .Jl, w), 

independent random variables with normal distribution N {0, 2( a*) 2
} if we take 

Jl sufficiently ~mall compared with 2rr. Moreover, frcm the relation (84) we may 
assume that eCt, Jl, w) and 'Y)(s, Jl, w), ( -rr~t~n, -rr~s~rr) are mutually inde
pendent random variables for a sufficiently small increment size Jl. 

Thus we can make clear the relations between the "within pairs" variance and 
the " between pairs" variance in the analysis of variance of the sc: mple data, 
which is composed of r pairs of measurements. 

It is to be noted that the "within pairs" variance calculated here may be treated 
as if it were the variance between the interpenetrating samples taken from the 
lot in its thoroughly mixed state. 

By the analysis of variance thus made, we can compare the degree of homoge
neity of the material the state of which has been attained by the 2k-fold ordinary 
bedding operation with the homogeneity of the material in its thoroughly mixed 
state. Morerover, we can measure the precision of the estimate calculated from 
such sample data. When the lot in question is mixed fairly well by a bedding 
operation, the magnitude of the systematic component in (83) will be negligibly 
small compared with that of the stochastic component in the same equation. 
Hence the value of F caJculated from the analysis of variance data may be consi
dered to be distributed approximately according to the Snedecor's F -distribution 
with the corresponding degrees of freedom. 

From the results of significance tests we will have one of the following two 
results. (a) If we may assume that the r pairs of the interpenetrating samples 
are randomly drawn from a normal population, then we can obtain the more 
reliable estimate of the lot mean by taking a pooled mean of the r pairs of mea
surements. The corresponding confidence limits will be easily calculated in usual 
way. (b) If we cannot assume that r pairs of the interpenetrating samples are 
randomly drawn from a normal population, then we must derive the confidence 

(31) 
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limits for the pooled mean of r pairs of measurements from the decreasing tendency 

curve of the variability between the contents in interpenetrating samples, by 
devising some kind of extrapolation method. Such decreasing tendency curve of 

the variability may be divided into two parts, i. e. the systematic part and the 
stochastic part. 

As was pointed out before, the systematic part will be given by the following 
approximation formula, 

2 ...:... 1 
a u·b (k) -:-- C Ji2 (c is a positive constant) 

for sufficiently large value of k, if the A' (t) representing the main trend in quality 

level of the original material flow satisfies a relation such as (12). 

And the stochastic part will be given by the following approximation formula, 

2 ...:... d 1 a u•b (k) -:-- k ( d is a positive constant) . 

We must estimate the confidence limits for the pooled mean of r pairs of mea
surements, taking into consideration those decreasing tendency curves of the two 
variance components. 

The author has discussed so far the theory of systematic sampling and bedding 
methods of bulk material, establishing a mathematical model from the microscopic 
point of view. However, it is to be noted that there is a gap to be filled up between 
a theoretical model and practical data. We have treated the problem of taking 
samples from bulk material, the method of grinding and subdivision of samples to 
obtain material suitable for analysis, the necessity of introducing the bedding 
method to attain uniformity in the quality of bulk material, the relations between 
the systematic sampling and bedding methods, and the like. But the author has 
discussed these problems, mainly taking into consideration the physical composition 

of bulk material. 
In order to treat the practical data more successfully, we must also pay attention 

to the chemical aspects of the treatment of bulk material. The grinding and 
subdivision of samples to obtain material suitable in size for analysis involves what 
is in reality a series of further sampling operations, and the error involved in these 
steps will be additional to the error incurred in the original sampling. Besides, 
the error due to the chemical changes of bulk material may be added to these 
errors during the grinding and subdivision operations. For example, the chemical 
composition of bulk material such as a sulphide may be changed during the 
grinding and subdivision operation of samples, owing to the increased area of the 
exposured surface to the air of particles in bulk material. To present such 
bulk material from the chemical changes during the grinding and subdivision 
processes, chemical engineers have devised many preventive measures and inves
tigated into the effects of such preventive measures by planning the design of 
experiments. We have many valuable reports discussing the effects of such pre
ventive measures, using the analysis of variance method. We can see also many 

(32) 
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articles discussing the measurement error due to the differences in conditions in 
the chemical analysis from the statistical point of view. 

Some modifications must be introduced into our mathematical model, if we must 
pay attention to the additional error due to the differences in conditions in the 
chemical analysis of bulk material at the same time. But to achieve this purpose~ 
we must set up a theoretical model which is too complicated for mathematical analysis. 
So the author has discussed the sampling problems of bulk material, narrowing 
them down to the study of the physical composition of bulk material. In order 
to treat the practical data successfully, we must investigate into our subject from 
various standpoints, putting together the results derived from various methods of 

study. 

VIII. Randomness and operation of statistical control 

The concept of the operation of statistical control was suggested for the first 
time by W. A. Shewhart in his excellent book, "Statistical Method fr.om the View
point of Quality Control." He completely investigated into the nature of randomness, 
in connection with the operation of statistical control. It is very difficult to sum
marize his deep thought in this limited space. The idea of quality control developed 
by him has many fruitful results and cannot be fully expressed by any single idea. 

Therefore, the author does not intend to summarize Dr. Shewhart's thought in 
this paper. The author would like to discuss the role of the operation of statistical 
control in connection with the randomization problems in the systematic sampling 
and bedding methods of bulk material. In order to be able to apply the theory 
of probability to these sampling problems, it is usually assumed that the method 
of sampling is random or the state of the population is randomness in itself. But 

the systematic sampling cannot be treated as a completely randomized operation, 
though some kind of randomization operation such as a random start method is 

introduced into the systematic sampling method. On the other hand, the state of 
the population such as bulk material cannot be regarded as randomness in itself, 
without introducing some kind of mixing operation. In other words, the quality 
of bulk material is not generally in the state of statistical control, without intro
ducing the operation of statistical control. 

In the customary application of statistical theory, we assume that we are dealing 
with a physical state that gives samples showing the characteristics of randomness. 
According to Dr. Shewhart, "Control studies have shown that such physical states 
of statistical control are indeed rare natural occurences, at least in physics and 
engineering, and furthermore that they cannot usually be brought about without 
the operation of statistical control, wherein comparatively large numbers of pre
liminary data are taken in the process of detecting and removing assignable causes 
of variability. Besides, the statistician has learned by experience that the random 
effects do not just happen, even by careful planning." 

(33) 
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It is to be noted here that the statistician's prediction will not be valid, if certain 
assumptions about the cause system are not justified. Particularly, if the inferences 
is to be made purely with the help of the distribution theories of statistics, the 
experiments that provide the evidence for the inference must arise from a state 
of staistical control. 

As was pointed out before, the population such as bulk material is not usually 
in a state of statistical control in itself, and the method of the systematic sampling 

also cannot be regarded as a completely randomized operation. However, we have 
known by experience that the relation between the method of systematic sampling 
and the characteristic of the population under consideration will gradually be 
brought to such a state as to ensure randomness, as the number of increments in 

a sample is increased. In other words, there is a mixing mechanism in the sys
tematic sampling of bulk material, in spite of the fact that both the sampling 

method and the state of bulk material are not completely random but "partially 

random". As was stated in the introduction, there is similarity between the 
physical composition of the sample taken from material piled by the bedding method 

and that of the sample composed of a series of increments systematically taken 
from material flow on a conveyor. With this similarity in mind, we have studied 

the theory of systematic sampling. 

But we have assumed that the time series representing the initial state of 

material flow has been already smoothed to some extent and locally randomized, the 

distribution of the particles of each category in the material flow being subject 
to an existing stochastic model such as a Poisson process. Important and natural 
as those methods of approach are for our subj.ect, they cannot give insight into 

the true origin of laws of probability. Although the gap between a theoretical 
model and practical data has been filled up to a considerable degree, our method 
of study has been based on an existing stochastic model. So we must make search
ing inquiry into the mixing mechanism of the bedding method, without introducing 
the existing stochastic model into our theoretical structure. 

As is well known, if the bedding method is applied to the bulk material, a con
siderable amount of mixing would result and some degree of uniformity of quality 
would be achieved, whatever the initial sate of materia] may be. This has been 
proved under the slightly restricted conditions in the previous sections. 

The bedding method may be regarded as a special type of the operation of 
statistical control. We must pay attention here to the fact that there are various 
kinds of operation of statistical control such as drawing a sample with a replace
ment from a bowl, repeating an observation under the same essential conditions, 
going as far as one can go in the process of controlling quality by finding and 
removing causes of variability, and the like. 

Among the various kinds of operation of statistical control, the bowl experiment 
is an idealized experiment representing the physical state of statistical control. 

(34) 
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According to Dr. Shewhart, the concept of a physical state of statistical control as 
illustrated by the example of drawing chips from a bowl appears to be much the 
same as the concept of doing something "physically random". We have known 

by experience that in case of the bowl experiment, probability theury is usually 
applicable, and the differences between samples drawn under such conditions are 
predictable in a probability sense. 

Dr. Shewhart says, "My own experience indicates that this situation does not 
hold, in general, for fluctuations in measurements arising under conditions merely 
judged to remain essentially the same". 

The engineer does not deal with the ideal experiment such as drawing chips from 
a bowl, but he deals with measurements of one kind or another. The engineer 
makes· efforts to attain a physical state of control of such measurements, trying 
to control all of the causes of variability until he has attained a state where the 
conditions remain "essentially the same". In the early stages of any attempt at 
control of a quality characteristic, assignable causes are always present even though 
the production operation has been repeated under presumably the same essential 
conditions. As these assignable causes are found and eliminated, the variation in 
quality gradually approaches a l=>tate of statistical control. 

If we can attain such a state of statistical control, how can we know when the 
production process is in such a state of control? The concept of a state of statis
tical control is a basis for describing the engineering goal of uniform quality, and 
the operation of statistical control is a means of approaching this goal. Thus there 
remains the problem of judging how closely we have approached the goal. Irt order 
to solve this problem, we must grasp objectively the characteristics common to the 
physical state of statistical control such as sampling from a bowl (a typical model 

of randomness) and to any physical state of statistical control of some production 

process. 
For this purpose, we must try to find out some abstract way of describing the 

causal relation between the physical aspects of a given state of control and the 
quantitative aspects of the data obtainable under such a state of control. 

There are various kinds of experiments which are supposed to be in the physical 
state of statistical control, such as the repeated turning of a roulette wheel, the 
tossing of a coin or die, the drawing of chips from a bowl, the act of repeating 
an observation under the same essential condition, the act of going as far as one 
can go in the process of controlling quality by finding and removing causes of varia
bility, and the like. We must investigate into the characteristics common to various 
kinds of physical state of statistical control. 

We are familiar with certain erperimental phenomena called "random" which are 
connected with the repeated turning of a roulette wheel, the tossing of a coin or 

die, Buffon's needle experiment, and the like. It is very important for us to explain 
theoretically these experimental phenomena. Poincare made valuable contributions 

(35) 
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in this direction for the first time. Since he gave those fundamental remarks, a 

new branch of the theory of probability- the method of arbitrary functions- has 
been developed. Suppose that a roulette is spun a large number of times. The fre
quency with which the wheel comes to lie within a small sector dcp will be represented 
by a certain functionf(cp). The large number of alternatively red and black sectors 
then makes the frequencies of red and black approximately equal, independent of 

f ( cp ). By a more detailed study of the roulette we found, moreover, that after 
sufficiently rapid spinning even the individual sectors appear with nearly equal 

frequency. 

By using the method of arbitrary functions, many beautiful reuslts have been 
derived by Hadamard, Hostinsky, v. Mises, and others. In 1918, the Polish physicist 
M. V. Smoluchowsky pointed out how accurately the concept of chance may be 

defined and how naturally the fundamental laws of probability may be derived, 
once frequency phenomena are recognized as produced by strictly causal mechanism. 

In 1934, the German mathematician E. Hopf discussed the true origin of the laws 
of probability more systematically in his paper, "On Causality, statistics and prob
ability." In 1952, the Russian mathematician A. }. Khintchin discussed this problem 
from the standpoint of " materialism", by using the method of arbitrary functions. 

The author wants to discuss in the following sections the mixing mechanism of 

the bedding method of bulk material, by using the method of arbitrary functions. 
However, it is to be noted that we are treating only a special type of the oper
ation of statistical control suggested by Dr. Shewhart. There are many problems 
to be solved in his idea of the operation of statistical control. In order to solve 
these problems mathematically, we must introduce into our method of study various 
mathematical tools, such as the ergodic theory, theory of stochastic processes, the 
mathematical theory of feedback control and the like. 

IX. Method of arbitrary functions and mixing 

mechanism of bedding method 

Let us suppose that a coin is dropped from a certain height above the floor. Its 
final position on the floor may be considered as a definite function of the initial 
phase (position and velocity). Slight changes of the initial phase will bring about 
a quite different result. We can consider here two possible events. Namely, the 
phase space will be divided into two parts H (head up), T (tail up) which have 
about the same measure within all (not too small) regions. 

If the coin is dropped repeatedly a large number of times and if we describe the 
different initial phases by a continuous distribution, the relative frequencies of H 
and T will be nearly equal, independent of the function representing the initial 
conditions. Thus we can expect that the relative frequency will be approximately 
equal within most sequences. 

(36) 
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In general, we consider a conservative mechanism, start repeatedly with certain 

phase P, and otserve how often, after a lapse of time t, the point Pt=Tt (P) 

comes to lie into a definite part A of the phase space G. 
Suppose that we make a continuous instead of countable number of experiments, 

described by a distribution function f (P). 

Then, 

J f ( P) dv = J f ( P) cp B ( P) d v = ( j, cp B) (85) 
B G 

denotes the number of times with which we start within region B, C[JB being the 

indicator of B, 

C[JB (P) ={ ~ when 

when 

PEE, 
pEG-B. 

(86) 

Here f (P) is supposed to be nowhere negative and summable over G, the total 

number of all experiments being finite and pcsitive. The relative number of ex

periments tor which, after a lapse of time t, the event A occurs, is 

(j, CfJA-t) 
( j, 1) ' 

(87) 

where A_t denotes the set of all poir:ts of G wh:ch ccme to lie into A aftEr a lapse 

of time t. 
From the in variance property of the measure (conservative mechanism), the frac

tion (87) equals 

Cf-t. CfJA) where .ft (P)=f{Tt (P)}. (88) 
( j, 1) ' 

In the case of the (conservative) roulette problem, A being the event "red sectors", 
we should expect this quotient to tend towards one half as t ~ oo independent of 
the way of turning the roulette wheel, i. e. independent of the distribution f (P) 

of the initial phases. 

According to E. Hopf, we have the next definition. 

Definition. An event A is statistically regular with respect to a given conserva

tive mechanism if, for any non-negative and summable function f(P), the quotient 

(87) tends towards the same limit W (A) as t ~ oo, 

( /, CfJA-t) ~ W(A) ( f, 1). (89) 

W (A) is called the relative frequency of the event A. When f is indicator CfJB of 

a point set B, the statistical regularity of A implies that 

(90) 

as t ~ =, independent of B. 

(37) 
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Conversely, if (90) holds for any set B of positive measure, the event A is sta
tistically regular in the above sense. 

(It is to be noted here that the results obtained under the assumption of the 

conservative mechanism can be extended to the case of the dissipative mechanism.) 
Now we will study the mixing mechanism of the bedding method of bulk material 

from the theoretical point mentioned above. We will first examine the usual 
method known as "layering" or "bedding". In this type of pile, the coal or iron 
ore is spread in thin layers, probably only 4 or 5 in. thick (in the case of coal), 
and over as great an area as possible. In using coal or iron ore from such a pile 
vertical slices would be taken from the top of the pile down to the ground. 

This mixing mechanism of the bedding method is somewhat like the process that 
is employed by the baker in making puff pastry. The mixing operation employed 

by the baker is a repetition of a single operation T. We will formulate this 

operation as follows. 

Let Q: O~x<1, O~y<1 be the unit square in the (x, y)-plane. 

The transformation 

T 1 : x'=kx, y'= k y, k being a given integer ~ 2, 

mappes Q on the rectangle 

, k 0< '< 1 
O~x < , =Y k. 

This rectangle may be cut into k rectangles 

11-1~x'<11, O~y'< k: 11=1, 2, ...... , k. (91) 

The second transformation T 2 consists in shifting these k rectangles parrallel to 
themselves (the operation of turning about the angle n may be also adopted-this 

corresponds to the switch-back bedding operation) until they fill up Q again. The 

discontinuous transformation T= T2 T 1 transforms Q into itself in a one to one 
manner. T preserves the ordinary plane measure 

We (A)= f dx dy, We { T(A)} =We (A). 
A 

In making puff pastry, the baker adopts the fo11owing mixing method : a lump 

of butter is wrapped up into a dough: then the whole mass is rolled out and 
folded together. The operation is repeated several times, rolling out (T1) and 

folding together CT2), thus mixing ciough and butter. Hence both dough and butter 
will be distributed in very thin layers. We can learn by intuition that Q will be 
mixed completely if we repeat the above operation infinitely. 

The above mixture property means that 

!~~We {ATn (B)} =We (A) We (B) (92) 

holds for any two measurable point sets A, B, where AcG, BeG. 

(38) 
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Hence we must prove that the relation (92) holds, in order to give a proof of 
the mixture property. The author will not repeat this proof, because we can see 
it in the E. Hopf's paper. 

It is interesting for us to compare this mixture property of puff pastry with the 
mixing mechanism of the bedding operation of bulk material. But we must pay 
attention to the fact that we can not treat the tremendous amount of bulk material 
Jike the puff pastry. Moreover, it can not always be justified economically to repeat 
the operation such as T= T1 T 2 a large number of times. In order to mix the 
vast amount of bulk material fairly well, it is necessary to elaborate a plan carrying 
out our purpose effectively. 

We must have an eye upon the fact that bulk material in transit is easy to 
deal with and can be locally mixed on a small scale by a properly designed mixer. 
If such locally randomized material flow is spread on the storage yard like a large 
number of parallel noodles, then each sublot composed of the slices vertically cut 
off from the noodle like piles of material will be homogeneous to some extent. 
Besides, such a sublot will be more homogeneous, if we mix again the slices in tne 
same way as above before we feed the sublot composed of the slices into the 
manufacturing process. If we apply such a bedding method to the bulk material in 

transit two or three times, the material wi11 be considerably homogeneous. 
It should be noted here that the material is locally randomized not only by the 

properly designed mixer, but also by the grinding operation or the other spontaneous 
mixing mechanisms in transit. So we may consider that the bedding operation will 
bring about a considerable degree of homogeneity to bulk material, even if not mixed 
intentionally by a mixer: 

We will discuss here the mixing mechanism of bedding operation by using the 
method of arbitrary functions. To begm with, we will direct our attention only 

to the pieces of a given category (such as piece size and content) found m 
material flow on the conveyor belt. We can express the positions of these particles 
in the material flow on the conveyor belt as a set of points on a finite interval such 
as ( 0, 2 1r J. Let the coordinates of such points be x 1, x 2, • • • • • ·, Xk. If the original 
material flow on the first conveyor belt is carried to the next conveyor belt through 
a properly designed mixer, then the coordinates of the points Xt. x 2, •••••• , xk will 
be shifted respectively to the coordinates yh y 2, •••••• , Yk on the interval [0, 2 1r] cor
responding to the positions of the particles in the material flow on the second 
conveyor belt. The displacements of the positions of the particles may be expressed 
as follows, 

T ('&-) = V 
where '&-=Cxt, x2, ...... , xk), V=(yh Y2 • ...... , Yk) are two points in k-dimmensional 
space. 

Let f (v 17 v 2, ...... , vk) be a distribution function of V in k-dimmensional space, 
where 

(39) 
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J f(vh V2, ...... , Vk) dv1 dv2 ...... dvk= 1 . 
(} 

The distribution function f(vh v2, ...... , vk) may be regarded as a kind of arbitrary 
function, which is determined by the initial positions and the displacements of the 
par~icles in the material flow in transit. The mathematical form of this arbitrary 
function is essentialJy influenced by the efficiency of the mixer. If we adopt a well 
designed mixer, this function may be expressed by a well known probability density 
function such as norm:1l distribution function. But in general, it is not natural to 
express this arbitrary function by a well known probability density function. In 
this case, we must introduce some generalized assumptions into the mathematical 
form of the arbitrary function corresponding to the degree of mixing, which need 
a comparatively large number of parallel noodles to attain a certain degree of uni
formity of bulk material by the bedding operation. It is to be noted here that we 
can reduce considerably the number of parallel noodles to attain the same degree of 
uniformity of bu1k material, if We adopt a well designed mixer together with the 

bedding method. · 
Now we will discuss the mixing mechanism of the bedding method applied to 

the locally randomized material flow. We can imagine the following mixing process, 
compared to the mixing process of puff pastry adopted by the baker. 

The whole lot of bulk material may be considered to be spread out on the ground 
like a long noodle by a conveyor belt, while the material being locally mixed by a 
mixer. Then the 1ong noodle may be considered to be cut into m noodles of equal 
length. And these m noodles may be considered to be shifted paral1el to themselves 
and piled up in the storage yard (the operation of turning about the angle n may 

be also adopted-This corresponds to the switch-back bedding operation). Then we 

use the sublot composed of the slices vertically cut off from the noodle like piles 

of material. 
Now, we put 

g (yl, Y2 • ...... , Yk)= 1 if O;£yt;£c;t (1=1, 2, ...... , k), 

where O;£c;t;£2n , (93) 

= 0 otherwise . 

The Fourier coefficients of the k-dimmensional box function g (Yr. Y2 • ...... , Yk) are 

calculated as folows, 

1 J2
" f2

" ( ) -i(n1Y1+n2Y2+···+nkyk)d d 
Cn 1,n2,···,nk=(

2
n)ko ···

0
g Y1oY2• ···,yk e Y1 Y2···dyk 

(94) 

where 
. -inz ~~ 

C 
_ 1 f~t -tnzyzd _1-e 

n z - -
2 

e Y1 - ----=
2
::--.,--. --

n o nznt 
(95) 

(4(}) 
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Hence we may write the Fourier series, with respect to this system, in the following 

form, 

00 00 00 

=L: L: ...... L: (96) 
n 1=-oo n2=-oo nk=-oo 

Then the distribution function F ( ~ 11 ~ 2• •••••• , ~ k) which represents a kind of proba
bility distribution of the positions of the particles found in the material flow gene
rated by the m-fold ordinary bedding operation can be expressed (by using the 
property of boundedly convergence of the above Fourier series) as follows, 

00 00 00 00 00 

=f ...... f L: L: ...... L: 
-oo -oo n1=-oo n2=-oo nk=-oo 

(k) 

= = 
=L; ...... L: Cn 1 Cn2 ...... Cnk 

-oo -= 
(k) 

where 

o~~l~2n. 

From the above relation we can easily derive the next result, 

00 00 = k 

=L: L; ...... L: Cn1Cn2······Cnkeil~l xmzm cp(nlm,n2m, ...... , nkm) 
n 1=-oo n2=-= nk=-oo 

where · 

cp(n1m, n2m, ...... , nkm) 

(k) 

(41) 

(99) 
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-1 00 

and I;' means I; + I; symbolically. 
nk nk= -oo nk=1 

It is to be noted here that cp (n1m, n2m, ...... , nkm) may be considered also as the 
characteristic function of the distribution function f (v~> v2, ...... , vk) in k-dimen-
sional space G. It is easily proved from the properties of the characteristic function 
cp (n1m, n2m, ...... , nkm) of the distribution function f (v~> v2, ...... , vk) EL1 irt k-di-
mensional space G that as m-oo, 

(100) 

Hence we may say that as m-=, 

F C {:_ {:_ {:_ ) - { ~ 1 ~ 2 ...... ~ k} 
':.1•'>2• •.•••• ,r,k (2nY' . (101) 

By extending the method of proof adopted in case of mixing puff pastry, the above 
result may be proved easily from the fact that the mixing mechanism of the bedding 
method applied to the locally randomized material flow satisfies the condition (90) 
for the statistical regularity of the event 

as m-oo. Thus, we come to the conclusion that the position of a system of finite 
particles in the material flow may be considered as a realization of the uniformly 
distributed independent random variables in the interval [0, 2n ], when the material 
is thoroughly mixed (i. e. m~oo) by the bedding method. This situation corres
ponds to the fact stated in the former sections, i. e. the fact that the Poisson process 
with the mean value function ). (t) tends to the temporally homogeneous Poisson 
process with the mean value function ~'(t-a) by the bedding operation (when m-oo). 

By using Dr. Shewhart's words, we may say that this situation in limit represents 
"a statistical state constituting a limit to which we may hope to go in improving 
the uniformity of quality". In this case, the mixing operation by the bedding 
method is an operation of statistical control. 

In practice, we cannot take m (the number of noodles in the bedding method) so 
large. So we must investigate into the asymptotic behavior of the mixing mecha
nism of the bedding method with a properly designed mixer. In order to assure a 
certain degree of uniformity of bulk material, the number of noodles needed in 
the bedding method depends on the scale and efficiency of the local mixing operation 
by a mixer. If the scale and efficiency of the local mixing operation is large, we 
can reduce considerably the number of noodles adopted in the bedding method. 
Here we can investigate into the asymptotic behavior of the mixing mechanism of 
bedding operation under tne fairly general conditions, by studying the properties of 
the function cp (n1m, n2m, ...... , nkm). 

(42) 
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It should be noted that the properties of the function (/) (n1m, n2m, ...... , nkm) de
pends upon tlte distribution function f (vh v2, ...... , Vk) which represents the scale 
and efficiency of the mixing operation by the mixer. When the mixer is well 
designed, we may put 

_ 1 -t{V-t oa-a:) (58-a:)} 
f(vb v2, ...... , Vk)- (2n)k121 V 11/2 e (102) 

approximately, where V denotes a variance-covariance matrix in normal multi
variate distribution, and 

m=(Vt,V2, ............... , Vk), 

x =(Xt, x2, ............... , xk), 

9'l=(nh n2, ............... , nk), 

Then we can easily calculate 

(103) 
Hence 

F (~}, ~2, •••••• , ~k) 

(104) 

From the above relation we can investigate into the asymptotic behavior of the 
mixing mechanism of the bedding method with a well-designed mixer. When we 
mix locally a material flow in transit, it will be very effective to apply a ~mall scale 
bedding operation together with a small mixer. In such a case, we can study the 
mixing mechanism more completely, by using the result obtained from the above 
multivariate normal distribution. It may well be concluded that it is very difficult 
to mix particles having high correlations into a homogeneous state, while it is 
comparatively easy to mix particles having low correlation into a homogeneous state. 

It may easily be assumed that particles stuck fast together such as the powdered 
coal, have a high positive correlation coefficient Pih and that a congregation of big 
particles, such as lump coal, have a comparatively low correlation coefficient Pij. 

At the same time, we must pay attention to the fact that the small particles are 
often much alike in their chemical composition, because they are available from 
one and the same lump at the time of grinding operation in most cases. Besides, 
such particles of small size have not a powerful effect on the total variance. Thus, 
the time series repesenting the chemical contents in the continuous flow composed 
of such small particles as powdered coal may well be considered as a kind of sta
tionary stochastic process. Hence, we may say that any inital chaotic state of 
material will finally be brought to a state of material flow which is described by 
a Gaussian process by the bedding operation with a mixer, going through a state 

(43) 
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of material flow which is described by a kind of stationary stochastic process. In 
any case, it may be concluded that small scale mixing operation by bedding method 
will bring satisfactory nsults, if this is used together with the large scale bedding 
operation. 

X. Concluding remarks 

The author has made a study of the systEmatic sampling and bedding methods 
of bulk material, in co-operation with the technical staffs of quality control, Hirohata 
Iron Works, Fuji Iron and Steel Co.. There were many problems to be solved from 
the statistical point of view at the iron works, and the author was particularly in
terested in the subject of this paper, in relation to the quality control of iron ore and 
coking coal handled on an extentive scale. 

A part of the results was published in the book, "The progress of the theory of 
stochastic inference" (in Japanese), edited by Dr. T. Kitagawa. Another part was 
published in the author's report delivered at the 32nd Session of the International 

Statistical Institute. 
In this paper, the author has tried to discuss this subject in its broader sense. 

The author would like to express his thanks to Professor Tosio Kitagawa and 
Professor Ziro Yamauti for their valuable suggestions, and the technical staffs of 
quality control, Hirohata Iron Works, Fuji Iron and Steel Co., who have given help 
and advice in the development of this study in the past several years. 
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