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On Validity of Infinite-Series Expansion 

of the Form ~An COS ﾀnX 
(Received Jan. 9, 1961) 

Fumiki KITO 骨

Abstract 

The validity of infinite-series expansion of the form l:An cos ん x， of a given 

function f (x) , is examined. Here, ﾀn (n = 1, 2, 3,……) are successive (positive) 
roots of the equation x sin x + K cos x= O. The infinite series expansion of the 

form l: An sin μn x , where μn (n= 1, 2,……) are successive positive roots of the 
equation x cos x + K sin x = 0, is wel1 known in connection with the problem of 
heat-conduction of a spherical body. So that, the author's task was merely to 
follow the line of thoughts of the older problem. The conclusion quite simi1ar 

to that of the older problem is arrived at. 

I. Introduction 

ln the author's study about vibration of water contained in a rectangular tank，l)・

there arose the need to expand a given function f(幻 into an infinite series of 

the form 

L: An cos ん z
n=l 

where Àn(n=1, 2, 3,……) are successive (positive) roots of the equation 

ﾀ sin ﾀ + K cos ﾀ = 0 

(1) 

(2 ) 

K being a postive constant. But there, the question of validity of the expansion 
(1) was not examined. And so, the author intends to consider this subject in the 
present report. The infini te series of the form 

1:: An sin μn X 
n=1 

where μn(n=1 ， 2, 3,……) are successive roots of the equation 

μcosμ +Ksin μ=0 

(3) 

(4) 

has already been studied in connection with the problem of heat-conduction of a 

普見頭史城 Dr. Eng., Professor at Keio University. 
1) This PROCEEDINGS, Vo1. 13 No. 49. p. 10 

(19) 
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spherical body.2) So that, the author's task in examining the validity of expansion 
of the form (1), will be to follow, as closely as possible, the line of thoughts in 
the discussion of the infinite series (3), which is well established. 

II. General Theorems 

The followng theorems, which is already proved, may be restated here, since 
they are required in the following treatment. 

THEOREM A. Let cp (n, a, t) be a function of real variables n, a, t, which, when 
considered for values of a lying in the interval a<a' <a<b' <b, satisfies the fo
llowing three relations in which n is restricted to positive integers, and in which 
s represents a positive quantity which may be taken arbitrarily small: 

(I) 

f
t 1-! when a-a~t~-s 

lim cp ( n, a, t) d t = 
n~"' 0 ! when s ~t~b-a . 

Moreover, let these limits be approached uniformly for all of the same values of 
a and t. 

(II) 

t 

jcp(n, a, t)dt<A. 

where A is a constant independent of n, a and t. 

( III ) I cp ( n, a, t) I < B, a-a~t~ -s or s ~t~b-a 

where B is a constant independent of n, a and t. 
Also let j( x J be any function satisfying the following two conditions: 

( i) Throughout the interval ( a~x~b), f(x) remains finite with the possible ex

ception of a finite number of points, and is such that the integral 

b 

J I f(x) I dx 
a 

exists. 
( ii) In an arbitrari]y small neighbourhood about the (special) point x=a (a'<a 

<b'), j( x) has limited total fluctuation. 
Then we shall have, for the special value of a (as mentioned in ( ii )), 

b 

!!!!!f f(x) cp (n, a, x-a) dx=! [j( a-0) + f(a+O)] 
a 

(20) 
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Moreover, if instead of condition ( ii ), f(x) is continuous throughout the interval 
(a', b'), [the points u=a', x=b' included], and has limited total fluctuation through
out an interval (a1, b1) such that a<a 1<a'<b'<b1<b, then we shall have uniformly 
for all values of a in (a', b'), 

b 

limj /(x) cp (n, a, x-a) dx = f(a). 
n~oo 

a 

THEOREM B. Let cp (n, a, t) be a function of the real variables n, a, t which, 
when considered for the special value a= b, satisfies the following three relations 
(in which n is restricted to positive integral values, and s represents a positive 
number which may be taken arbitrarily small): 

(I) t 

limj cp (n, b, t) dt= -G, 
n~oo 

0 

a-b~t~-s, (b>a) 

G being a constant, independent of t. 
(II) 

I I <p (n, a, I) dt I <A , a=b, -s ~~~0, 

where A represents a positive constant, independent of n, a, and t. 
(III) 

I cp (n, b, t) I <B , 
a-b~t~-s , 

B being a constant independent of n and t. 

(IV) Let f(x) be any function of x which satisfies the following condition: 

Throughout the interval (a, b), f(x) remains finite (with the possible exceptions 
of a finite number of points), and the integral 

b 

J I f(x) I dx 
a 

exists. Moreover, the function f(x) has limited total fluctuation in an arbitrarily 
small neighbourhood at the left of the point x =b. 

Under these conditions, we shall have, 

b 

}!!;!,/ f(x)cp(n, b, x-b)dx = Gf(b-0). 
a 

In what follows, we shall be concerned with the case of a=O, b=l. 

(21) 
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III. Expansion of a given function f(x) in the form L:An cos An x 

Let us put 

U P.n, x)=cos(A.n x) (n=1, 2, 3, ...... ) (5) 

where An are successive (positive) roots of the equation (2). The roots An can be 
obtained by taking the points of intersection of the plane curve y=cotx with the 
straight line y= -x/K. And we see that there are an infinite number of them. 
Moreover, by actual integration, we see that 

1 

JU().m, x)U().n, x)dx=O, (m=t=n) 

1 

Kn= JCUn().n, x)] 2 dx= ~ (1- i sin2 An) (6) 
0 

Thus, for a given function f(x), of variable x, we may write formally, an infinite 
series expansion of the form (1), in which we put, 

1 

An= in J f(u) U().n, u) du (7) 

Kn being defined by (6). There remains the question of validity of the expansion 
(1). 

We now put 

1 n 

fn(X)= f /(~)Lin U().n, x)U().n, ~)d~ 
o n=l 

or, 

1 

In (a)= J /(~) <p (n, a, ~-a) d~ 
0 

where we put 

n 

<p(n, a, ~-a)= L in U CAn, a) U(An, ~) 
n=1 

2) See, for example, W. B. For:d, Studies on Divergent Series and Summability 

(Michigan Science Series Vol. II), 1916. This literature will, in what follows, 

be referr:ed to as "Ford". 

(22) 

(8) 

(9) 

(10) 
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This may also be rewritten as follows: 

n 

cp (n, a, ~) = L u c:c~ a) u CAn, ~+a) (11) 
n=l 

whence we have 

~ n ~ 

f cp(n, a, ~)d~ = Luc;c~ a) fuCAn, ~+a)d~. (12) 
0 n=l o 

It is a known fact 3) that, for a given value of a, if we construct functions (} (z) 
and .Y,. (z) of a complex variable z, such that; 
(a): (} (z) is analytic throughout the finite z-plane, 
(b): .Y,. (z) is analytic throughout the finite z-plane, 
(c): we have 

wherein An (n= 1, 2, 3, ...... ) are zeroes of the function u (z), 
(d) : we have also, 

t 

(}'CAn)=]£ ~nCA:~ [u'CAn)] 2f U (An, a+t)dt , 
0 

then we shall have 

t 

f _ 1 J O(z).Y,.(z) 
cp (n, a, t) dt- 2n:i [u (z)] 2 dz , 

o Cn 

(13) 

(14) 

(15) 

where the contour-intgral on the right hand side of eq. (15) is to be made around 
a contour Cn, which encloses n roots A1• A2 , ••• ••• An of equation u (Z)= 0. 

For our purpose, we shall take 

u(z)=zsinz+Kcosz. (16) 

IV. Non-existence of complex root 

In § 3, it was pointed out that the eq. (2) has an infinite number of positive 
roots. We see also that the eq. (2) has an infinite number of negative roots. 
Here we shall examine whether or not the eq. (2) has complex roots. 

Now, in the theory of functions of a complex variable z, it is shown that, if a 
function f(z) is analytic in a region enclosed by a closed contour C drawn on the 
complex plane z, then we shall have, 

1 N = 21CL1c arg {/(z)} 

3) Ford, § 58. 

(23) 
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wherein N denotes the number of zeroes of f(z) which exist inside the contour C, 
Lla denotes the variation of arg {/(z)} round the contour C. 

In our case of the function u(z), we have, by putting z=t;+ir;, 

r. p. u (z) = cosh r; [ ( 1- i tanh r;) cos r; + k sin r; J 

i. p. u(z)=coshr;[fctanhr;)cosr;+(-1+ i)sinr;J. 

Thus, for a very large positive value of r; we have, approximately, 

r. p. u(z) : cosh r;[(1- i )cost;+ k sin t; J 

i. p. u(z): coshr;[(-1+-i)sinr;+fcosr;J 

while for a very large negative value of r;, we have approximately, 

r. p. u(z)=coshr;[(1-lil)cost;+ k sinr;J 

i. p. u(z)= coshr;[(1-lil)sint;- k cost;]. 

So that, the variation of r. p. and i. p. of the function u (z) for (m-1) rr ::s; r; ::s; mrr 

will be as shown in a rough sketch of Fig. 1, wherein m denotes an even integer. 
Moreover, we have, for z=srr+ir;, (s being an integer); 

u (z) = ( -1Y [cosh r;- i sinh r; +i ~ sinh r; J 

In Fig. 2, a rectangle a b c d is made up of four sides, each represented by 

Fig. 1. Rough sketch of variation of r. 

p. u (z) and i. p. u (z) for very 

large value of I r; I 

(24) 

0 

Fig. 2. Illustrating the change of arg 

{u(z)} around the contour abed. 
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e=Cm-1)rr, e=mrr, r;=a very large positive constant, r;=a very large negative 
constant, respectively. From the above inference, we readily see that the vector 
representing complex num)er u(z) turns round its directions as sketched in Fig. 2, 

when we travel once around the contour a b c d. 

Thus, we see that for the contour C of Fig. 2, we have 

Lie arg {u (z)} = 2rr 
which shows us that N = 1. As there exist single real root inside this contour, we 

infer that there can exist no complex root inside this contour. 

t 

V. Evaluation of the integral expression J fP (n, a, t) dt 

After these preliminary discussions, we now turn to the evaluation of integral 

expression (12). In what follows, we shall use real variables a and t. It is 
assumed that they lie in the range ; 

0<a'<a<b'<1, 
-a~t~1-a 

0< a'< a~ 2a + t ~ 1 +a< 1 + b' < 2 

it is to be noted that we have It I< 1. Thus a takes only the positive value, while 
t may take positive or negative values. We first note that, by the relation 

An sin An+ K cos An= 0 , 

we can write, instead of (6), 

_ K(K-1) + An 2 

Kn- 2(K2+An2) • 

On the other hand, we have 

and hence, 

u(z) = zsinz + Kcosz 

u'(z) = z cosz- (K-1)u (z)- K cosz 
z 

u" (z) = -u (z) + 2 cos z 

u" (An) = 2 cos An . 

So that, we may also write, 

_ 1 [u' (A.n)J2 
Kn- 2 An2+K(K-1). 

Next, we must determine the function 1/r (z) according to the condition that 

(25) 

(17) 
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Since we have 

a possible choice of 'o/ (z) is 

'\fr (z) = z2 + K (K -1) (18) 

Taking up this value of '\fr (z), the eq. (14) becomes 

t 

8'( An)=2 cos(An a) J cos [An ( a+t)] dt 
0 

which suggests us to take, 

t 

8' (z)=2 cos (za) J cos [z(a+t)] dt 
0 

t 

= J [cos {z(2a+t)} + coszt] dt . 
0 

Thus we take 

(19) 

Using this value of 8 (z), the eq. (15) can be written; 

t J cp (n, a, t) dt 
0 

t =-1-J [z2+K(K-1)] dz J[sinzt+sin(2a+t)z]dt 
2-rri [zsinz+Kcosz]2 t 2a+t 

Cn 0 

t 

= ~ J dt J z.2 +K (K -1) . [sin zt +sin (2a+t) z] dz. ( 20) 
2-rrz [zs1nz+Kcosz] 2 t 2a+t 

o Cn 

The contour Cn of integration, which encloses n roots A 1, A2, ••• ••• An of the equa
tion u (z) = 0, will be chosen to be a rectangle A B C D, as shown in Fig. 3. 

This rectangle has its sides represented respectively by four straight lines 

z=x+iH (DC), 

x=O (DA) and 
z=x-iH (AB), 

x=k (BC). 

(26) 
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(A) Along the path D A we have z=x, and the 
value of integral for D A is equal to zero, because 
the integrand in (20) is an odd function of z. 
(B) Along the path DC, we have, z=x+iH, dz 

H =dx. Here we have, 

]= z2 +K(K-1) .sin(2a+t)z 
1 (z sin z+K cos z)2 2a+t 

: 
2
__2_exp [(2a+t-2)H] · exp [i(2a+t-2)x] 
a+t 

(21} 

Fig. 3. Contour of Integration 

Cn 

if the value of H is taken to be as large as we 
please. Now, if the values of a and t lie in the 
range of (R), we shall have 2a+t-2<0. 

In that case we have 

D 

Lim J! 1 dx = 0. 
H--+<» 

c 

(C) Along the path AB, we have, by the same reasoning, 

B 

Lim jl1 dx = 0 . 
H--+"' 

A 

(D) Next, consider the expression 

] _ z2+K(K-1) . sin tz 
2

- (z sin z+K cos z)2 t 

Putting z=x+iH, we have, 

sin tz cosh (tH)[sin (tx) + i cos ( tx) tanh ( tH) . H] 
t t tH . 

Therefore, we have, for a sufficiently large value of H, 

] 2 --+ 2H exp {(t-2) H} exp {i (t-2)x} 

and value of integral of !2 vanishes as H--+ oo, since It I <1. Similarly, for z=x 
-iH. 
(E) Along the vertical line BC, we have z=k+iy, dz=idy, and so, we consider 
the integral ; 

t "' 
1 =.lJdtJ z~+K(K-1) [sinzt+sin(2a+t)z]d 

3 2rt (z stn z+ K cos z)2 t 2a+t y 
0 

wherein we put z=k+iy. Now, if we take k = (2M+t)rt (M=positive integer),. 

(27) 
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we shall have u (z)=z cosh y[1- i: tanhy J Also, if M be taken sufficiently large, 

1 1 [ iK (iK ) 
2 J ;:::-[z-s-.i_n_z_+_K-;-;:;-c-o_s_z~] 2 = z2 cosh2 Y 1-2 z tanh Y + 3 z tanhy +...... . 

And the above expression 13 may be reduced into as follows; 

t 00 

13= 2~ J dt J [ 1- 2 i~2~;/Y)tanh y ][ ~ {sin kt cosh yt+i coskt sinhyt} 
0 _.., 

+ 2a
1
+t {sin (2a+t) k cosh (2a+t)y+i cos(2a+t) k sinh (2a+t) y}Jcos~2 ydy 

(22) 

since we have 

I tanhy I< 1, I_!_' <-1 z 2M 

we may drop terms containing 1/z2, ....... 
There are eight terms in (22), which we shall evaluate, one by one: 

(E 1) 

t 00 t 

1 = _1_J sin kt dt J coshyt dy= / 1 (O)J si!lkt dt 
E 1 2rt t cosh2 y 2rt s1n t 

0 -oo 0 

t 

+ 21rt f [/1 (t)- !1 (0)] ~i~ ~t dt 
0 

where we put 

If t>O, then we have 

also, 

00 

f (t)= sin t J cosh ty dy 1 t -oo cosh2 y 

t 

Lim J si!lkt dt= ~ 
k---+"" Sln t 2 

0 

00 

/1(0)= f - 1-dy=2 
_.., cosh2y 

(28) 
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t 11 t 

_1_J [/ (t)- f (0)] si!lkt dt= _1_ J "dt + _1_ J "dt 
2rc 1 1 stn t 2rc 2rc 

0 0 11 

r; being arbitrarily small. So that, if / 1 (t) has limited total fluctuation in the 

neighbourhood of t = 0, the last integral tends to 0 as k~oo • 
Thus, we see that 

but, if t<O, in like way, we obtain; 

(E 2) 

t DO 

IE = l(-ZiK)J sinktdt j' (k-iy)tanhycoshytd 
2 2rc t cosh 2y • (k2+ y 2) Y 

0 -co 

t DO 

= !i_ J sin kt dt J _k_2
_ y tanh y cosh ty dy 

krc kt (k2+ y 2) cosh2 y 
0 _.., 

and, since 

I sin kt I< 1 
kt ' 

we see that 
Lim IE2 = 0 
k~ 

so long as the variable t lies in the range of (R). 

(E 3) We have 
t CD 

I = _z_· J cos kt J sinhyt dy = 0 
E

3 2rc t cosh2 y 
0 -co 

because of antisymmetry of the integrand. 

(E 4) 

t DO 

1 = _i_(-ZiK) J cos kt J (k-iy)tanhy sinhyt dy 
E' 2rc t cosh2 y • (k2 +y2) 0 _ .. 

t DO 

, = ]£_ J cos kt dt J ____!!:____ • tanh Y sinh yt dy 
krc k2+ y2 t cosh2 y 

0 -co 

(29) 
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since we have 

Y ~I sin~yt I ~ sinhy ' 

this integral IE, also tends to zero as k-oo. 

(E 5) 

t "' 
I =-1- J sin(2a+t)kdt J cosh(2a+t)yd 

Es 2rr (2a +t) cosh2 y Y 
0 -a> 

putting 2a+t=2--r, we have, 

I = __ 1_ JT sin(2--r)kd-r J"' cosh(2--r)y dy 
Es 2rr 2--r cosh2 y 

2(1-a;) -«> 

or, since 2k=(4M+1)rr, 

T 

1 J sin -rk IEs= -- -. -/1(-r)d-r 21t Slll -r 
2(1-a;) 

where we put, 
co 

f (-r) =sin -r J cosh (2--r) y d 
1 2- -r _"' cosh 2 y Y 

as -r lies in the range (1-b' < -r-<2-a'), we see that for all the values of a and t 
in the range (R), the integral I Es tends to zero as k-oo . 

(E 6) 

t co 

I =_!_(-2iK)J sin(2a+t)kdt J (k-iy)tanhycosh(2a+t)yd 
EG 2rr (2a+t) cosh2 y • (k 2 +Y 2 ) Y 

0 -co 

Since we have, l2a + t I < 2, this integral tends to zero as k-oo . 

(E 7) 

t co 

IE =-z_· J cos(2a+t)kdt J sinh(2a+t)y dt 
7 2rr (2a+t) cosh2 y 

0 -co 

This integral is null because the integrand is antisymmetrical with respect to y. 

(E 8) 

t co 

IE =_i_(-2iK)J cos(2a+t)kdt J (k-iy)tanhy • sinh(2a+t)y d 
8 2rr (2a+t) cosh2 y • (k 2+y 2) Y 

0 -~ 

(30) 
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Also, this integral tends to zero as k-)oo, since we have l2a+t I< 2. 
In conclusion, we see that the present function cp(n, a, t), as given by eq. (15), 

satisfies the condition (I) of Theorem A, it being understood that here we take 
a=O, h=l. 

Next, all the integrals of (20), tend to zero, except the first (IE 1), and the con
dition (II) of Theorem A is seen to be satisfied. We can also show that the 
condition (III) is satisfied. (See Ford, p. 141). Thus, we can apply to our present 
function, the Theorem A. 

VI. Evaluation of the integral expression ~~ VJ (n, 1, t) dt 

We turn now to the evaluation of the integral expression (20), when a is equal 
to 1. The range of variable t wi 11 be taken as -1 ~ t ~- s. 

(A). Along the path D A, we have z=x, and the value of the integral for it is 
equal to zero, as before. 

(B). Along the path DC, we have z=x+iH, dz=dx, Also, since a=1, we have 
-1<2a+t-2<-s. Hence 

D 

Lim J 11 dx=O. 
H-)oo 

c 

(C). Along the path AB, we have, by the same reasoning, 

B 

Lim J 1 1 dx=O. 
H-)CD 

A 

(D). Next, for the expression 

_ z2+K (K -1) sin tz 
12

- (z sin z+K cos z)2 • -t-

we have, as before, for z=x±iH, 

12-) 2H exp {(t-2)H} exp {i (t-2)x} 

so that the integral of 12 along this line tends to zero as H -) oo • 

(E). Along the vertical line BC, we have z=k+iy, dz=idy, and 

t 00 

1 = _1_ J dt J z~+K(K-1) [sinzt + sin(2a+t)ld 
3 2rr (zstnz+Kcosz)2 t 2a+t J Y 

0 -co c 

1 Taking, as before, k =(2M+ 2 ) rr, we have dropping terms which apparently 

vanish as M -) oo . 

(31) 
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t CD 

] 3= 2~ J dt J [1- 2i~2~;/Y)tanhyJ[+{sinktcoshyt+icosktsinhyt} 
0 -CD 

+-
2 

1 {sin(2a+t)kcosh(2a+t)y+icos(2a+t)ksinh(2a+t)y}J_!_h
2 

dy 
a+t c~ y 

······ (22 bis) 

There are eight terms in (22), among them (E 1), (E 2), (E 3) and (E 5) be
having the same as in the preceding section. 

(E 5). Putting 2a+t=2-r, we have, since here we take a= 1; 

I = __ 1_ f'T sin(2-r) k dr f ... cosh (2-r)y dy 
Es 2rr 2-r cosh2 y 

u -~ 

Since t lies in the range -1<t~-s, r must lie in the range of s~ r <1. Now, 
the above integral is to be made from 0 to r, while in the former cose of a<1, 
it was to be made from 2(1-a) to r. And so, the former discussion does not 
apply here. Since 2k= (4M+1)rr, we can write 

I = _ _!_ J'T sin kr dr ~~cosh (2-r) y dy = __ 1_ J'T J; (r) si? kr dr 
Es 2rr 2 -r cosh2 y 2n: 1 stn r 

0 -~ 0 

where we put 

CD 

+ (r) =sin r J cosh(2-r)d . 
J 

1 2- r _.., cosh 2 y Y 

Now, by applying twice the formula of integration by parts, we see that 

f ... cosh Oy d _ 6 ~~cosh Oy d 
-~ cosh2 y Y- 4-0 2 -~ cosh' y Y 

where (} is a constant with regard toy, and such that I(} I< 2. Hence, we have 

~ 

/
1 

(O) =Lim sin r J cosh (2-r)y dy 
T---70 2- r _.,. cosh2 y 

=Lim 6 sin r ~~ cosh (2-r) y d 
T---70 r (2-r) ( 4-r) _.., cosh' y Y 

= 1_ f .. cosh2y dy= 2. 
4 _.,. cosh' y 

(32) 
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And, finally we have 

Lim IEs =- _!__ /1(0) .!£ = _ _!_ . 
k~CO 2rr: 2 2 

(E 6). Here we have, 

1E
6 
= (- ~) J

7 

sin(2-r) k Joo y tanhy cosh (2-r)y d 
'" 2-r cosh2 y • (k2+ y 2

) Y · 
0 -oo 

As the case of r = 0 is included in the integrand, the former argument cannot be 
applied here. Breaking up the integration with respect to r into two parts, viz. 
(1) from r=O to r= o, (2) from r= o to r= r, where o is a positive constant, 
arbitrarily small, we see that the part (2) tends to zero as we make k~oo. As to 
the part (1) we have ; 

8 00 

1E6 < 2)=-(~) J sin(2-r)kdr J ytanhycosh(2-r)ydy 
"' 2- r cosh2 y • (k2+ y 2

) • 
0 -oo 

Now, we can prove the following formula, by integration by parts; 

00 00 

f cosh 0 y d _ 0 J , ) sinh 0 y d 
-oo ~(y) cosh2 y y- 4-0 2 -oo ~ (y cosh2 y y 

00 

+-2- J ~'( )cosh Oysinhy dy 
4-0 2 

-oo y cosh3 y 

00 

6 J cosh Oy + 4-0 2 -oo ~(y) cosh4y dy 

where 0 is a constant such that I 0 I <2. Putting ~ (y)= tanh y into this formula, 

and observing that 

we see that, if we put 

h (>r) will be of order of magnitude of 1/k, for a fixed value of o, and we shaH 
have 

(33) 
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8 

I f sin 'Ck X !!_d_,. 
E6(2)= 'C'(2-'C') k .. 

0 

where U has some bounded value. Therefore we have 

Lim IEs <2) = 0. 
k~co 

(E 7). This integral vanishes as before. 

(E 8). 

t 

I = (£)j cos(2a+ t)dt J k tanhy sinh (2a+t)y dy 
Es 27t 

0 
(2a+t) -co (k2+y 2}cosh2 y 

= (- 2~) JT cos(2-'C)kd Jco ktanhysinh(2-'r')Ydy 
"' (2-'C') 'C (k2+y2)cosh2 y · 

0 -co 

Since 

the same argument as for the integral IEs <2) can be made. And the limit of IEs, 

as k~oo is seen to be null. Summing up, we see that, to our integral, the part 
(E 1) (for t<O) and (E 5) contribute each -1/2, and so we have 

t 

Lim J cp (n, 1, t)dt=-1 
n~co 

0 

and the condition (I) of Theorem B is seen to be satisfied, if we take G=-1. 
Also, the condition (II), (III) of Theorem B are readily seen to be satisfied. 

VII. Conclusion 

Summing up the above discussions, we conclude the following theorem. -
THEOREM. If f(x) remains finite throughout the interval (0, 1) with the possible 
exception of finite number of points and is such that the integral 

1 

J lf(x)!dx (a) 
0 

exists, then the series 

L An COS An X (/3)_ 
n=l 

(34) 
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in which 

1 

An= i..n J f(u) COS An U du 
0 

An being the nth positive root of the equation 

A sin A+Kcos A=O 

will converge at any point x (O<x<1) in the arbitralily small neighbourhood of 
which f(x) has limited total fluctuation, and the sum will be 

~ [f(x-0)+ f(x+O)] . 

Moreover, the convergence will be uniform to the limit throughout any interval 
(a', b') which is enclosed within a second interval (ah b1) such that O<a 1<a' <b' 

<b1 < 1, provided that f(x) is continuous throughout (a', b') inclusive of the end 
points x=a', x=b', and has limited total fluctuation throughout (ah b1). 

Also, if f(x) remains finite throughout the interval (0, 1), with the possible ex
ception of a finite number of points, and is such that the integral (a) exists, then 
the series (/3) will be summable (r= 1) at any point x (O<x<1) at which the limits 
f(x-0), f(x+O) exist, and the sum will be 

~ [f(x-O)+f(x+O)] 

Moreover, the summability will be uniform to the limit f(x) throughout any inter
val (a', b') such that 0 <a' <b' < 1, provided that at all points within (a', b'), inclusive 
of the end points x=a', x=b', the function f(x) is continuous. 

Under the same conditions for f (x) when considered throughout the whole inter
val (0, 1), the series (/3), when considered for the value x = 1, will converge to the 

limit f(l-0), provided f(x) is of limited total fluctuation in the neighbourhood at 
the left of the point x= 1, and will be summable (r= 1) to the limit f(l-0) whenever 
this limit exists. 
NOTE . The statement and argument of the present report has been made, by 
following as closely as possible, those made by Ford, as mentioned in the above. 
The new edition (1950) of the book by Ford has (reportedly) been issued. 

(35) 


