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Almost Periodic Oscillations 

In Parametrically Excited Circuits 
(Received Sept. 22, 1959) 

Abstruct 

Hiroichi FUJITA* 
Shinsaku MORI** 

In nonlinear circuits which have sinusoidal external sources, sometimes it can 
be seen that amplitudes and phases of currents and voltages in' the circuits are 
modulated automatically.V-4) We call the phenomena almost periodic oscillations, 
and study them in the case of parametrically excited circuit, and clarify their 
physical meanings. Their theoretical analysis are developed by phase space meth­
od, and we consider that almost periodic oscillaton coresponds to unstable periodic 
one. It is shown that the method is very useful to investigate such kinds of 
phenomena. 

I. Introduction 

It has been known that in nonlinear forced oscillatory circuits automodulating 
phenomena of oscillatory currents and voltages can be seen,u-•> that is, amplitudes 
and phases of oscillations do not proceed in steady state. Since their physical 
meanings has not been clarified yet, we shall investigate them theoretically by 
method of phase space in this paper, and compare their theoretical results with 
experimental results. 

II. Equations of circuit and their solutions 

Before the construction of circuit equations, we set up the following assumptions; 
1. Hysteresis phenomena of saturable inducthrs in Fig. 1 can be ignored. 
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2. The relation between flux 1> and magnetizing force if in saturable induc­
tors can be expressed by H=a1>+ p;p3

• 

3. Two saturable inductors, T1 and T2 in 
Fig. 1 have the same characteristics. 

As shown in Fig. 1 each inductor has winding 
for DC bias currents, therefore origin of coordi-

nate in H-~ curve must be moved. 

Then for T 11 H1-Ho=H1 and ~t-if>o=if>t and for 

Tz, H2+Ho=H2 and ~2+f/Jo=f/J2, 
where H 0 and ¢0 are magnetizing force and flux 
respectively by DC bias currents, and H 11 H2, ¢1 

and 1>2 show new coodinates. Let f/J 1+f/Jz=u and 
~t-if>z=v then if>t=(u+v)/2, f/J2=(u-v)/2, 

£sin 2wt 

R 

Fig. 1. 

Parametrically excited circuits 

H1 +Hz =Ht + fi2 =au+ Pu [ ~ (u2+ 3v2)+ 3¢0v + 3¢0
2] 

Ht-H2=H1-if2 =(a+3Pif>o)v+ ~ Pf/Jo(u2+v2)+ ~ {3u2v+! Pv3 

In order to construct nondimensional circuit equations, we would derive the fol-
1owing A and B, which have dimensions of magnetizing force and magnetic flux 
respectively; Thus we decide them, for H A AT/m=l and for if> B weber=1 

From the above relations, circuit equations in Fig. 1 are 

Esin2wt=rdt+BNl·(~~-tPz) 

BN2(~~+~2) + bficdt=O 

AHtl=Ndt+Nzi2 
A Hzl= -N1i1+N2i2 

} 

(1) 

(2) 

(3) 

(4) 

(5) 

where l is the length of magnetic path of inductors shown in metric unit. By 
differentiation of Eq. (2) 

From Eq. (5) 

i2 = ;jJ-
2 

(H1 +H2) 

thus Eq. (4) is rewritten in the following form 

(37) 
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. Al (H +H) BNz · tc = 2N
2 

1 2 + -r U 

And substitiuting the above equation into Eq. (2)' 

.. 1 · + Al (u H) ·· 1 · u+ CRU 2CBN
2

2 .c:z 1+ 2 = u+ CRU 

+ 2c~~2l![ au+ Pu{! (u2+3v2)+3~0v+ .3~0 2}] =0 

and from Eqs. (1) and (5). 

(6) 

v + 2~'iJ.12 [Ca+3P~o 2)v + ~ P~o(u2+v2)+ ! Pu2v+ ! Pv3]= #,8 sin 2wt (7) 

In practice, there is no parallel resistance R in secondary circnit, but winding 
resistance r exists as a series resistance. In resonance circuits, when r is far smaller 
than reactance of inductor, r can be transformed into parallel resistance R, and 
its values are expressed by R = 1/ w2c2r 
Letting wt=-c, it:;=w·au;a-c and ii=w2·a2uja-c2 and substituting the above relations 
into Eqs. (6) and (7) 

~:~ + a1 ~~+a[ 4( ~ +3~o2) + (u2+ 3v2)+ 12~oV J U = 0 (6)' 

~~ + a 2 [ 4( ~ +3~0 2)v+6~0 (u2+v2
) + 3u2v + u3

] = q sin 2-r (7)' 

where a1 =wcr2, a=AIP!8CBN22w2
, a2=Ar1lP/8BwN12

, • q =E!N1Bw. 

As previously mentioned, in a ·transformer their winding resistance is generally 
far smaller than their reactance, ·then by perturbation method, zero approximate 
shlution of Eq. (7)' is expressed in the following form, 

1 v = ;_ 2 q cos 2-r + z (8) 

where z is DC component of flux. When saturation characteristics of inductors are 
symmetrical, clearly DC component term of the above solution is zero. But in this 
case their characteristics are non-symmetrical by the superposition of DC bias cur­
rent, then DC component is not zero and is negative. This is shown simply by 
considering a type of Eq. (7)', and if AC comp:>nent increase, evidently absolute 
values of DC component increase. Of course this DC component of flux can not 
be recognized as currents and voltages. Therefore approximate solution of Eq. (7/ 

can be put as above mentioned. But if DC component is exact constant, it is con­
tradictory, and this can be shown as follows. 

Substituting Eq. (8) into (6)', 

~~ + al:~ +a[(~+ 12~o 2 + ~ q2+ 12~oz+3z2) + u2 -3q(z+2~) cos 2-r ]=o 
(In strict computation, there is a term of cos 4-r, but this term does not act upon 
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the periodic solution of period 2rr, therefore it is ignored.) 
If z is constant, the above equation is so-called nonlinearlized Mathieu's differential 

equation, and it is well known that this has periodic solutions of period 2rr under 
some conditions. In order to investigate the nature of solutions of Eqs. (6)' and (7)', 
first we would study nonlinearlized Mathieu's equation, and which is rewritten in 
the following form, Y+,u.Y+(l+o+rcos2t+Ey 2)y=O In this equation, o and r 
responses for the amplitude of periodic solution become as in Fig. 2. Now, we would 
return to study Eqs. (6)' and (7)' again. When oscillation begins to build up, then 
it will be seen, from Eq. (7) that absolute value of z increases. As the result of 
this, coefficients of Eq. (7)' also vary. Moreover, because r in Fig. 1 is small enough 
in our case, variation of z lags behind that of amplitude of u. This result shows 

<!.o 
"'0 
::r 

-g. 
~I 

i 

ClJ 
"'0 

[\, 
::r 

Ci. 
E 

<::( 

I 

Y, 

I 
I 

Yz y ~. 

Fig. 2. Natures of periodic solutions for 
.Y+.uy+(l+B+r cos 2t)y+o:ys=o 

that when oscillation builts up, r moves into the left hand side in Fig 2-a, that is, 
r becomes smaller. And at the moment r becomes rh oscillation decayes rapidly, 
and r moves into the right hand side. When r bechmes r2, oscillation builds up 
again. This shows that amplitude and phase of u and z are time varying functions, 
and have limit cycles as relaxation type oscillations. 
Such a phenomenon is observed as something of modulated oscillations. For o, we 
can guess that the same phenomenon can be observed too. We call it almost pe· 
riodic or automodulated oscillations. Sometimes such a phenomenon can be seen 
in circuits with nonliear reactors. Especially, when reactors are biased by DC 
source, it can be easily seen. From the above results, z must be variable. 

Let amplitude of u be ,Vp, and substituting Eq. (8) into (7)', and picking up 

only DC components which do not contain periodic term, that is, cost, sin t and so 
on, Then (7)' becomes 

~:+a{4(~ +3~0 2)z+6~o(~ p+z2 + ~ q2)+ ~ pz+zs+: q2z]=o 

and further putting z+2~0 =x, Eqs. (6)' and (7)' become 

(pu + a 1 du + d[(3x2 + 4a + ..?-q2) +u2-3qxcos 2~]=0 
dr- 2 d-r p 8 

(9) 

(10) 

(39) 
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Equation (9) is rewritten in the following form d 2u/dr:2+u=vf(u, du/dr:, x, r:) where 
O<v<<1 Let u=.vp cos(r:-qS) and du/dr:=-.../p sin(r:-qS) Eq. (9) can be trans­

formed into a polar coodinate system as follows by stroboscopic method, 

21t 

dqS 1 J ( du ) _ dr: = -v2rc,.j P 
0 

f u, dr:' x, r: cos(r: qS)dr: 

From the above two equations and Eq. (10), we would construct simultane9us eq­

uations 

dp =- p(a1 -.l.dq x sin 2qS) 
dr: 2 

(11) 

dqS =-[.l d (3x2+ 4a + .l.qz)-~+ .l.pd -.l.dqx cos 2qS] 
dr: 2 {3 8 2{3 8 4 

(12) 

~~ = -a{x2+ ( ~ p+ ~ q2 + ~a)x-8qS0 (qS0 2 + ~ )] (13) 

Periodic solutions of Eqs. (6)' and (7)' are given by p, cp and x which satisfy dp/dr:=O, 

dcp/dr:=O and dx/dr:=O in Eqs. (11), (12) and (13). But these solutions aFe nonsense 
as loug as their stabilities are obscure, therefore we must study whether each so­
lutions is stable or unstable. If we form variational equations from Eqs. (11), (12) 
and (13), stabilities of solutions can be clarifed by Hurwitz's method. Since this 
method is very complicated in our case, we would study them by graphical method 
as fhllows. 

In Eqs. (11) and (12), let dp/dr:=O and dcp/dr:=O and eliminating cp from these two 
equations. 

Then 4a 16a 1 J 16 2 p=--4x2----q2± 4q2x2 __ t 
2d{3 3{3 2 9d2 

This result shows p,_x curves when dp/dr:= 0 and dcp/dr:= 0 (curve I). 
Next let dx/dr:=O in Eq. (13), this also shows p--x curves when dx/dr:=O (curve II} 
From the above two results, we can obtain equilibrium points graphically. In Fig. 3 

equilibrium points are shown as intersecting points of these two curves. For their 
stabilities, we can obtain them by signs of dp/dr: and dx/dr:. On the right hand 
side .of curve II, clearly dx/dr:<O; on the left hand side, dx/dr>O. On the other 
hand in inside and outside of curve I, dp/dr:>O and dp/dr:<O respectively, which 
can be understood by considering stabilities 6£ periodic solutions of non-linearlized 
Mathieu's equation. Thus we can decide stabilities of solutions graphically as in 
Fig. 3. From the above discussions we see that there exist seven cases for numbers 
of equilibrium points and their stabilities. These results are shown in Fig. 4 and 
Table 1. 

(40) 
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f 

X 

Fig. 3. Stability of periodic solution 

Table 1. 

Stabilities No. of 

case solutions 
(p=O) (p::;t:O) 

(1) unstable one pair 

( 2) stable two pairs 

( 3) unstable three pairs 

( 4) stable four pairs 

( 5) unstable one pair 

( 6) stable two pairs 

(7) stable zero 

(41) 

f ~-o (1) f (2) 

p (4) 

p (6)-

f (7) o Stable Point 

• Unstable Point 

:X: 

Fig. 4. Classification of equilibrium_ 

points. 

No. of stable and 

unstable solutions 
(p::;t:O) 

stable I unstable 

one pair zero 

one pair one pair 

one pair 
I 

two pairs 

one pair 
I 

three pairs 
I 

zero one pair 

zero two pairs 

zero zero 
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III. Almost Periodic OscUlations 

As shown in the previous chapter, if p, lfJ and x remain unmoved at equilibrium 
points, these points correspond to stable periodic solutions of Eqs. (6)' and (7)'. 
But in some conditions such points do not exist, then p, lfJ and x become slowly 
time varying functions. We have previously showed that limit cycles in P"'lfJ"'X 

space can exist, and from this result, we can guess that the time which the rep­
resentative point takes to revolve once around along the limit cycle is independent 
of the period of external force. It is very difficult to discuss the existence and 
stabilities of limit cycles, therefore we would define them as follows. When p=O 

is unstable, and unstable equilibrium points which are not zero exist, in addition 
stable points do not exist, we consider that limit cycles which circulate around the 
unstable equilibrium points exist, and that they correspond to almost periodic solu­
tions. Case (5) in classification of equilibrium points is an example of these. But 
such types of solutions also exist under other conditions which are not shown above. 
We can guess these conditions from the positions and the natures of equilibrium. 
These are cases (3), (4) and (5) of previous classifications. For example, in case 
(3), middle unstable equilibrium point corresponds to almost periodic solutions and 
it is considered that such solutions can exist only when initial points are near by 
these equilibrium, namely, it is the case when conditions change from case (5) to 
case (3) continuously. The same results are expected when they change from (5) 
to (6), from (3) to (4) and from (6) to (4). These statesments are verified by ex­
perimental evidences. 

IV. Numerical examples 

We would calculate periodic and almost periodic solutions by method of previous 
chapter, and compare them with experimental values. At first, when ¢0 = 1.0, and 
w= 314. we calculate pin response to external AC source voltage E in each value 
of capacity C. These relations are shown in Fig 5. From these results, we can 
find regions of periodic and almost periodic oscillations, which are shown in E-C 
plane as Fig. 5. Circuit constants are as follows A=300 AT/m, B=l0-3 weber, 
N1 =N2=620T. r1 =r2=SOO a=0.5 and {3 =0.5. 

Next we would calculate pin response to frequency of external AC source when 
C = 10,uF and E = 100 volts. These results are shown in Fig. 7 and ¢0 is chosen as 
parameter. And ¢o=0.7, 1.0 and 1.3 correspond to 30mA, SOmA and 75mA of DC 
bias currents respectively, and V 1 is expressed by V1 =10-3 cu,Vp N 2 .V2 

In order to investigate these phenomena, we analized them by analogue computer. 
Bilinear characteristics are used in place of saturation of inductors, and it is shown 
in Fig. 8. Fig. 9 shows result of anaiysis. This does not coincide with numerical 
result, but is useful for qualitative re~earch, and shows that almost periodic oscil­
lations exist in case (3) in Table 1. 

(42) 
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Fig. 6. Regions of almost poriodic oscillations. 
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Fig. 7. Frequency response of p 

(a) 

(b) 

I oc = JOmA 

I vc =50mA 

C =10 j.iF , E =100 V 

(C) Inc =75 mA 
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Fig. 8. Frequency response of V 1 
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:::J/0 
..... 
0 

...................... 

Bilinear charact~ristic 

' ............ <:/most periodic 

................ 
................ 

a,~~~------~----------~~ 
2 J fC/s 

os.c 

Fig. 9. Analogue computer analysis, for 

·· · [ (u+v) (u-v)] u+a1u + F -
2

- +F -
2

- = 0 

u + a2 [F(u;v)-F(u 
2 

v)]=qsin2wt+e0 

a 1 = 0.1, a 2.= 0. 2, q= 10, e0 = 3, w = 2tr:J. 

V. Conclusion 

45 

We express the parametrically excited circuit as the system of simultaneous dif~ 
ferential equatihns of the second and first order. Since the primary circuit of this 
has nonsymmetrical saturation characteristic because of DC bias current, DC com~ 
ponent of magnetic flux generates in inductors. Therefore coefficients of differential 
equation which express the secondary circuit vary slowly, and jump phenomena 
occure, and these phenomena show almost periodic oscillations. Periodic solutions 
are expressed as equilibrium points in phase space, and we considered that almost 
periodic oscillations correspond to unstable equilibrium points. It can be seen that 
results of numerical calculations coincide pretty closely with those of experiments, 
and is shown that the phase space method is useful for qualitative analysis of 
automodulating (or almost periodic) oscillations. 
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