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Problem of Large Deflection of Coiled Springs** 
(Received Oct. 10, 1959) 

Masao MIZUNO* 

Abstract 

The deflection curve of the center line of coiled springs are discussed, expanding 

the Bernoulli-Euler equation for the elastica of thin rods. 
Numerical results and their application to the springs for measuring pressure 

of dial gauges are presented. 

I. Introduction 

When the elastic deformation in bending of bars, plates etc. is discussed from 

the view-point of the strength of materials and applied elasticity, it is a customary 

procedure to treat it under the following fundamental assumptions. 

(1) The equilibrium of stresses between themselves and with external forces needs 
only to hold under the form and conditions of the undeformed states. 

{2) The squares of deformation angles are negligible compared to unit. 
As these fundamental assumptions are only approximately valid in small deforma· 

tions, the theory grounded on them is called the theory of infinitesimal deforma· 
tions. In this theory all the strains and stresses caused by external forces are linear 
in them, and uniqueness of the deformed state corresponding to definite external 
forces is demonstrated and a stable equilibrium will ce established. Therefore (1) 
Q{ the fundamental assumptions must be regarded as not to valid in the theory of 
elastic stability of bars, such as the one of buckling of columns. Such a theory is 
called one of finite deformations. In larger deformations, it will be necessary to 
treat (2) of the fundamental assumptions as not true. Then we have problems of 

* 7.K !llf iE ;k; Dr. Eng., Assistant Professor at Keio University. 
** Contents of this paper were read at the following meetings under the title 

"Deformation of Coiled Springs under Oblique Loads (Part 1-...4.)": 
Part 1: General meeting to the Japan Society of Mechanical Engineers, April 

1955 (Lecture No. 132). 
Part 2: E:x;traordinary general meeting of the Japan Society of Mechanical En­

gineers, November, 1956 (No. 119). 
Part 3: The 60th anniversary meeting of the Japan Society of Mechanical En­

gineers in the second region, July, 1957 (No. 109). 
Part 4: Autumnal meeting of the Society for Precision Mechanics of Japan, 

November, 1957 (No. 204). 
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Problem of Large Deflection of Coiled Springs 19 

large deflection. The large deflection problem of bars of uniform section is called 
the problem of elastica and was discussed by D. Bernoulli and L. Euler for the first 
time, so we must regard it as a classical problemY But the theory of infinitesimal 
deformations is simple and the test results are pretty close to the real deformations 
and it is often taken as a sufficient approxmation for practial use except for excep­
tionally large deformations. So, as a practical computation method, it has been 
used until now more widely thae the problem of elastica. Majority of the ordinary 
.elastic theories such as those of elasticity, strength of materials, structures etc. 
belong to this theory of infinitesimal deformations. 2) A number of papers published 
recently concerning the large deflection problem is much less than the number of 
those founded on the theory of infinitesimal deformations. We can only name the 
work of Suhara, discussing the elastica of bars of gradually varied section, l) the 
work of E. J. Soott and others, the solution in series being obtained by reversion 
method, a) the work of H. D. Conway etc, discussing the large deflection of bars 
curved in circular arc,') the work of Hamada, treating the large deflection of plate5> 

and a few others, all of them treating bending deflection. Generally speading, a 
spring is a machine element characterised by a large deformation in the whole even 
when its elements may be regarded to have infinitesimal strains in the elastic range. 
Therefore, in order to get an accurate result, the computation of its strains and 
stresses must be carried out as problem of large deflection, but this is scarcely ever 
porformed. There is only one work by Watari on laminated springs.&) The . author 
treats in this paper the deflection of a coiled spring in the state of very large de­
formations. Theoretically sound resnlts are obtained only by the treatment of large 
deflection problem. However, such treatment will scarcely find a practical impor­
tance except in case of these springs. 7) 

II. Fundamental Equations for the Problem of 
Large Deflection of Coiled Springs 

In ordes to determine the deflection curve of the central line of a buckled coiled 
spring, we treat the central line as a bar with a certain rigidity, then the spring 
will be subjected to a direct force depending on the position of each point on its 

1) Suhara: Journal of the Japan Society of Mechanical Engineers, 41, No. 255, 

583 (1938, June) [in Jap.] 
2) Risearch committee of long columns: Hand book of Elastic Stability, p. 2, 

Corona Book Co. (1951). 
3) E. J. Scott and D. R. Carver: J. App. Mech. June 1955, p. 245. 
4) H. D. Conway: J. App. Mech. March 1956, p. 7. 
5) Hamada: Bulletin of JSME vol. 1, No. 1 (1958) 20. [in Eng.] 
6) Watari: Preprint for the Tokyo meeting of the :Japan Society of Mechanical 

Engineers (Oct. 1955), No. 109, 

7) cf. The resume (1). 
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:20 Masao MIZUNO 

central line, and so its pitch varies from point ot point, i.e. we get a case of a bar 
with gradually varying rigidity. The elastica of a bar with gradually varying cross 
section has been treated by Suharas) and myself9\ but the spring in the pre~ent 
case is more complicated. We must take into consideration the curvature of its 
central line caused by a varying shear which is comparable with the curvature 
caused by bending and cannot be neglected and also the gradually varying rigidity 
which is brought about by the dependence of the 
total length on its load. We assume that the coiled 
.spring with uniform pitches and straight central 

line in its undeformed state is buckled under pres­
sure R acting on both hinged ends, and the de­
formed curve of the central line is APO B, as shown 
in Fig. 1. The deformed curve has a parallel tan­
gent to the force R in its central point 0. As in 
Fig. 1, let this tangent be ordinate and 0 be the 
-origin. Then the deformed curve will be symmet­

:r 

t 
R 

rical relative to abscissa. As in elastica, the curve of the central 1ine. of a coiled 
spring will be easily determined from the view-point of large deflection problem by 
the cyordinates of any point P on the deformed cnrve as long as this is in a plane. 

We shall denote as follows : 
{) : angle of the tangent to the deflection curve on any given point P and the 

direction of load R, n ~ {) ~ 0, being fJ=a at A and 8=0 at 0, 
s : length OP along the deflection curve of the central line of the spring, 
so: length s under no load, 
1 : total length of the spring under load R, 
10 : total length of the spring under no load, 
h : pitch at P under load R, 

ho : pitch at P under no load, 
E, G, m : Young's modulus, modulus of rigidity and Poisson's number of the 

material of spring respectivly, 
I : moment of inertia of the cross sectional area of wire, 
r : mean radius of the coil. 

For simplicity, let the cross section_of wire be circular, then we get the polar 
moment of inertia of area ] = 21 

Denoting by A 0 , B0 , C0 the rigidities for axial force, flexure and shear of the spring 
under no load respective!, we get after Biezeno and GrammePo), u) 

8) Suhara: Jourual of the Japan Society of Mechanical Engineers 41. No. 255 
(June 1938), 583. 

9) Mizuno: Reports of Research of Long Columns, p. 87, (March 1952). 
10) C. B. Biezeno u. R. Gramme! : Technische Dynamik, 2. Aufl. Bd. 1., S. 616, 

Berlin, 1953. 
11) S. Timoshenko: Theory of Elastic Stability, Chap 2, §30, 1936. 
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A _Glh0 B 
o- rcr3 , o 

2EG!h0 C _ Elho 
nr(E+2G)' o- nr3 

(1·a) 

Cases of wire with cross section other than circular, e.g. rectangular, may be treated 
by the method described in the literature mentioned above 10>. 

Now, letT, Q, M denote axial force, shearing force and bending moment respec· 
tively at point P on the central line of the spring and let tension be counted positive. 
Then we get 

and 

so 

l/2 

T= -R cos 8, Q=R sin 8, M =R f sin 8 ds 

T _ ds-ds0 _ h-h0 

Ao -~-h;"" 

h T R -=1+-=1--cose 
ho Ao Ao 

0 

(1·b) 

(1·c) 

Therefore, if we denote by A, B, C the rigidities at point P under load R, we get 

A =Ao.!!:_ = Ao (1- !i._ cos e) 
h0 A 0 

B=Bo!!:_= Bo(1- R cos e) 
ho Ao 

C= C0 !!:_= Co(1-K.cose) 
ho Ao 

] (1·d) 

On the other hand, we find the curvature of deflection curve of the central line of 
the spring as follows11>: 

d8 =M +_!_dQ 
ds B C ds 

(1·1) 

This is the fundamental equation of deflection curve. If we put Eqs. (1· b) and (1·d) 
into Eq. (1·1), we get 

f
l/2 

dO- R ' sin8ds Rcose d8 
d - ( R ) + ( R ) . ds s B0 1-Ao cosO Co 1-Ao cosO 

In order to make the quantities non-dimensional, We put 

then 

s=l(J, R =A., pR =p, 
Ao Bo 

"A+v=R(3+1._) rcr3 =!' 
m Elh0 

R -=v, 
Co 

t/2 

(1-rcos8)~~ =f.l J sin8d(j' 
0 

(21) 

} (l·e) 

(1·2) 



22 

and 

Masao MIZUNO 

.!!. {C1-T cos O)dO} = -,u sino 
du du 

{C1-T cosO)~~} fu { (1-T cos 0)~~ }du=-,u(1-T cosO) sin 0 dO 

(1-T cos0)2 (~~ir =p.(2 cosO-T cos20+H) 

where His an integration constant. At point A, i.e. at O=a, we have 

so we get 

H = -(2 cos a-'t" cos2a)=_!_{(1-'r' cos a)2-1} 
'r' 

If we put Eq. (1·4) into Eq. (1·3), 

(1-T cos8)2 (~~ )
2 
= ~ {(1-'r' cos a)2-(1-'r' cos0)2

} 

Noting Eq. (1·e) and putting 

(i =_!_ /1/A0 +1/C0 =.!_ /3m+2=.!_-v'T 
"1/i l 'V 1/80 l 'V 2m+1 l 

we get 

du _ .y'- .!._. (1-'t" cos 0) dO 
- f l .v'(1-'t"COSa)2-(1-'t"COS8)2 

where we assumed 12:T for the sake of simplicity and took note that 

1-'t"COS02:0, 1-'t"COSa2:0 and d0/du2:0 

As ds=ldu by Eq. (1·e), putting 

F(0)=(1-T cos a)2-(1-T cos 0)2 

we get by Eq. (1·5): 

ds=.y' f . .!.. • l • (1-T cos 8) dO 
l .y' F(O) 

and 
(Xi 

.!_= ,-. J(l-TcosO) dO 
l v f r .v' F(O) 

0 

The coordinates of point A are as follows : 

($ 

'f !(1-Tcost9)sin0 -tn ,- 11 'F(n)'(Xi .x, = v • r .y' F( O) uo = v f · r -;c - v o 
0 

0 

(22) 

(1·3) 

(1·f) 

(1·4) 

(1·g) 

(1·5) 

(1·5)' 

(l·A) 

(l·B) 
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<» 

_ . 1_ • JCl--r cosO) cos e dO 
Yl - "' f r ~ F(O) 

0 

(1·C) 

As ds/ds0 = 1-A. cos 0 by Eq. (1·c) and -r= A.+v by Eq, (1·e), we get 

3 <» <» 

10 J ds ~- [( v)J dO vJ dO J 
2= 1-A.coso=. f · r 1+~ ~F(O)--y:: (1--xcosO)~F(O) 

0 0 0 

<» 

~- j (1--r cos 0) dO 
= f · r (1-"Acos8)~F(8) 

0 

(1·D) 

The equations (l·A, B, C, D) denote the ihtegrations along OA in Fig. 1 and so 
express the values at point A, but if we take 0 as the upper limit of integration, 
we get formulae for s, x, y, s0 at an arbitrary point P in general : 

where 

8 

s=~ f . rJ(l--rcosO) dO 
0 

,./F(O) 

x=,J f · rl.,JF(O) 
't' 

8 

y=~ 1 . rJ<l-TcosO)cosO dO 
0 

:] F(B) 

-c =R(3+ !.) 7rT3 
m Elho 

F(O) = (1-T cos a)2-(1-T cos0)2 

(l·A)' 

(l·B)' 

(l·C)' 

(l·D)' 

/, v/"A, -c being constants depending on the dimensions of the spring under no load 
and elastic modulus of its material. Generally, the integrals on the right of Eqs. 
(1· A, B, C, D) are reduced to elliptic integrals as in the case of elastica.* 

The fact that the deflection curve of the central line of a buckled coiled spring 
is expressible in elliptic integrals similar to elastica may be of interest. 

N. B. the above calculations refer to the deformation in which the coils of the 
spring do not touch each other. 

* As shown in the appendix of this paper 
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III. Numerical Results and Relations with Usual Data 

Now we shall calculate the numerical values of the solutions obtained in Chap. II. 
Put Eq. (1·g) into Eq. (1·A), then we get 

a, 

.!:_ = l ;-;-! 0-r cos 8) dO 
2 '\/ p 

0 
.v'(l-r cos a)2-(1-r cos 82) 

(2·1) 

If we transform the variable e into cp by the definition 

(2·a) 

we have 

cp=O at 8=0, cp= ~ at 8=a 

cosO= 1-2sin2~ = 1-2 sin2~ sin2 cp 
2 2 

and 

_ ~~12 (1-r+2r sin2 ~ sin2 cp) dVJ 
v' p. =2 

, o ·~ 1-sin 2 ~ sin 2 cpJ 1-r + r ( 1 +sin 2 cp) sin 2 ~ 
(2·1)' 

or expanding into series 

~/2 

.v'/i =2 J {o-r )+2-r sin2 cp sin2 ~ } ( 1 + ~ sin2 cpsin2 ~ + ~ sin• cp sin• ~ + ...... ) 
0 

~/2 

=2(1-r)-112j[C-r)+ 
2
1 {-r+(1+2r)sin2 cp}sin2~ 

0 2 

As 

~/2 ~/2 

f "2d 1 7r J··d 3 7r sm cp cp=-
2 

• -2 , stn cp cp=-.-, 
• 8 2 

(2·b) 

(~4) 
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we get finally 

where 

,Vfi= rr(1-rF112 Sh 

sl = (1-r)+ _!_sin2~ + _!_ . g-sr sin4 ~- + ..... . 
4 2 64 1-r 2 

} (2·2) 

when a= 0, i.e. under buckling load 

so we have 

(2·3) 

Taking note that rcr="Xcr+vcr (cf. Eq. (1·e)), we can transform Eq. (2·3) as follows~ 

Again from Eq. (1·e) 

/!!.!:_ ~ Vcr = 1 _! Acr = f;;. ( 1 _! Acr- 1) 
rr2 

"'\ Rcr 
1\.cr= Ao ' 

Rcrz 2 f-lcr= Bo cr , 
Rcr 

Vcr= Co 

and as the central line is straight under buckling 1c ad, 

lcr=(1- Acr) lo, Rcr = Acr = lo-lcr 
Ao lo 

Therefore, we get 

1 _ Rcr lo-lcr 
l~r2 Rcr + Rcr- Ao -l-o-
rr2 Bo Co 

or 

(2·C) 

(2·4) 

The last formula coincides with that of the ordinary theory of coiled springs under 
buckling load. 12) We must notice that lcr, Bcr, Ccr are the total length, flexual and. 
shearing rigidities under a load exactly equal to Rcr and depending on Rcr. So Rcr 

cannot be determined directly by Eq, (2·4) and its calculation requires the solution 
of an equation of third order given below Eq. (2·f). 

Again transforming the variable in Eq. (1·D) by Eq. (2·a) we get, just as before,. 

1C/ 2 1-r+2rsin2 ~sin2~ 
~= l f d~ • 2 
2 .../ f-1 1 +2 . 2 • 2 a I . . 2 a I . ) . a 

o -A. \. sm ~ sm 2 'V 1-sm2 ~sm yy 1-r+r(1+sm2 ~ sm2y 

·Or, expanding and taking note of the calculation in Eq. (2·2), we have 

12) S. Timoshenko: Ibid. p. 165, formula (c) etc .. 

(25) 
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..C/2 

lo 2 J {1 2A. · 2 • 2 a 4A.2 
• 4 • • a } -=--=(1-A.)-1(1--rtl/2 ---sm (jJSlll -+--sm (/Jsm·-- ...... 

l ...; p 0 1-\. 2 (1-\.)2 2 

+[Cl--r)+ ~ { --r+(1+2-r)sin2(/J} sin2 ~ + ...... Ja(/J 

()r 

~ = (1- A.t1[1+ _!_{_1- -rA.sin2~- ~ (3-15\.+2-r+10A.-r)sin'~ _.,, .. ·}] 
z s1 1-A. 2 s (1-A-)2 2 

or, finally, 

where 

When a=O, i.e. before buckling, we have S2=0, therefore 

~ =( -A.)l 
l 

(2·5) 

(2·6) 

This formula contains Eq. (2·c) in it. Denote 8v, the deflection of the spring before 
buckling, by n=l0/ho, number of turns, and by d, diameter of wire, then 

8v=lo~l =A-10 = R 10 = 1CT
3
l 0 R 

Ao Glho 

or (2·7) 

which coincides with the ordinary formula of coiled springs. 
Now, in order to compute the load and deformation after buckling, we must, at 

ftrst, determine the relation between -r and sin a/2 . 

Noting Eq. (1· g), we get 

...;-;; 1 ...;-;­
-~-=r...; t 

where f= ~=!~, m being Poisson's number. 

In the following we take m = 13° , then .../ f = 1.25 

From Eq. (2·2) and (2·5), we get 

or 

.../fi ~o = 1C(1-A.)-1(1--r)-112 [St-Sa] 

~- ~.../ -r(1--r)C1-A.) = St-Sa 
1C.y f r 

when m = ~, from Eq. (l·e) we get 

(26) 

(2·d) 
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~ =~=-1-=?m+2 =0722 
-r- A.+v 1+2_ 2m+2 · 

E 

So the above formula may be expressed as follows: 

If we may neglect the terms of sin6 a/2 and higher powers, we have 

• 2 a -at+.v' at 2 +4a0al 
sm 2 2a2 ' 

ao = ..!.-1-l.J._.v' -r-(1_....-r-)(1-0.722 -r-)-(1--r-) 
n: 1.25 r 

1 1--r-
al = 4-0.722 -r- 1-0.722 -r-

a2 = _!_ 9-8-r- _ 0.722 -r- 3-8.33-r-+7,22-r- 2 

64 1--r- 8 (1-0.722-r-)2 

27 

(2·e) 

(2·8) 

This formula expresses the dependence of sin a/2 on -r-. 
and this corresponds to buckling load, we have 

When ao = 0, sin aj2 = 0, 

U we put 

n:2y2 1 
M=F--

2
, (1-Acr)=W 

0 1+-
m 

and note Eq. (2·d) and (2·e), we get 

and 

Then 

or 

1r
2r 2 3m+2 -f=M--

lo2 m 

M= (1-w)w2 
-1+(3+2/m)w 

(2·f) 

which coincides with the current formula for the coiled spring under buckling load.13> 

By Eq. (2·f), we can determine the value 't"cr for each value of 10/r. 
On the other hand, if we put 

R -r­K=--=-
Rcr 't"cr 

13) S. Timoshenko: Ibid. p. 169, formula (i) etc .. 

(27) 

(2·g) 
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and regard K as a parameter, we obtain Fig. 2 which shows the dependence of -r 

<>n lo/r. 
Noting this dependence, the value of sin a/2 for each 10/r and K is determined 

from the equation (2·8). And we obtain Fig. 3. 

.. .s 
rtJ 

Q.5 

0 

Fig. 2. 

"'' 
-r----r-1:2_0 

" 
......... 

I'--
....... t--- -.!12 

-r--r-J;l_o_ 
""-.... 

~0 
I'-- --r-- ,_1. 05 

K=l 

8 10 12 

Fig. 3. 

14 

/o/,. 

The case in which K = 1 (Fig. 2) corresponds exactly to the Euler's curve of col­
umus. Ordinarily, A. is taken as ordinate.w In the limit 10/r~o, -r=1 independently 
of m. but A. depends on m. The reason why the abscissa is limited in the figure 
of this paper is that in the only case of practical importance for buckling holds 
10/r 2: 8 and when lo! r > 15, the curve coincides nearly with the horizontal asymptote. 

Here we cite Eq. (1· B): 

Xt=.../ fr [; .../ (1--r cosa)2 -(1--r)2] 

or 

..!.!:._= 2 , 1 _!_sina/2 11 + . 2 a 
lo v lo .../ -r 'V --r -r sm 2 (2·9) 

If we replace the variable in Eq. (1·C) by cp following Eq. (2·a), we get 

'IC/2 

Yt = J f1 f ( 1-2 sin2 cpsin21-)[0--r) + ~ { --r+(1+2 -r)sin2 cp} sin2 ~ + ...... ] dcp 

or 

2Yt = t[1- _!_{(1--r) sin2~ + _!_(3+2 -r) sin'~+······}] sl 2 8 2 

and finally 

where (2·10) 

14) S. Timoshenko: Ibid. fig. 103. 

(28) 
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Figure 4 shows the relations of Eqs. (2 · 9) and (2 ·10), in which the results of Figs. 2 
and 3 being considered. In it, xdlo are 
represented by the family of curves which t:c 

intersect the left ordinate at K = 1. The 
central line of the Spring. for K ~ 1 is a 
straight line ; Xt = 0, 2yt/lo are represented 
by the family of curves which intersect 
the right ordinate at K = 0. As 

2Yt+oy=lo 

we can measure the absciss~ of this family 
of curves by oy/10 , then. it~ origin will be 
at the right corner as is shown in the 
bracket ( ) under the abscissa. Now the 
quantity in case K ~ 1 is determined by the 
usual formula of deflection and is propor-. 
tional to load. Then we have a straight 
line as shown in the figure. For compar­
ison, a curve corresponding to elastica is 
shown in chain lines and the _one by the 

o~~~~~~~~~~~~ 

( 1) 

~, 2Yl ' (!JL) 
lo lo lo 

theory of stability in broken linds. 
In the curve corresponding to elastica, Fig. 4· 

1 
(0) 

xt/lo tends to the vertical axis passing through origin 0 and yl/10 to the vertical 
line through -1. But in the curves for the springs only xl/10 tends to the vertical 
axis through the origin, but yl/10 may attain - oo theoretically as the central line 
extends indefinitely. Notwithstanding, the intersection of the curve and the vertical 
axis through origin means the coincidence of both ends of the spring, and the coils 
must touch each other. Then we know that the range shown in Fig. 4 is sufficient 
for practical purposes. 

IV. Comparison of the Calculated Results of Deilection 
after Buckling with the Experiments 

[a] Method of Experiments 

(1) Test Machine Used 
We used a universal 5t Olsen testing machine whose loading system is of screw 

type, not of oil pressure type as in Amsler machine. It allows convenient measure­
ments of deformation of springs which are attached to two tables movable in parallel 
and may be fixed at any desired pressed position. 

But the capacity of our machine was too large compared to the load applied to 
the springs to measure it accurately. So we were obliged to put aside the meas­
urement of the loads. (As may be seen in the following, their measurement means 

(29) 



30 Masao MIZUNO 

little, as the measurements of deformation alone permit accurate comparison be­
tween the measured and the theoretical values.) 

(2) Dimensions of Tested Springs 
We experimented on 3 kinds of cylindrical coiled springs : 

spring 1 

spring 2 

spring 3 

Dmm dmm 

25.9 
24.65 
20.4 

2.1 
4.0 
5.0 

where D: diameter of coil in mm, 
d: diameter of wire in mm. 

These experiments require only the constancy of the pitch of the coils under no 
load and are independent on its magni~ud~. The length of the springs was adapted 
to the experimental method described in (3) Method of Measurement. As the prop­
erties of materials other than Poisson's ratio are known not to affect the measured 
results of this experiment, these were not investigated in detail. We ascertained 
only that these springs were made of ordinary steel wire. In the following, the 
experimental results are compared with the theoretical data in which m = 10/3. 

(3) Method of Measurement 
Figure 5 shows the deformations of buckled coiled springs. In this figure the 

T 

T 

Fig. 5. 

dimensions which are almost invariable and 
coincide practically with those under no loads 
shall be denoted by suffices 0. That is, D~D0 , 

d-~do. Again the denotations in III are main­
tained: 

l'=2yt, lo'=lo, lo-l'=ov 
and we have 

But the errors in Xt,0 originating in the man­
ufacture of the springs are of the order of 1/10 

mm and cause discrepancies between theory and 
experiment near the buckling point, as described 
below. 

C in the Fig. 5 is a metallic part fixing the 
tow ends of spring in exact direction of its cen-
tral line, and on its cylindrical surface is cut a 

spiral groove into which spring may be screwed. P is a plate to protect against 
the displacement of C when, springs are buckled. 

The experiment was performed in the following order. We fixed the free length 
210 of springs under no load is fixed at 2lo/D=lo/r= 14, 10, 8 respectively, these values 
being used for calculation in III. and we cut the springs with margins to enable 
their two ends to be screwed in and to be fixed by the metal part C. Then we 
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attached springs to part C and made the horizontal free length to planned 210 by 
adjusting the screwing into C and fixed it on P. This was attached between the 
tables T of the testing machine as in Fig. 5 and adjusted to stand perpendicular to 
their two planes by a right-angled square S. 

As we shorten the distance between the two T's, by driving the testing machine, 
the spring will be buckled at a certain position. We stop the machine at certain 
proper positions before and after the buckling point and measure the dimensions 
L and 2xz respectively. We repeat this measurement seve:ral times as far as the 
coils of spring do not touch each other, than unload the spring and ascertain if it 
retain the original Xz,0• 

(4) Kinds of Experiments 
We have performed various 

experiments as shown in 
Table 1. 

[b] Results of Experiments 

210/D = 10/r 

(1) Method of Treatment of Results 

Table 1. 

spring 1 spring 2 spring 3 

10,8 10,8 10,14 

We show in Fig. 6 a curve expressing the relations between xz/10 and 811/10 which 
is obtained from Fig. 4 calculated in III. In Fig. 6 we plot the measured values 
2811 and 2xz divided by 210, 21' being the measured L minus the height of C and 
thickness of P. The coincidence of these 
two will ascertain our theory and especially 
will prove the accuracy of approx~mate cal­
culation in III. The range shown in Fig. 6 
is more limited than in Fig. 4. This was 
obliged by the fact that the touching of coils 
with each other in the experiment does not 
allow a comparison with the calculation. 

(2) Discussion of the Results 
The causes of the discrepancy between 

the experimental plot and the theoretical 
curve near buckling may be attributed, on 
one side, to the errors in dimensions of 
springs, such as xz.o ~ 0 described above and 
others, and, on the other side, to the inc om­
pletely fixed conditions of support which 
consists particularly in the asymmetric ar­
rangement of springs relative to the central 
measuring point of springs caused by the 

. 
• 
)( 

dmm nmm 

2.1 25.9 

4.0 24.65 

5.0 20.4 

x!llo 

Fig. 6. 

accurate adjustment of free length. Both are inevitable in our experiments and 
may occur in any practical springs. Except for this non-coincidence, the experimen­
tal points nicely fit the theoretical curve. 
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V. Applications to the Coiled Springs for Precision Mechanism 

In order to limit their bulk as for as possible in precision mechanisms there are 
often used extension springs whose characteristics are non-linearized by initial ten­
sion as shown in Fig. 7. The spring shown in this figure is the one giving the 

measuring pressure in dial gauges de· 
scribed below. The real lines show the 

elon(Jationmm 

Fig. 7. 

respective characteristics of the springs 
attached to two different gauges of the 
same type and the points show meas­
ured values. The intersections T and 
T' with ordinate of the elongated dot­
ted straight line at the end part of 
these plots show the maghitudes of 
initial tensions of the two springs each. 
Distinct difference between T and T' 
observed in the figure proves the fre­
quent occurrence of errors in initial 
tension during manufacturing, these 

errors often causing variation in performance of springs. 
Non-linear characteristics may be obtained in compression spring after buckling 

as shown in Fig. 4. We have made a compression spring for measuring pressure 
in dial gauge and compared it with an extension spring. The buckling point in 
Fig. 4 is not so dependent on the manufacturing conditions as initial tension and 
is theoretically fixed, only dependent upon elastic coefficients of materials. In the 
following is described the measuring pressure in the usual dial gauge using an ex­
tension spring and both design-computation and experimentally determined measur­
ing pressure when in dial gauge the deformation of buckled compression spring is 
used. 

~ 100 

.. .., ... 

• Ext •. ~prin(J 

o Ex· 1 } 
Compo spsin(J • 

X Ex• 2 • . 
~80.~ 

Scale of Gauge mm 

Fig. 8. 

The measuring pressure of a dial gauge of 
usual construction is given by the extension 
coiled spring working upon spindle and the 
spiral spring to exclude the play between 
toothed wheels. We have measured this 
measuring pressure with the spring testing 
machine (smallest scale 2g, 1/lOOmm) man­
ufactured by Tokyo Koki Ltd., and plotted 
the results in Fig. 8. This gauge has a smal­
lest scale O.Olmm, a range 5mm and is of a 
usual type. The measured points in this 
figure correspond to the measurements of 
spring alone in Fig. 7 which are als( · made 
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with the same machine. Fig. 7 shows that in the measuring range of the dial gauge 
using an extension spring the variation in load depends linearly upon elongation. 
As the allowable elongation is 6-. llmm, the load in the range 35--52g may be used 
as measuring pressure. Between this value and that in Fig. 8 there is a difference 
of 32--45g, which is given by the spiral spring. 

[a] Calculation of Coiled Compression Spring 
Fig. 4 shows that when 10 / r= 14, the characteristics are almost straight up to 

~/10 =0.5 after buckling. Experiments (Fig. 6) show some deviations from the the­
oretical values near the buckling point but beyond o/10 =0.2 good agreament with 
them. Therefore we used the range o/10 =0.2--0.5 in the following examples. 

Example 1 

Diameter of wire d: 0.35mm, maen diameter of coil 2r: 3mm, pitch p: 1mm, total 
length lo : 21mm and number of turns n: 21. 

Both ends are hinged and we have 

.1_ = 14 
r 

Then at the buckling point in Fig. 4 (from Eq. (2·f)) 

tr= 0.059 

Therefore the bucling load is : 

R d 4Gocr 32 5 cr = 64nr3 = . g 

From 

Rarge of Gauge . 0 25 Total Length of Spring · · 

and using o/10 of 0.24--0.48, we get as loads 

R1 = 1.1 X Rcr=35.8g 
R2= 1.26 X Rcr=4l.Og 

when 
oflo=0.24 

o/lo=0.48 

and the distances beteween two ends corresponding to R1 and R2 become as follows~ 

l1 = (1-0.24) lo = 16mm 
12 = (1-0.48)lo= llmm 

Then the dependence of deflection upon load is nearly linear in this range, as may 
be seen from the above. Thus we get the calculated values at each end of the 
measurable range by adding loads 32, 45g of the above spring respectively to R1r 

R2. The straight line through these two values shows the calculated measuring 
pressure and is represented by the real line in Fig. 8. Comparing this with the 
results obtained by the use of usual extension spring, we see little difference in 
minimum messuring pressure and less variation in measuring pressure. The total 
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free length of the extension spring is 17mm and when added with the maximum 

elongation llmm, it will be 28mm in its maximal length. In contrast, the maximum 
total length of compression spring is only 16mm. 

Example 2 

If the diameter of wire of extention springs is changed, its initial tension will 
necessarily change, but in compression springs we can choose such a pitch that 

the buckling load may not be affected by the change of wire·diameter. In example 

2 we choose proper wire-diameter and pitch (so number of turns, teo) unlike those 
in Ex. 1 so that the constancy of buckling load may result. 
We take 

wire-diameter d : Q_3mm, 

pitch p: 1.86mm, 

number of turns n: 11.3. 

:and other dimensions the same as in Ex. 1. Then we have 

Rc1· = 32.5g 

:and we get same measuring pressure as in Ex. 1. 

Photograph (a) shows the gauge using a usual extension -spring, and Photograph 
{b) the one using the buckled compression spring in Ex. 2. The spring in (a) may 

elongate by 5mm further and the one in (b) may be shortened by 5mm still. 

(a) ( b) 

Photo. 

[b] Experiments on Measuring Pressure 

We obtained springs shown in the examples of [a] and attached them in turn to 
the dial gauge. The measuring pressure determined by the spring test machine is 

shown in Fig. 8. Thus it is seen that the measured values fit good with the cal­
·Culated results in [a] and the application of deformation after buckling of com­

pression spring enables the dial gauge to perform much better than the use of_ usual 
-extension spring. 

(34) 



Problem of Large Deflection of Coiled Springs 35 

Acknowiedgement 

This work was made possible by the support of the Fund for the Promotion of 
Science in Keio University for 1957. We express our cordial thanks. 

Appendix 

Put cos 8=z into the integlals on the right of Eqs. (l·A, B, C, D), noting 

d8=dz/( -.v'1-z2) we have 

8 II 

f dfJ r dz 
lo= .\f'F(8)=-. rvG(z) 

0 1 

8 z 

J. dO J dz 
It= cos e-\!' F(O) =- z r-\1' G(z) 

0 1 

9 z 

I -j' 2(J-~- J 2 dz 
2- cos vF(fJ)-- z r-\1' G(z) 

0 1 

8 II 

f d(} r dz 
] = (1-A cos li)-\1' F(8) =. A.r(z-1/A)-\/' G(z) 

0 1 

where 
F(fJ) = (1-r cos a)2-(1-r cos 8)2 

G(z) = (z-1)(z+ 1)(z-cos a)(z+cos a-2/r) 

Then, we get after W. Grabner u. N. Hofreiter: Integraltafel 2 teil, 1958, S. 47,. 
noting 1>cosa>-1, oo>2/r-cosa>1; O<r~1, for example 

where 

1 
dz 1 

Io=f -;=== -\!'- K(k) 
B=a, rv G(z) r 1/r-cos a 

cos a, 

1 

dz 1 (cos a-1 ) !~;= JzrvG(z)=rv1/r-cosa[(l+cosa)l7 2 ,k -K(k)] 
cos a, 

k2 = (2/r-cos a+ 1)(1-cos a) 
4(1/r-COS a) 
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