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Oscillation Represented by the Third
Order Differential Equation (Part II)

(Received Sept. 15, 1959)

Hiroichi FUJITA*

Abstract

In the last paper, Part I, published 1956 by the same auther,” the nonlinear
oscillation represented by the third order differential equation was discussed in
the phase space whose axes were displacement x, velocity y=dx/dt and accelaration
Z =d?x|dt?. Hartley and Colpittz Oscillators were analized in the paper. Here,
in Part II, two themes are discussed ; the first theme is the relation between the
coefficient of the third order constant coefficient differential equation and its
solution ; the second theme is a simple numerical calculation method which we
call Energy function method (E function method).

IV. Consideration on the Coefficients of the Constant Coefficient
Third Order Differential Equation and its Solution

The second order differential equation which represents an oscillation is as follows:

2
__gtf + Zh% +wix=0 (6-1)

It can be solved as follows:
x=Ae"* sin {(w?*—h?) t+ ¢} (6-2)

In this equation A and ¢ are arbitrary constants. 2k, the coefficient of the first
order derivative, is called the damping coefficient. Because the oscillation de-
creases for a positive value of 2k, and increases for a negative. And for a large
value of |2h|, the oscillation increases rapidly. w, the coefficient of x in(6-1), is
nearly equal to the angular frequency of the solution (6-2). Thus, we can under-
stand directly the behavior of the second order constant coefficient differential
equation without solving it. However, for the third order differential equation,
we may not find such a simple character.
If the solution of the third order constant coefficient differential equation is

x=Ke *+ Ae™™ sin (ot +¢) (6-3)

*f H K — Assistant Professor at Keio Univ.
1) H. Fujita: This Proceedings 8 30 (1955)
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then, the differential equation is

L% a2 TE (ot 20m) Bt (0t r=0 (6-4>

which is obtain easily from (6-3), by differentiating (6-3) three times and elim-
inating K, A and ¢.

In (6-4), we may not find an aparent character of the solution: what term rep-
resents the angular frequency » or damping constant k, or decaying constant a.

But when we add the third order derivative with a small valued coefficient to
the second order differential equation, then one can show that the added coefficient
of the third order derivative represents a negative damping, proportional to the
square of angular frequency w. Consider the following differential equation;

d’x

/dx
arr i

T+ 2% 3 +o”x=0 (6-5)

dt3

where 13>e>0. Let Ay=—h+jo be the characteristic root for e=0, and A for 0.
A may be expanded to power series

A=AoFer;F Ayt oeeeenenn (6-6)
The characteristic equation for (6-5) is
eAM A+ AF 02=0 (6~T)
Substitute (6-6) into (6-7) and put the coefficient of e being zero and we obtain
AP+ 2AA1+AA, =0 (6-8)
From (6-8),
3

The first approximate solution is

= —htio—e_(Zhtj0)
A=—htjo—e g TR

If we assume | k2| <1 and neglect the higher power of &, then

= —htjote (% + ;)

=—h+ -—;-w2+j(m+ %shw) (6-9)

In the real part of A, —;—ewz is added to —h. It is proportional to w? and has opposite
sign to —h. Therefore, we could say it negative damping.
If the third order differential equation is following type:

‘flt’f +ht ‘ciltf ’dx +ex=0 (6-10>

(9>



96 Hiroichi FUJITA

The fourth term of {(6-10) represents a negative damping, proportional reversely to
% When £=0, (6-10) has a following solution:

' x=Ae " sin (wl+¢)+ K (6-11)
K is also arbitrary constant as well as A and ¢ are arbitrary constants and is
regarded like a D.C. bias.

When 0 < e « 1, we get characteristic root A in the same way
eh >

A= — 1 T
- h+€2 2+]<m 2w?

So the added term e %)T represents a negative damping.

Let us consider a case when e is not so small. In this case the canonical form
may be considered as
d3x | dx

dx -

This coresponds to the second order canonical differential equation ;
L% +x=0 (6-13)
Intuitively, the solution of (6-12) is considered as being at a balancing state of Ist
order positive damping and 3rd order negative damping, or 2rd order positive damp-
ing and zeroth order negative damping.
The characteristic equation of (6-13) is
AM+1)(A+1)=0 (6-14)
Therefore, the solution is a linear conbination of e~ aud sin (¢+¢).
If the characteristic equation is
AM+1)(A+a)=0 (6-15)
and the differential equation has non-periodic solution e % and periodic solution
sin ({+¢) then differential equation for (6-15) is

3

%-}- i,tf + 3—;‘+ax—0
Thus, when the coefficients of zeroth and second order are same or the coefficients
of the first and the third order are same, the positive damping and negative damp-
ing are to be balanced. When « is large, the oscillation is determined mainly
from the zeroth and second order terms, and when @ is small, the oscillation is
determined from the first and the third order terms.

When the oscillation is damped, the characteristic equation is

A2+ +1)(A+a)=0 _(6-16)

and the differential equation is

GE 4 a+n)EE 4 h+1) +ax 0 (6-17)

a,'lf3 dt2

It can be considered that the damping of the first order is greater than the third
order negative damping, or the damping of the second order is greater than the

(10>
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zeroth order damping.

Now, let us consider the angular frequency of the oscillation, represented by the
third order constant coefficient differential equation.

When the characteristic equation is

A+ o) (At+a)=0 (6-18)
then differential equation is
3 ’ 2
%+a%+w2 ‘é’t‘ +awix=0 (6-19)

The coefficients of the zeroth and the first order terms are proportional to the
square of angular frequency w.

Let us show some examples here. The differential equation representing Colpittz
oscillator is

KA X + x+f(x)=0
where § is 1/Q and f(x) corresponds to the characteristics of a vacuum tube. When
x is not so large, as f(x) is considered linear chracteristics gx, the differential equa-
tion is to be considered as

X +6% +x+gx=0
When §>g, the osillation is damped, and when §<g, it grows up. (See Table. 1.)

Table. 1. Relation between coefficients and solution

d3x dix dx _
v +A—= = +B— +Cx=0
I1AaecC

Canonical form .[_LLL &vﬂv TmAsin(t+p)+ Het
Hl}/} freg l I | I = Ksinlwt o) + Het
l ; ? ‘ ; ‘ w>1

2w Ksintut + p)+ Het
w<!

|
Increasing ose. l 11 | XaKeMsin(t+p)+ He ¢
k>0
Decreasing osc I | I | QUQ‘— 2= KeHsintt +y)+ He t
) >0

Damped Expctaw)J I ] I ' X Ksinté+ o)+ Heoat

\/ \_ 1> >0

Damped Exp (fast) I ] l l ik\\//\\‘ Z‘Ks:"::’””f“

Low freg ] [ LL

1A 8B8C
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When x is large and f(x) is saturated to constant value x,, the differential equa-
tion is to be considered as

X 4+8%X +%+2=0
‘This has a solution
x=Ae* sin(wt+¢)—xit+H

and oscillation is represented by the 3rd and Ist order. Then, 2nd order represents
damping.

The summary of the above is in Table. 1..

We do not consider here about the case when the three charactenstlc roots are
all real.

VII. E Function Method for the third order differential equation

The customary numerical calculation of differential equations may be so called
the isocline method, but recently analogue electronic computers being developed
so much, handwork numerical calculations are rarely used. Let us describe on E
function method which is a simple numerical calculation for differential equations.
‘This method is convenient to observe the solution of differential equations in its
broader aspects.

This E function method for the second order differential equations is published
1951 by Dr. Tsumura. In this paper E function method is applied extensively to
the third order differential equations.

Let us rewrite the isocline method in phase plane (or space).

In a rectangular coordinate system whose axes are x, dx/dt= x-and d*/dt*= X%,

x di/dt _dX

Tdxz/dt T dx

‘When the third order the differential equation

Y LF(E, %, 2)=0 -1
is given, we transform it as follows
x=y \[
y=z (7-2)
:2=—F(x,y, 2) J
From (7-2)
dx _ y _:
T (7-3)

(12)
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dz __ F(x,9,2)

dy > (7-4)

The inclination in x—y plane is determined from (7-3), and the inclination in
z—y plane is determined from (7-4). But (7-3) and (7-4) contain divisions by z,
so it is troublesome to calculate numerically or to consider intuively.

Now, define E function E, and E; as follows;

Ei= (x4 (7-5)
Ey= - ("+7) (7-6)

{7-5) is sum of potential energy and kinetic energy.
The derivative for (7-5) in x is

dE,

dy _ 2= _
G5 —xyy 2L x+y(y) x4z (7-1)

dx
The derivative for (7-6) in ¥ is

4 —yta(=EE2D) <y Fixy,2) (7-8)

(7-7) decides the inclination of the solution in E,—x plane and (7-8) decides the
inclination in E,—y plane.

Both (7-7) and (7-8) are very simpe forms and do not contain division though
the isocline method shown in (7-3) and (7-4) contains.

There are following properties in the solution in E,—x plane and E,—y plane.

(1) When y=0, a curve in E,—x plane is a parabola E,= -’;—z Any representa-
tive point lies always above or on this parabola. Let us call this parabola P curve.
This means potential eaergy curve. When z=0, a curve in E,—y plane is also a
parabola E,= -=2—

(2) Any representative point in E,—x plane is corresponding to two values of y
which have the same absolute values and opposite signs. In the same way, any
representative point in E,—y plane is corresponding to two values of z.

(3) A curve representing a simple harmonic vibration is strait lines paralled to %
axis in E;—x plane, and paralled to z axis in E,—y plane.

For, if we put x=A sint
then y=A cost
z=—A sint
and
2
= .A(Sl—nztz-*'co_s_zt_) = __ . constant
In the same way
Az
Ez=—2-— . constant

(13)
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(4) Exponential curve is parabola in F,—x plane or in E,—y plane.
For if we put x=ke*t

then y=ake*
z=a’ke™

2

So E, =(1+a2)_’;_

Ey=(1+a9) 2

these are parabolas.
(5) Let a vertical line from a representative point P, (x, Eyo) in E;—x plane across
to P curve at g;,. Let the corres-

. E
ponding points in E,—y plane . & . -
be Py(yo, Ez) and g, respectively. go2 AN 2-2
Then S\p L o
c: H tAld P) { \ =g
P1g1=7y02 \ (A2 3
U 1
Ll ';
1., X0 0 r Y, 0 H
Pigr=52 Fig. 1.

These relations are useful for the representative points to transform between E;—x
plane and E,—y plane.
Let us describe the actual procedure in E function method step by step.

1) Draw parabolas E,= —%—x’ in E,—x plane and E2=% y?in E,—y plane.

2) Give initial points P, (x, y0) in E;—x plane and P,(y,, 2o) in E;—y plane.

3) Draw a line from P; providing for its inclination is x,+2, and a line from
P, providing for its inclination is yo—F (%, o, 20).

4) Take a point P’ on the line from P,. The shorter the length 7; p,” is, the
more exact solution is obtained, but the more troublesome of the procedure increase.
- 5) Measure the length between P,” and P curve. It should be measured paralled
to E; axis.

6) On P curve, try to find a point from which the length to x axis should be
equal to the length measured in the previous step. This precedure may be done
by the diveder for drawing.

7) Draw a line from the found point parall to E; axis. On this line, take a
point P,” which is a crossed point to the line from P, in step (3).

Then, P, and P, are representative points one step advanced from P, and P,.

In these procedures, we took P,” before Py, but they might be reversed. : at first
Py, next P/.

Remark that the both length in E,—x plane and E;—y plane in one step should
be restricted in some range in order to keep our accuracy in a specified range.

In this point of view, we must chose the order P! =P, or P/ — P/’

(14)
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Now, let us calculate the differential equation representing Colpittz Oscillator
with our E function method.
1
Q

Let the nonlinear characteristics of vacuum tube g(x) be

¥+ =¥ +x+g(x)=0

g(x)=x—ex?

At first we assumed Q of its resonance circuit was about 100.

The result of the numerical calculation by E function is that, for any initia.
condition, every trajectry goes to infinity.

For, when |x| increases over the maximum value of g(x), the coefficient of the
zeroth order derivative decreases gradually, and will become negative value. This

corresponds to case (6) in Table. 1..
G (%) Then we represent the nonlinear characteristics g(x) in
the broken lines, is shown in Fig. 2.. The solution has
a limit cycle but its amplitude is more than 10000.

The condition growing the oscillation up is Q> 1. As-
suming that Q=2, the solutions in E,—x and E,—y plane
are shown in Fig. 3. and 4.. The amplitude of oscillation
does not seem to be determined mainly from nonlinearity
or loss, but to be determined from other condition—may
be condition of grid current.

The steady state solution in E,—y plane (Fig. 4.) is more distorted than that in
E;—x plane (Fig. 3.), because, in E,—y plane, the wave is derivated one time more
than the one in E,—x plane.

Fig. 2.
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