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Oscillation Represented by the Third 

Order Differential Equation (Part II) 
(Received Sept. 15, 1959) 

Hiroichi FUJITA* 

Abstract 

In the last paper, Part I, published 1956 by the same auther,t> the nonlinear 

oscillation represented by the third order differential equation was discussed in 

the phase space whose axes were displacement x, velocity y=dxjdt and accelaration 

z =d2x!dt2. Hartley and Colpittz Oscillators were analized in the paper. Here, 

in Part II, two themes are discussed ; the first theme is the relation between the 

coefficient of the third order constant coefficient differential equation and its 

solution; the second theme is a simple numerical calculation method which we 

call Energy function method (E function method). 

IV. Consideration on the Coefficients of the Constant Coefficient 
Third Order Differential Equation and its Solution 

The second order differential equation which represents an oscillation is as follows: 

d2x +2h dx + 2x=O 
dt2 dt w 

(6-1) 

It can be solved as follows : 

x=Ae-ht sin {(w2-h2) t+so} (6-2) 

In this equation A and cp are arbitrary constants. 2h, the coefficient of the first 
order derivative, is called the damping coefficient. Because the oscillation de­
creases for a positive value of 2h, and increases for a negative. And for a large 
value of l2hl, the oscillation increases rapidly. w, the coefficient of x in ·(6-1), is 
nearly equal to the angular frequency of the solution (6-2). Thus, we can under­
stand directly the behavior of the second order constant coefficient differential 
equation without solving it. However, for the third order differential equation, 
we may not find such a simple character. 

If the solution of the third order constant coefficient differential equation is 
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then, the differential equation is 

~[, +(a+2h) ~~ +(h2+w2+2ah) ~: +a(h2+w2)x=O (6-4) 

which is obtain easily from (6-3), by differentiating (6-3) three times and elim­
inating K, A and cp. 

In (6-4), we may not find an aparent character of the solution: what term rep­
resents the angular fr~quency w or damping constant h, or decaying constant a. 

But when we add the third order derivative with a small valued coefficient to. 
the second order differential equation, then one can show that the added coefficient 
of the third order derivative represents a negative damping, proportional to the 
square of angular frequency w. Consider the following differential equation; 

(6-5) 

where 1» E: > 0. Let A.o =-h+ jm be the characteristic root forE:= 0, and A. for E: =1= 0. 
A. may be expanded to power series 

A.=A.o+E:A.l+c2A. 2 + ......... 

The characteristic equation for (6-5) is 

g;\,3+ A,2+h'A.+m'2= 0 

(6-6) 

(6-7) 

Substitute (6-6) into (6-7) and put the cotfficient of E: being zero and we obtain 

From (6-8), 

;\,(}3 

;\,
1 =- 2A.o+h' 

The first approximate solution is 

_ · ( -h+jm)3 
A- -h+Jm-E: 2( -h+jm)+2h 

If we assume I hI <(1 and neglect the higher power of h, then 

(6-8) 

(6-9) 

In the real part of A., {-E:co2 is added to -h. It is proportional to m2 and has opposite 

sign to -h. Therefore, we could say it negative damping. 
If the third order differential equation is following type: 

(6-10) 

(9) 
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The fourth term of (6-10) represents a negative damping, proportional reversely to 
<L1 2• When c:=O, (6-10) has a following solution: 

x=Ae-ht sin (illt+~)+K (6-11) 

K is also arbitrary constant as well as A and ~ are arbitrary constants and is 
regarded like a D. C. bias. 

When 0 < c: << 1, we get characteristic root A. in the same way 

h 1 •( c:h ) A.=- +c: 2w2 + 1 w- 2w3 

So the added term c: ~ represents a negative damping. 
w 

Let us consider a case when c: is not so small. In this case the canonical form 
may be considered as 

This coresponds to the second order canonical differential equation: 

d 2x 
dt2 +x=O 

(6-12) 

(6-13) 

Intuitively, the solution of (6-12) is considered as being at a balancing state of 1st 
order positive damping and 3rd order negative damping, or 2rd order positive damp­
ing and zeroth order negative damping. 

The characteristic equation of (6-13) is 
(A.Z+1)(A.+1)=0 

Therefore, the solution is a linear conbination of e-t aud sin (t+sa ). 
If the characteristic equation is 

(A.2+ 1)(A.+a)= 0 

(6-14) 

(6-15) 

and the differential equation has non-periodic solution e-at and periodic solution 
sin (t+sa) then differential equation for (6-15) is 

Thus, when the coefficients of zeroth and second order are same or the coefficients 
of the first and the third order are same, the positive damping and negative damp­
ing are to be balanced. When a is large, the oscillation is determined mainly 
from the zeroth and second order terms, and when a is small, the oscillation is 
determined from the first and the third order terms. 

When the oscillation is damped, the characteristic equation is 
(A.2+hA.+ 1) (A.+a)= 0 

.and the differential equation is 

d 3x d 2x dx 
. dt3 +(a+ h) dt2- +(ah+1)dt+ax=O 

. (6-16) 

(6-17) 

It can be considered that the damping of the first order is greater than the third 
order negative damping, or the damping of the second order is greater than the 

(10) 
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zeroth order damping. 
Now, let us consider the angular frequency of the oscillation, represent€d by the 

third order constant coefficient differential equation. 
When the characteristic equation is 

(A.2+w2)(A.+a)= 0 (6-18) 
then differential equation is 

d3x d 2x dx 
dt3 +a dt2 +w2df +aw2x=O (6-19) 

The coefficients of the zeroth and the first order terms are proportional to the 
square of angular frequency w. 

Let us show some examples here. The differential equation representing Colpittz; 
oscillator is 

·.x· + 8 x +.X+ f(x)=O 

where 8 is 1/Q andf(x) corresponds to the characteristics of a vacuum tube. When 
x is not so large, as f(x) is considered linear chracteristics gx, the differential equa­
tion is to be considered as 

x· +8 x +x+gx=O 

When 8>g, the osillation is damped, and when 8<g, it grows up. (See Table. 1.) 

Table. 1. Relation between coefficients and solution 
d3x d2x dx 
(jj3 +A (j[2 + B dt +Cx= 0 

l "' 8 c 

Canonical (tJ'rm I I I [ ~ :z-K,in(t+r)+Ha-1: 

Hi!h ft-ef I I I I w_ t'•KSi~~'f)i'lf•-t 

u>l 

Low freg I I ~ z-Hsin~Hf')+ JH·t 

,.;<1 

lnc~-eas i"J osc. J ~ :z•K_!•6tsin(tt,)+ l(~·t 

lr>O 

t>~cl'"•fi.Sin$ osc J I [ ~ %= ~"*sinCt+9') + H•·t 

lr,O 

lJ«m~d Exf'Ctlow) J hi\: x-A'sin<t+,)+ H!-et 

f>«>O 

Dam,..J. E~tf> (fast) ( I I I ~ ~ .. A'sin<t+r>+ ~t 

~· 
I A B C 

(11) 
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When x is large and f(x) is saturated to constant value Xo, the differential equa­

tion is to be considered as 

·:x· +ox +x+xo=O 

This has a solution 

x=Aeot sin(wt+~)-x0t+H 

and oscillation is represented by the 3rd and 1st order. Then, 2nd order represents 
damping. 

The summary of the above is in Table. 1.. 

We do not consider here about the case when the three characteristic roots are 
all real. 

VII. E Function Method for the third order differential equation 

The customary numerical calculation of differential equations may be so called 
the isocline method, but recently analogue electronic computers being developed 
so much, handwork numerical calculations are rarely used. Let us describe on E 
function method which is a simple numerical calculation for differential equations. 
'This method is convenient to observe the solution of differential equations in its 
broader aspects. 

This E function method for the second order differential equations is published 
1951 by Dr. Tsumura. In this paper E function method is applied extensively to 
the third order differential equations. 

Let us rewrite the isocline method in phase plane (or space). 

In a rectangular coordinate system whose axes are x, dx/dt= x· and d2xjdt2= x, 

x dx/dt dx 
x = dx!dt = dx 

x dx!dt dx 
x = dx/dt = dx 

When the third order the differential equation 

·:x· + F( X ' X ' X)= 0 

is given, we transform it as follows 

From (7-2) 

x=y 

.Y=z 
z=-F(x,y,z) 

dx _ y 
dy --z 

(12) 
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) (7-2) 

(7-3) 
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dz _ F(x,y, z) 
dy-- z 

99 

(7-4) 

The inclination in x-y plane is determined from (7-3), and the inclination in 
z-y plane is determined from (7-4). But (7-3) and (7-4) contain divisions by z, 
so it is troublesome to calculate numerically or to consider intuively. 

Now, define E function Et and E 2 as follows; 

E1 = ~ (x2+ Y2
) 

E2= ..!.(y2+z2) 
2 

(7-5) is sum of potential energy and kinetic energy. 
The derivative for (7-5) in x is 

dEt =x+y dy =x+y(~)=x+z 
dx dx y 

The derivative for (7-6) in y is 

dJ/ =y+z( -F(~,y,z)) =y-F(x,y,z) 

(7-5) 

(7-6) 

(7-7) 

(7-8) 

{7-7) decides the inclination of the solution in Et-x plane and (7-8) decides the 
inclination in E 2-y plane. 

Both (7-7) and (7-8) are very simpe forms and do not contain division though 
the isocline method shown in (7-3) and (7-4) contains. 

There are following properties in the solution in E1-x plane and E2-y plane. 
2 

{1) When y=O, a curve in E1-x plane is a parabola E1= ~ . Any representa-

tive point lies always above or on this parabola. Let us call this parabola P curve. 
This means potential e.1ergy curve. When z=O, a curve in E2-y plane is also a 

y2 
parabola E2= 2 . 

{2) Any representative point in Et-x plane is corresponding to two values of y 

which have the same absolute values and opposite signs. In the same way, any 
representative point in E2-y plane is corresponding to two values of z. 

{3) A curve representing a simple harmonic vibration is strait lines paralled to x 
axis in Et-x plane, and paralled to z axis in E2-Y plane. 

For, if we put 
then 

and 

In the same way 
AZ 

E2=T 

x=A sin t 
y=A cost 
z=-A sin t 

constant 

constant 

(13) 
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(4) Exponential curve is parabola in E1-x plane or in E2-y plane. 
For if we put x=kea-t 

then y=a kea-t 
z=a2kea.' 

So 

these are parabolas. 
(5) Let a vertical line from a representative point P1 (xo, Eto) m E1-x plane across 
toP curve at g1. Let the corres-
ponding points in E2-y plane 
be P2CYo, E2o) and g2 respectively. 
Then 

Ez 

Fig. 1. 

These relations are useful for the representative points to transform between E1 -x 
plane and E2-Y plane. 

Let us describe the actual procedure in E function method step by step. 

I) Draw parabolas E1= ~ x2 in E1-x plane and E2= ~ y 2 in E2-y plane. 

2) Give initial points P1 (xo, Yo) in E1-x plane and P2CYo, zo) in E2-y plane. 
3) Draw a line from P1 providing for its inclination is xo+z0, and a line from 

P 2 providing for its inclination is Yo-F(xo, Yo, zo). 

4) Take a point P1' on the line from P 1. The shorter the length P1 Pt' is, the 
more exact solution is obtained, but the more troublesome of the procedure increase. 

5) Measure the length between Pt' and P curve. It should be measured paralled 
to E1 axis. 

6) On P curve, try to find a point from which the length to x axis should be 
equal to the length measured in the previous step. This precedure may be done 
by the diveder for drawing. 

7) Draw a line from the found point parall to E1 axis. On this line, take a 
point Pz' which is a crossed point to the line from P2 in step (3). 

Then, P 1' and P2' are representative points one step advanced from P 1 and P 2• 

In these procedures, we took P 1' before Pz', but they might be reversed.: at first 

P2', next P1'· 
Remark that the both length in E1-x plane and E2-Y plane in one step should 

be restricted in some range in order to keep our accuracy in a specified range. 
In this point of view, we must chose the order Pt' ~Pz' or P 2' -+Pt'· 

(14) 
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Now, let us calculate the differential equation representing Colpittz Oscillator 
with our E function method. 

·.x· + ~ x +.X+g(x)=O 

Let the nonlinear characteristics of vacuum tube g(x) be 

g(x)=x-c;x 3 

At first we assumed Q of its resonance circuit was about 100. 
The result of the numerical calculation by E function is that, for any initia .. 

condition, every trajectry goes to infinity. 
For, when lxl increases over the maximum value of g(x), the coefficient of the 

zeroth order derivative decreases gradually, and will become negative value. This 
corresponds to case ( 6) in Table. 1.. 

G (:t) Then we represent the nonlinear characteristics g(x) in 

Fig. 2. 

the broken lines, is shown in Fig. 2.. The solution has 
a limit cycle but its amplitude is more than 10000. 

The condition growing the oscillation up is Q> 1. As­
suming that Q=2, the solutions in E1-x and E2-y plane 
are shown in Fig. 3. and 4.. The amplitude of oscillation 
does not seem to be determined mainly from nonlinearity 
or loss, but to be determined from other condition -may 
be condition of grid current. 

The steady state solution in E 2 - y plane (Fig. 4.) is more distorted than that in 
E 1-x plane (Fig. 3.), because, in E2-y plane, the wave is derivated one time more 
than the one in E1-x plane. 

ii~ti-i-";c>-• 
goo.x fJtl<lS ltJ :X.r-l4 

9CX•f:I.SIZI>L5 ~~ :!=~B$ 
aff,. (} 

' 

-4- _, 

Fig. 3. 

(15) 

••:lx+z otoc>-o 
900•1! .JZI<I.S ftJ 'K••/.1. 
tcz>•tl51ltl>t.5 E~ J::~~ 

' .tt•() 

' 

Fig. 4. 


