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Equations of Motion for Curved and Twisted
Beam with Noncoincident Mass

and Elastic Axes*
(Received Sept. 10, 1959)

Takeshi B. SATO**

Abstract

Tne classical equations of equilibrium for the naturally curved deam of A. E.
H. Love were established for the case where the centroid lay on the elastic axis.
To the beam whose elastic axis does not coincide with the centroid of cross-
section, Love’s equations are not applicable.

In this paper, the eguations of motion for the curved and twisted beam with
noncoincident mass and elastic axes are deduced by the use of the concept of
warping function.

I. Nomenclature

The following nomenclatures are used in the paper:

: generic point on a cross-section, to be chosen close to point G or point S

: centre of gravity on a cross-section

: centre of shear on a cross-section

: locus of point P

X, 3, 2. a svstem of orthogonal axes; x- and y-axes are directed in parallel with
the major and minor centroidal principal axes, through the point on the cross-
section of beam. z-axis is in the direction tangential to C.

X, ¥, z : an auxiliary system of axes; x%- and y-axes are in the directions of the
major and minor centroidal principal axes. z-axis is directed in parallel with
z—axis through the point G

u, v, w ; deflections of the point P in x-, y- and z-directions, respectivery

0 : angular deflection about z-axis

s : distance from the root of beam along C

Kzo, Kyoy To : COmponent curvatures and twist of the curve C in the unstressed state

k., Ky, T : component curvatures and twist of the curve C in the stressed state

EI,., EI, : flexural rigidity about x- and y-axes, respectively

GJ : torsional rigidity

O noT

* Read at the meating of the Japan society of Mechnical Engineers, Oct. 28, 1958.
wE gL i, Lecture at Faculty of Eng., Keio University.
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NS
INY S§S axis

yoy
Co-ordinal systems

EC : warping rigidity in reference to x—y-system
A : area of cross-section
o : mass density of beam material
! : length of beam
I, Ip, (=1s+7,2A) : polar moment of inertia about points G and P, respectively
7y, Youy Yoy - distance from the point P to the centre of gravity, and its - and y-
components, respectively
s, sz, ¥sy - distance between the point P and the centre of shear, and its x~ and
y-components, respectively
¢p : warping function in reference to x—y-system
R.=[erydA, R,=[¢rxdA,
A A
Subscripts %, 3, z indicate the value in reference to the x-, -, and Zz-axes,
respectively.

II. Introduction

The flexural vibrations of a beam, which is twisted like a propeller blade in the
unloded state, are being investigated by many authors.” These papers are written
on the assumptions that the elastic axis and the centroid of a cross-section are
initially straight and coincided. In many cases, however, the centure of gravity
and the elastic axis do not concide and these axes are naturally curved and twisted,
hence Love’s equilibrium equations? are not applicable. And so far as is known,

1) A. Troesch, M. Anliker & H. Ziegler; Q. Appl. Math., 12 163. (1954),
R. C. DiPrima & G. H. Handelman ; Q. Appl. Math., 12 241. (1954),
D. D. Rosard, J. Appl. Mech., 20 241, (1953),

2) A. E. H. Love; A treatise on the Mathematical Theory of Elasticity, Chap. 18,
4th ed. (1952).
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68 Takeshi B. SATO

general equations of vibration for such a beam have not been found yet.

In this paper, the author deduced the equations of motion for the naturally curved
and twisted beam whose elastic axis does not coincide with centreid, under the
assumption that the radius of gyration and the distance between the mass and
elastic axes are small compared with the beam length.

III. Equations of Motion

a) Potential energy: V
If we assume that the beam under consideration is long, potential energy V may

be written for small vibrations

1
2% [ L f Ee..dA+GJ(r—7o) |ds (1)
1] A
where, ¢.. is the axial strain of line C, and it is written as follows
Coo = E+ (kr—rtr0) y— (Ky—tyo) X+ (—;—15901' (7—70) (2)
The last term dis ¢p(T—To) expresses the warping strain of the cross-section in the
torsinal state, and &, ks, ky, and 7 are expressed as follows®
62%%)-—%/61,0—1-1)/{10 (3)

Ky = fC,;m'l‘eK/yo‘_%A%—LgTo

ey = k00— O + S22 — My, | (4>

T=To+%%+L3Kxo +M3K3yo

L3=—%‘——vn+wxyo ‘ 5
M, = %,% FUTo— Wi ro J (5
b) Kinetic energy: T
Kinetic energy 7T is written as follows
T= % fl [oA (e + o6t +we?) +plab?+ ol My +pI5 L*] ds (6)
0

where, the dot “ -’ indicates differentiation with respect to time. 3§io/sM,?ds
and 3fol; L, ds are components of the energy due to the rotatory inertia of the
cross-cection. And ug, ve and we are deflection components of the centre of gravity

3) A. E. H. Love; ibid. p. 447.
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on a cross-section, and thesz components are expressed by the deflection components
(u, v, w) of the P for small vibrations.

Us =1t —Tyy0 |
Vg = U""rg.z‘e
We=w—r¥gz Ly —1gyM; |

7

¢) Equations of motion
Therefore, the following epurtions of motion can be obtained by the use of
Hamiltonian principle.

—TO:IM [270 d dT°:|My+[ d d/c 0+K107‘0:]M

yods
—Kug T+ EEKJ:“‘TOKy_pA(y_I_rQIe):O ( 8)
75 -—70 ]MJ + [ZTOEE + ‘Z’:SO M.— MO(ZS +d‘;c;0 /CyoTo]Mz
—IcyoT_%Ky‘i‘Ton‘f‘PA(”—r”y)=0 9

[Kxoj +K3/070:1Mx+ [Kyo—‘ -—-Kxo'To]My—l- diig THr:0Ke—ky Ky

—0A{w—7g:Ls—73yM3}=0 (10)

B%Mz‘,‘foo My_’CyoMx—{PIPg-_pAryy.d'*‘PArgx.v.} =0 (11)

where

M, =[EIE (Kz—Kzq) -+ Zz’(is ERy(7—7)+EA7 y{E+(ka—Kug) Voy—(y— Kvo)”yx}] (12)
Myz[EI;(nz,—xyo) — Zlis ER(1—7))—EAry,{& +(ICx—leo)7’gy—('Cy—’cyo)fgx}] 13

GJ(r=70)=ER: & (iex— ko) + ERy (1)

7=

d*EC
— 2 {ECua k(= mo} - L {EECn ) (r—ry) (14)
T=EA[&+ (Ka—Kaq)Tgy — (Ky—K40)7gs] (15)
Ko=pIs My—pAroy {t0—1,2 Ly—r,y My} (16)
Ky=P151:3*PATgx{%l}_’yxzs_rgyMs} an

Egs. (8)~(11) have the similar form as Love’s equations except that moments M.,
M,, M, also K., K, and tention T defined by Egs. (12) ~ (17) have not the same
contents as the Love’s. When 7, and 7, tend to zero, however, these Egs. (8)~(17)
are reduced to the Love’s expressons.
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70 Takeshi B. SATO
Otherwise, boundary donditions at z=0 and z=I are obtained as follows

a(‘fig) M+ kg M¥] =0

- (18)
Su'[%+270Mz—l€x0Mz_’cu070MZK_K!/J=O
dv\ *
§(32)- LM~ k) M¥]1=0 |
(19)
SU'[déWz_2T0My+ICyoMz—KxofoM;k+Kz =0 (
s J
8W[T+K10Mx+fcy0M7/]=0 (20)
S(Z—g)-M’zk:O, 80 M, =0 (21)

where :
M¥ =[ ER:(kem k)= ERy(ity—=ky0) + ECra (e =)+ {20} ()] (a2)

d) R, R, and ECpue
Expressions for R, R, and ECya, which appear in Egs. (12)~(14), can be found
by bhe same procedure that R. Kappus® employed.

R‘v= SﬁpydA——_- "‘7’3;))[}
/

Ry:fﬁﬁpdi =rsyI3 I (23)

A

Ecpbd-;Ecsbd‘l“EI;rsxz'l‘EIa 7’31,2 (24)

Where ECgq is warping rigidity in reference to the coordinate system through
the point S.

VI. Concluding Remarks

LEquations of motion for the curved and twisted beam, of which mass and elastic
axes do not coincide, are obtained. These equations include Love’s equations as
a particular case where r;=7,=0.

And, general equations obtained in this paper are deduced in connection with
the co-ordinate system (x, v, z) through a generic point P on the cross-section.
Therefore, this general equations will simplify the solving of many problems which
requied very complicated calculations by the earler methods.

But, the demonstrations of the validity and the applications of the deduced
general equations must be the subject of future research.

The author wished to express his thanks to Dr. T. Suhara for his invaluable
advice in the course of the work.

4) R. Kappus; Luftahrtforschung, 14 444, (1937)
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