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On Virtual' Mass of Water contained in a Rectangular 

Tank whose side-Walls are Vibrating 
(Received Feb. 14, 1959) 

Fumiki KITO* 

Abstract 

When the side-walls of a rectangular water tank are vibrating, the water con­
tained therein will also make vibratory motion. In the present paper, the amount 
of the kinetic energy of water which is in vibratory motion is estimated, and 
therefrom an approximate formula for the so called virtual mass is deduced. 
The study is made with respect to four cases namely; (A) The tank is full of 
water, and the side-walls are vibrating in the same phase each other. (B) The 
tank is also full of water, and the side-walls are vibrating in opposite phases each 
other. (C) The tank is almost full of water, but there is a free surface left on 
top, and the side-walls are vibrating in the same phase each other. (D) The same 
as the case (C), but the side-walls are vibrating in opposite phases each other. 
The vibration is assumed to be of infinitesimal amplitude, and the water is 
regarded as an ideal fluid. 

I. Introduction 

top wolf 

s1de wall I 
-----...( 

' 

r--..__--L---...._. 

Let us consider a rectangular water 
tank, as shown in Eig. 1. Let us assume 
that ist' length is L, its height H, and 
its breadth B. In what follows, we shall 

call, merely for convenience, the two 
faces of this tank having the dimensions 
L x.H its side-face walls, while the two 

faces with dimensions B x H we shall 
call its end-faces. The two faces with 
dimensions B x L we shall name the top 
and bottom faces. When the tank is 

Fig. 1. A sketch of rectangular water tank 

full of water, and the side-walls are making vibratory motion, the particles of water 
contained in this tank will also vibrate. It is the object of the present paper to estimate 
the amount of the kinetic energy of water which is in vibratory motion thus set up, 
and thence to deduce a practical formula for the evaluation of a virtual mass of water 
contained in the tank. The study is made with respect to four different cases, namely: 

(A) The tank is completely full of water, and the side-walls are vibrating in the 
same phase each other. (B) The tank is also completely full of water, and the side-walls 

*) * AA .5I! ~ Dr. Eng., Professor at Keio University 
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2 Famiki KITO 

are vibrating in oppositephases each other. (C) The tank is almost full of water, but 
there is a free surface left on top, and the side-walls are vibrating in the same phase 
each other. (D) The same as the case (C), but the side-walls are vibrating in opposite 

phase each other. 
For each case, the formula giving the amount of the kinetic energy of the whole 

water was obtained, from which we could deduce the amount of the virtual mass of 
water corresponding to each state of vibration. The vibration throughout the present 
paper is assumed to be of small amplitude, and the water is regarded to be an ideal 

fluid. 

II. Case A. The tank is full of Water, and the Side Walls 
are Vibrating in the Same Phase Each Other 

Referring to Fig. 2 which shows us the plan of the tank, we first assume that the 

.--.------ ,• 
-- - - - ~B 

----=+------ - - --f---}-x 
J -_- __ - _-- La 
-----~- - 2+ 

Fig. 2. Vibration mode of the side 
walls for Case A. 

two side-walls are vibrating in the same phase 
each other. The tank is assumed to be comp­
letely full of water. The transverse displacement 
of the side wall may be expressed by 

w = W o sin mx sin sz sin wt (1) 

which the transverse velocity of vibration is 
given by 

~7 = Ao sin rnx sin sz cos wt (2) 

where Wo is the maximum amplitude of vibration of the side-wall, and Ao=wWo. m 
and s and two constants viz., m=rt/L and s=rt/H 

Assuming the water to be incompressible and non-viscous, the vibratory motion of 
water is determined by the velocity potential cp which satisfies the Laplace's equation 
V2c/>=0. Moreover, the velocity potential cp must satisfy the suitable boundary condi­
tions. In the present instance, assuming that the two side-walls are vibrating in the 
same manner expressed by Eq. (2), while the other remaining four walls are kept rigid, 
we must impose the following conditions upon cp :--

(a) 

(b) 

(c) 

at z =0 or//, ~=0 az 

at x=O or L. ~=0 ax 

at y=± ~ B 

~; = Ao sin mx sin sz cos wt 

(2) 
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Let us put, as a trial, 

(3) 

where i = 0, 1, 2,······; j=O, 1, 2, ...... , and the double summation is to extend to all values 
of i and j, except i and j equal to zero at the same time. Boo and Hu arc the unknown 
constants not yet determined. 

When we put this assumption (3) into the Laplace's equation V'2c/>=0, namely 

we see that, we must have 

d 2/oo (y) = 0 
dy2 

d2 ~~z(y)- [(mi)2 + (sj)2]fiy(y) = 0 

The solutions of these equations suited to the present case is seen to be 

foo(y) = Y 

hi(Y) = sinh (nu y) 

deflection of 
Tank wall 

one enod one period 

Fig. 3. Wave form for Fourier series expansion (Case A) 

(3) 
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with 

nii = [(mi)2 + (sj)2J112 

By the assumption of (3), the above mentioned conditions (a) and (b) are satisfied 
by themselves. The boundary condition (c) reduces here to; 

Boo+ I:'!:' Bii nii cosh (lno B) cos (mix) cos (sj z) 

= Ao sin mx sin sz cos wt (4) 

One way of satisfying this relation for O<x<L, O<z<H is to regard the left hand 
side of Eq. (4) as a double Fourier series which represents the right hand side of Eq. 
(4). This is illustrated in Fig. 3. 

In this figure a periodic curve is shown which is obtained by arranging the curve of 
sin mx or sin sz in sucsession in rows (with periode of L or of H). 

In order to represent this periodic curve in a Fourier series, the values of i and j 

must be even integers (zero inclusive). The actual values of Boo, Bii can be obtained 
from Eq. (4), bymultiplyingbothsidesof(4) by 1, cosmix. (i=0,2,4, ...... ) andcos(sjz) 
(j=0,2,4, ...... ), and integrating over the range of O~x~L, O~z~H. Thus we have, 
in turn, 

whence 

and 

T, If J, Il 

Boo J dx J dz = Bo J dx J dz sin mx s n sz cos wt 
0 0 0 0 

4 Boo = 2 Ao cos wt n:: 

L 

Bii no cosh ( ~ nii BJ · E::s = Ao J sin mx cos(mix) dx 
0 

]{ 

x J sin sz cos (sjz) dz x cos wt 
0 

(5) 

where cis a numerical factor such as for i=FO, j=FO; c=4,_ but if i=O, j=FO or i=FO, 

j=O, then c=2. 
Now, we have 

L L J sinmx cos(mix)dx = ~J[sin{(l+i)mx}+sin{(l-i)mx}]dx 
0 0 

1 [ -1 { ') =2: m(l+i) cos(1+t n::-1} 

(4) 
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+ m(~~i) { cos(i-l)n:-1} J 
- -2 
- m(i 2 -1) (i=0,2,4,. .. ···) 

Also we have 

H 

J sin sz cos (sjz) dz = s(P..:.l) 
0 

(j=0,2,4,······) 

Whence, 

4 ems 1 Ao coswt 
Bij = ms(i2-l)(j2-1) • 7 · nii ·cosh (lno B) 

4c 1 1 Ao coswt 
= n: 2 • (i 2-1)(j2-1) · nii • cosh (l nii B) 

(6) 

Thus all the unknown constants in the Eq. (3) have been determined. 

The Kinetic Energy of the Fluid Motion 

According to a general theorem in Hydrodynamics, the kinetic energy T1 of a motion 
of fluid given by the velocity potential </> can be obtained by the formula 

(7) 

where Pw is the density of the fluid. The double (surface) integral is to extend to the 
boundary surface of a fluid region now in consideration. dS is the surface element, 
and a/on means the differentiation in the direction of inwardly-drawn normal to the 
boundary surface. 

In the present case, taking the water region to be the whole content of the rectan­
gular tank (Fig. 1), the boundary surfaces consist of its sixface walls. On the four rigid 
faces among them, we have o</>/an=O. On the two remaining faces which are vibrating 
(Fig. 2), we have 

: = ~t = Ao sin mx sin sz coswt (8) 

Putting the values of Eqs. (3) and (8) into Eq. (7), we obtain (integrating over both 
faces) 

L H L H 

T 1 = Pw J dx J dz [ </> ~cf>J = Pw J dx J dz [Ao sin mx sin sz cos wt J 
0 0 y 0 0 

(5) 
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X [; BooB+['[' Bii cos (mix) cos (sjz) sinh ( ~ nii B) J 

sinh ( ~ nij s) J cos wt 

Again, putting into this expression, the values of Boo and Bii which we found in the 
above, 

(9) 

We consider that this amount of the kinetic energy is participated by the two faces. 
Then we have for the kinetic energy per each face-wall; 

(10) 

where M is a non-dimensional factor which is given by 

(11) 

where we have 

the double summation in Eq. (11) being made for all even integers of i and j, viz., 
i = o, 2, 4,- .... ·; j = 0, 2, 4, · · · · · · except that the case of i = 0, j = 0 simultaneously is not taken 

in the summation. 

III. Case B. The tank is full of Water, and the Side W a lis 
are Vibrating on Opposite Phase Each Other 

When the tank is completely full of an incompressible fluid, there is no possibility of 
vibration of the form such as shown in Fig. 4, because this would bring about change 
in the total volume of the fluid. So that, if we are to consider the case of vibration 
of the side faces on the opposite phase each other, it must be the case of an even number 
of half-waves such as is shown in Fig. 5. In the case of Fig. 5, where there occur two 
half-waves, the motion of the side-faces will be represented by 

(6) 
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w = Wo sin 2mx sin sz sin wt 

aw A . . at= o sm 2mx sm sz coswt 
} (12) 

for one face and with negative sign attached to this expression for the other face, where 
Ao=wWo and m=rr/L, s=rr/11, as before. 

- -= --=t---· .. - ·--+----
I 

Fig. 4. Vibration of the 
side- walls on opposite 
phases each other 

1-------- L --- ------..-~ 

---- -- - __. ....----

Fig. 5. Vibration mode of the side walls for 
Case B. 

X 

W c shall assume the velocity potential cp corresponding to the fluid motion thus set 
up to be of the form :--

cp = L:'L:' Bu liJ (y) cos (mix) cos (sjz) (13) 

wherein 

fil (y) = cosh n0 y 

nii = [(mi)2 + (sj)2J112 

and the summation is to extend to all integral values i=O, 1, z, .. ····; j=O, 1, z, ...... except 

i = j = 0 at the same time. Here the term for i = 0, j = 0 is lacking because of the vib­
ration on opposite phase. 

With this assumption of (13), the boundary conditions 

act>= o 
oz 

for Z=O and H, 

act>= o 
ox 

for x=O and L, 

are satisfied. In order to satisfy the condition at the two side-faces y= ±! B, we must 
have 

~,~, . ( 1 ) . w w Bi.l niJ smh 2 n0 B cos (mzx) cos (sjz) (14) 

= Ao sin 2mx sin sz cos wt 

( 7) 
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Thus there arises the same question as before, about representing the right hand side 
of Eq. (14) in a double Fourier series of the left hand side of Eq. (14). With respect 
to the variable z, the circumstance is the same as in the previous section. But, with 
respect to the variable x, the circumstance is quite different, and becomes as shown 
in Fig. 6. 

I 
\ / ' / 

..... __ , 
cos mx 

Fig. 6. Wave-form for Fourier series expansion (Case B) 

In this figure, a deflection curve of the side-walls is completed into a curve of one 
period, by reflecting the given curve with respect to the point x=L. From the figure, 
we see that we should take i = 1, 3, 4, ...... while we should take j=O, 2, 4, ...... as before. 

Now we have by the actual calculation, i being an odd integer, 

L L 

J sin2mx cos mix dx = ~J[sin{(2+i)mx}+sin{(2-i)mx}]dx 
0 0 

= ~ [(2 ~l) m {cos(2+i) :r-1} 

-1 . + (2-i) m {cos(2-z) :r-1} 

= ..!.[-1 {( -1)i-1 + ( -1)i-1}]= -4 
2 m (2+i) (2-i) m(i 2-4) 

Also, we have, for j = 0, 2, 4, ...... , 

H 

J sin sz cos (sjz) dz= s (Jz~ 1) 
0 

Thus we have, by multiplying both sides of Eq. (14) by cos (mix) cos (sjz) and integ­
rating over the range 0;£x~L, and O~z~H; 

-4 -2 c ms 1 Ao coswt 
Bii= m(i2-4) s(j2-1) · 7r2 · nii · sinh(!ntiB) 

(8) 
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or, 

88 1 Ao coswt 
Bii = n2 (i 2-4)(P-1) · uii sinh (l uiiB) (15) 

where c = 4 if i =I= 0, j =!=- 0, and c = 2 if i =1= 0, j = 0. Thus the unknown constant in the 
left hand side of Eq. ( 14) are completely determined. 

The Kinetic Energy of the Fluid Motion 

As to the kinetic energy of fluid motion, we have, as before 

1 JJ o<f> T1 =- cp- dS 
2 on 

the integral being to extend to the two faces which are vibrating. As in the previous 
section, this value of T1 can be evaluated as follows:--

L H L H 

T1 = Pw J dx J dz [ <P ~<f>J= pw J dx J dz [Ao sin 2mx sin sz cos wt] 
0 0 y 0 0 

x [[:'[:' Bii cos (mix) cos (sj x) cosh ( ~ nuB) J 

[ 8 8c ~ '~ '{ 1 } 
2 

1 ( 1 ) J = Pw A~ cos2 
wt ms • r. 2 • w w (i 2 _ 4)(j2-1) n i coth 2 nil B 

128 ~'~'{ 1 }
2
(c) = pw A~ cos2 

wt LH • 7 w w (i 2 _ 4)(j2-1) 2 

n~; coth ( ~ nil B) (16) 

The kinetic energy of the fluid motion which is thought to be participated per one 

face of the side wall will, therefore, be given by 

Tw = ~ pw [A~ cos2 wt] LHBxA1 (17) 

where M is a numerical constant of no-dimension and expressed by 

128 ~, ~, { 1 }2 
( c ) 1 ( 1 ) 

M = -;r- w w (i2-4)(j2-1) . 2 nuB coth -znu B (18) 

where the double summation is to be extended for all the values of i and j such that 
i=1,3,5, ...... ; j=0,2,4, ....... 

(9) 
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IV. Case C. The tank is almost full of Water, but there is a Free 
Surface left, and the side ·Walls Vibrating in Same 
Phase Each Other 

Next, suppose that the tank is almost full of water, but there is a thin vacancy left 
on top, so that the top surface is in a state of a free surface. The two side-walls are 
assumed to be on the same phase of oscillation each other, as was shown previously in 
Fig. 2. 

Fig. 7. Surface elevation ; of 
the freesurface 

Let us first study what condition the velocity 
potential </> must satisfy on the free surface. When 
in vibration, let the top surface be elevated by an 
amount '(,. The pressure at any point of altitude 
z will be given by 

a</> P =Po-pw gz-pw­at 

for the case of small motions. On the free surface 
on which z= H+s, the pressure must have a cons­
tant value. This means that we must have, 

-pw g't,-pw ~t =canst. 

on the free surface. Whence we deduce that 

The velocity of each water particle is given by Vz = a</>/az, while on the free surface 
itself, we have Vz =as/at. Combining these relations we ha~e 

on the free surface. This relation ~ay approximately be taken to hold at the original 

plane surface z =H. 
Thus we have, for the boundary condition of the free surface, at z = H, 

(19) 

Now, when the water is vibrating with an angular frequency w, and with the mode 
of vibration expressed by 

</> = F(y) cos (mix) cos (sjz) cos wt (20) 

(10) 
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we must have, according to the condition (19), 

w 2 cos (sj H) = -sj sin (sj H) · g 

or 

cot ~i = - -;;,~7! ~i (2l) 

where we put for shortness ~i = sj H. 

The roots ~h ~z, ~3 ,-····· of Eq. (21) can be obtained graphically, by finding the points 
of intersection of a curve y =cot x and a straight line y = (g/w 2 H) x, as showh in Fig. 8. 

Fig. 8. A graph for finding the roots ,; 1, ,;2, •••••• of the 
equation cot x=gxj(w2H) 

Suppose a tank of height H = 3 m, the water contained therein being in vibration 
with a frequency of f = 10 cycles per second. In this case, we have w = 10 x 2rr, and so 

g - 9.8 - 1 
-;;;rH- (20rr)2 x3.1- 1200 

In such a case of comparatively large frequency, the straight line in Fig. 8 becomes 
very near to x-axis. So that the rook ~1, ~2, E3,-·· ••• (at least the first few of them) is 
very near to rr/2, 3rr/2, 5rr/2, ··· ······ and we have approximately 

. rr(1 ) SJ = H 2+u (j' = 0, 1, 2, ...... 

This is equivalent to taking, as the condition at the surface z = H, 

p = const. act>= o 
at 

(11) 

(22) 
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instead of Eq. (19), for the case in which the frequency of vibration is comparatively 

large. 
After this preliminary remark has been made, we shall tutn to our problem, stated 

at the begining of this section. Here also we take, as in case A, 

</>=Boo foo(Y)+ 2:'2:' Bu fo( y) cos(mix) cos(sjz) (23) 

The boundary conditions will be 

(a) at z=O o</> = o 
oz 

at z=H </>=0 

(b) at x = 0 or L, o</> = o 
ox 

(c) at 1 
y=±-zB 

~t = Ao sin mx sin sz cos wt 

where we put as before, m=rc/L, s =rr/H. From the condition (b), we must have i=O, 
1, 2, ...... , while by the codition (a) we have j = !+u (u = 0, 1, 2, ...... ). Also we have, as 

before, 

foo(Y) = J, fu(Y) = sinh(niJY) 

In order that the condition (c) may be satisfied, we must have 

= Ao sin mx sin sz cos rot (24) 

with i = 0 1 2 .. · .. · and ,. =_!_ 1_ ...... 
' ' ' 2' 2' . 

The Eq. (24) may be considered as an expansion in the double Fourier series, if an 
arrangement as shown in Fig. 9 is taken. In this figure, two positive half waves fol­
lowed by the two negative halfwaves are arranged to compose one complete period of 
a periodic curve. The actual determination of the unknown coefficients can be effected 
as before, viz., 

Boo= 0 

L 

BiJ niJ cosh(~ niJ s)[~::sJ= Aoj sinmx cos(mix) dxx 
0 

H 

J sinsz cos(sjz) dx coswt 
0 

(12) 

(25) 
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defection ot 
Tank wall 

Third harmonic wave_ 

' .......... 

......................... --

Fig. 9. Wave form for Fourier series expansion (Case C) (Case D) 

while we have 

L 

J sin mx cos(mix) dx = m;;:_ 1) (i = 0, 1, 2, ...... ) 

0 

}[ ll 

.f sin sz cos(sjz) dz = ~ JCsin {(1 + j)sz} +sin{ (1- j)sz} J dx 
0 0 

1[ 1 1 J -1 =-z (l+j)s +(1-j)s = s(j2-1) 

whence, we have 

2 C11lS 1 Ao COS wl 
Bij= ms(i 2-1)(j2-1) · 7 ·nil· cosh(!ni1 B) 

13 

(26) 

The velocity potential cp was thus completely determined, and cons(quently the kinetic 
energy of the fluid motion can be evaluated. So that we have finally for the kinetic 

energy T w of the fluid motion refered to each side-face, 

Tw = ~ Pw [A~ cos2 rot] LHBxM (27) 

where 

(13) 
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8 ~'~'{ 1 }
2(c) 1 (1 ) M = ;rr4 w w (i2-1)(j2-1) 2 . 1ltJ B tanh 2 nuB 

i = 0, 2, 4, ······, 
. 1 3 5 
}=2'2'2'······ 

c = 4 when i =t- 0, but c = 2 if i = 0. 

V. Csae D. 'Ihe tank is almost full of Water, but there is left a Free 
Turface, and the Side- Walls Vibrating on the Opposite 
Phase Each Other 

(28) 

This is the sanie problem as in the previous section (Case C), the only difference 
being that here vibration of the two side-walls are on opposite ph<::ses (instead of the 

same phase) each other, as illustrated in Fig. 4. As was already mentioned, when the 

tank is completely full of water, there is no possibility of vibration of this nature. Aut 

if there is a vacant space left on top of the tank, even though it be a very thin one, 
this kind of vibration can take place. 

As a velocity potential </> corresponding to this case, let us put, as before, 

</>=Boo !oo(Y)+ L:'L:' Bu fdy) cos(mix) cos(sjz) 

In the present case of vibration on opposite phases, we must have Boo= 0. The boun-
dary conditions for the present case are, 

(a) at z=O o</>= o 
oz 

at Z=H <1>=0 

(b) at x= 0 or L, aq, =O 
ax 

(c) at 1 
Y=-B 

2 

~t = ['['[ BfJ iJ( ~ B) cos(mix) cos(sjz)J= Ao sin mx sinsz cotwt (29) 

From the condition (a), we have j= ~+a-, with o- = 0, 1,2,······, while by the condition 

(b) we have i = 0, 1, 2, ··· .... 

Moreover, we have to choose 

lilY)= cosh(nu y) 

niJ = [(mi)2+(sj)2Jll2 

In order to find the coefficients BiJ in the left hand side of Eq. (29), regarding it as 
a double Fourier series, the arrangement as shown in Fig. 9 will be taken. Then we 

have 

(14) 
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L ll 

Bij f;i(i-B) Z~L = AoJ sinmx cos(mix) dx • J lsinszl cos(sjz) dz· coswt 
0 -H 

but we have 

L 

J sinmx cos(mix) dx = ~ lm0~i) {cos(l+i):r-1} 
0 

+m0~i){cos(i-l)rr-l}J mU2

2
_ 1) if i is even 

= 0 if i is odd. 

[{ [{ 

J !sin szl cos(sjz) dz = 2 J sinsz cos(sjz) dz= f[s(;-~ j) {cos(l+ j) rr-1} 
-[{ 0 

-1 . }l 2 + s(1-j) {cos(J-1):r-1 J=s(1-j2) 

j being equal to u+ ~ where o-=0, 1, 2, ....... Combining these resulte we have 

' ( 1 ) 2HL [ -2 J [ 2 J Bu fii 2 B -g- = m(i~- 1 ) s(l-j2) Ao cos(1>t 

where c=4 if i=!=O, o-=!=0, and c=2 if i=O, o-=0,1,2,······. Or, rearranging it, 

15 

Kinetic energy of the Fluid Motion can b~ obtained quite similarly as in the cases 
A and B:-

L 1l 

T1 = ~ Pw J J <P~! dS = Pw J dx J dz [ <P ~] 
0 0 

L H 

= Pw.{ dx J dz[Ao sinmx sinsz coswtJ·[~='['BiJ cos(mix)cos(sjz)fi1(i-B)] 
0 0 

From which, for the kinetic energy to be attributed to each side-wall, we have 

(15) 
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T w = Pw [A~ COS
2 
wt] c:4 HL J X ~ LL {(i2-1~(j2-1)} 2 

n~j coth ( ~ nij B) 

= ~ Pw [A~ cos2 wt] LBHxM (31) 

where 

8 "'"'{' 1 }
2 
(c) 1 ( 1 ) M= n4LJ w (i2_ 1)(j2- 1) 2 n;iB • coth 2 niiB (32) 

where 

and i=0,2,4,······; j=a+ ~' a=0,1,2,······. c=4 for i=FO, but c=2 if i=O. 

VI. The Virtual Mass of Water 

When a rectangular elastic plate is vibrating transversally as shown in Fig. 10, its 

z 
I 

01~~··~-(;.:..=+--' =-=~4--~-/--.x 
----- L -------~~ 

Fig. 10. A mode of vibration of 
the rectangular plate 

transverse displacement may be expressed by 

w= Wo sin(l x) sin(li- z) sin wt 

and its transverse velocity by 

dw A · ( n ) . ( n ) dt = u sm L x sm H z cos wt 

where Ao = w Wo. The kinetic energy T m of 
the vibration will be given by 

hm being the thickness of the plate. This expression for T m may also be written 

T m =; [Wo coswt] 2 
• Mmv (33) 

where 

Here 1~1 m is the actual mass of the plate. Mrnv is a quantity which may be termed (for 
convenience) the vibrational mass of the plate. In the case of a simple mode of the 

vibration as sketched in Fig. 10, the value of Mrnv is just one quarter of the actual mass 

Afm. 

Now, returning to the case of vibration of water, the kinetic energy T w of the vibra­
ting water contained in the rectangular tank was evaluated, in the previous sections, 

(16) 
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with regard to the four different cases A, B, C and D, of the vibration of the sidew ails. 
The result of evaluation was expressed in the form 

Tw = ~ Pw [Ao coswt] 2 
• LHB · M (34) 

where Tw is the kinetic energy of vibrating water which is tote regarded ~.s participated 
per each single face-wall of the tank. M is a non-dimentional factor having the values 
as given by Eqs. (11), (18), (28) and (32) respectively. The values of this numerical factor 
M were calculated for various combinations of the values of B/ H and B/ L, and the 
result is shown graphically in Figs. 11 and 12. 

C4s 
With i: C 
free 
surface 

B/H 

0.5 

~B/L 

for Case C 

1.0 1.5 

tor Case B 
Fig. 11. Value of the numerical factor M for Cases B and C. 

(17) 
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r\CD 
1\ 

with free 
surface 

e a 

-

0.05 

oo~----------o.~.s~---------,~.o~--------~,.so 

-~/H 
Fig. 12. Value of the numerical factor M for Cases A and D 

According to the expression (34) for Tw, the vibrational mass of water (which is 
usually called the virtual mass) M wv will be given by 

Mwv=Pw VM 

where V = LBH, the volume of water. So that, knowing the value of the numerical 
factor M, the virtual mass M wv may easily be estimated. 

Let f be the natural frequency of vibration of a rectangular elastic plate, when it is 
vibrating in the air (or, in the vacuum) with a given mode. When the same plate is 
vibrating, with its face in contact with water, and with the same mode as before, its 

(18) 
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natural frequency f' would be given by the formula 

I 
I'= -v'l+c where c =Mwv 

Mmv 
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But, it must be remembered that this formula gives only an approximate value off', 
because the mode of vibration may be altered due to the fact that its face is in contact 
with water. 

It is to be mentioned here that the similar problem of the virtual mass of water for 
the various arrangements of the side-walls has been, and is now being, investigated by 
Dr. T. Kumai etc. of Applied Mechanics Research Institute of Kyushu University. 

The authour is much indebted to Dr. T. Kumai for his valuable suggestions given to 
the author. 

(19) 


