慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On pseudo－harmonic oscillations of third order
Sub Title	
Author	南雲，仁一（Nagumo，Jinichi）
Publisher	慶応義塾大学藤原記念工学部
Publication year	1957
Jtitle	Proceedings of the Fujiihara Memorial Faculty of Engineering Keio University Vol．10，No． 37 （1957．），p．27（1）－43（17）
JaLC DOI	
Abstract	Nonlinear oscillations have so far primarily been considered in the case of second order differential equations．However，actual problems of nonlinear oscillations frequently lead to differential equations of higher order．The present paper is concerned with pseudo－harmonic oscillations which are represented by periodic solutions of third order differential equations of a special type． The periodic solutions are determined by the method of Coddington and Levinson，and their stability is investigated．This method of analysis is applied to electronic oscillating circuits，self－ sustained and synchronized Colpitts oscillator and Parametron circuit，obtaining some new results which will be useful for practical design．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00100037－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

On Pseudo－harmonic Oscillations of Third Order

（Received Jan．22，1958）

Zin－ich NAGUMO＊

Abstract

Nonlinear oscillations have so far primarily been considered in the case of second order differential equations．However，actual problems of nonlinear oscillations fre－ quently lead to differential equations of higher order．The present paper is concerned with pseudo－harmonic oscillations which are represented by periodic solutions of third order differential equations of a special type．The periodic solutions are determined by the method of Coddington and Levinson，and their stability is investigated．This method of analysis is applied to electronic oscillating circuits，self－sustained and synchronized Colpitts oscillator and Parametron circuit，obtaining some new results which will be useful for practical design．

I．Introduction

Nonlinear oscillations have so far primarily been considered in the case of second order differential equations．However，actual problems of nonlinear oscillations fre－ quently lead to differential equations of higher order．The present paper is concerned with a special type of nonlinear oscillations，so－called＂pseudo－harmonic oscillations＂， which are represented by periodic solutions of third order differential equations of a particular type．

We will begin with giving the following three examples．
Ex． 1 Self－sustained oscillation of the Colpitts Oscillator
In Fig．1，the only nonlinear ele－ ment in the circuit is the static（ $=$ re－ sistive）3－pole（for example，vacuum－ tube，transistor）which determines the currents I_{1}, I_{2} as analytic functions of the voltages V_{1}, V_{2}
$I_{1}=f\left(V_{1}, V_{2}\right), \quad I_{2}=g\left(V_{1}, V_{2}\right) . \quad(1-1)$
The differential equation＊＊of the circuit is

Fig． 1.

[^0]\[

$$
\begin{aligned}
& \frac{d V_{1}}{d t}=-\frac{1}{C_{2}} i-\frac{1}{C_{2}} f\left(V_{1}, V_{2}\right) \\
& \frac{d V_{2}}{d t}=\frac{1}{C_{1}} i-\frac{1}{R C_{1}} V_{2}-\frac{1}{R C_{1}} E_{2}-\frac{1}{C_{1}} g\left(V_{1}, V_{2}\right) \\
& \frac{d i}{d t}=\frac{1}{L}\left(V_{1}+E_{1}\right)-\frac{1}{L} V_{2}-\frac{1}{r C} i+\frac{1}{r R C_{1}} V_{2}+\frac{1}{r R C_{1}} E_{2} \\
& \quad-\frac{1}{r C_{2}} f\left(V_{1}, V_{2}\right)+\frac{1}{r C_{1}} g\left(V_{1}, V_{2}\right)
\end{aligned}
$$
\]

Setting

$$
\begin{aligned}
& \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}, \quad \omega^{2}=\frac{1}{L C}, \quad \tau=\omega t, \\
& x=\frac{\omega C_{2}\left(V_{1}+E_{1}\right)}{I}, \quad y=\frac{\omega C_{1} V_{2}}{I}, \quad z=\frac{i}{I}, \\
& a=\frac{C}{C_{2}} \quad(0<a<1), \quad k=\frac{r}{R}, \\
& \mu F(x, y)=\frac{f\left(V_{1}, V_{2}\right)}{I}, \quad \mu G(x, y)=\frac{g\left(V_{1}, V_{2}\right)}{I} \\
& \mu b=\frac{1}{\omega r C}, \quad \mu q=\frac{E_{2}}{R I}, \quad I: \text { unit current }
\end{aligned}
$$

and assuming that $0<\mu \ll 1$, we have

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=-z-\mu F(x, y) \\
\frac{d y}{d} \bar{\tau}=z-\mu b(1-a) k y-\mu q-\mu G(x, y) \tag{1-2}\\
\frac{d z}{d \tau}=a x-(1-a) y-\mu b z+O_{2}(\mu)
\end{array}\right.
$$

where $O_{2}(\mu)$ means terms of the order $\geqq 2$ in μ.
By a further transformation of variables:

$$
\left\{\begin{array}{l}
x=x_{1}+(1-a) x_{3} \\
y=-x_{1}+a x_{3} \\
z=x_{2}
\end{array} \quad\left(\frac{\partial(x, y, z)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=-1\right)\right.
$$

we obtain

$$
\begin{align*}
& \frac{d x_{1}}{d \tau}=-x_{2}+\mu f_{1}\left(x_{1}, x_{3}\right) \\
& \frac{d x_{2}}{d \tau}=x_{1}+\mu f_{2}\left(x_{1}, x_{2}, x_{3}, \mu\right) \tag{1-3}\\
& \frac{d x_{3}}{d \tau}=\mu f_{3}\left(x_{1}, x_{3}\right)
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
f_{1}=-b(1-a)^{2} k x_{1}+a b(1-a)^{2} k x_{3}-a F+(1-a) G+(1-a) q \\
f_{2}=-b x_{2}+O(\mu) \\
f_{3}=b(1-a) k x_{1}-a b(1-a) k x_{3}-F-G-q
\end{array}\right.
$$

and

$$
\begin{aligned}
& F=F\left(x_{1}+(1-a) x_{3},-x_{1}+a x_{3}\right) \\
& G=G\left(x_{1}+(1-a) x_{3},-x_{1}+a x_{3}\right) .
\end{aligned}
$$

Ex. 2 Synchronized osillation of the order n / m of the Colpitts Oscillator

In Fig. 2, choosing three variables: $V_{1}, V_{2}{ }^{\prime}=V_{2}+e \sin \omega t$ and i, and setting $C^{-1}=C_{1}{ }^{-1}+C_{2}{ }^{-1}$, we get

Fig. 2.

$$
\left\{\begin{array}{l}
\frac{d V_{1}}{d t}=-\frac{1}{C_{2}} i-\frac{1}{C_{2}} f\left(V_{1}, V_{2}^{\prime}-e \sin \omega t\right) \\
\frac{d V_{2}^{\prime}}{d t}=\frac{1}{C_{1}} i-\frac{1}{R C_{1}} V_{2}^{\prime}-\frac{1}{R C_{1}} E_{2}-\frac{1}{C_{1}} g\left(V_{1}, V_{2}^{\prime}-e \sin \omega t\right) \\
\frac{d i}{d t}
\end{array}=\frac{1}{L}\left(V_{1}+E_{1}\right)-\frac{1}{L} V_{2}^{\prime}-\frac{1}{r C} i+\frac{1}{r R C_{1}} V_{2}^{\prime}+\frac{1}{r R C_{1}} E_{2} .\right.
$$

If there exist two positive integers m and n, which are prime one another and such that

$$
\omega \div \frac{1}{\sqrt{\overline{L C}}} \div m \div n
$$

then letting $0<\mu \ll 1$, we set as follows.

$$
\begin{aligned}
& \mu p=n^{2}-\frac{m^{2}}{\omega^{2} L C}, \quad \omega t=m \tau, \quad \alpha=\frac{m^{2}}{\omega^{2} L C_{2}}, \\
& x=\frac{\omega C_{2}\left(V_{1}+E_{1}\right)}{I m}, \quad y=\frac{\omega C_{1} V_{2}^{\prime}}{I m}, \quad z=\frac{i}{I}, \\
& a=\frac{C}{C_{2}} \quad(0<a<1), \quad k=\frac{r}{R}, \quad \gamma=\frac{\omega C_{1} e}{I m}, \\
& \mu F(x, y-\gamma \sin m \tau)=f\left(V_{1}, V_{2}^{\prime}-e \sin \omega t\right) / I, \\
& \mu G(x, y-\gamma \sin m \tau)=g\left(V_{1}, V_{2}^{\prime}-e \sin \omega t\right) / I, \\
& \mu b=\frac{m}{\omega r C}, \quad \mu q=\frac{E_{2}}{R I}, \quad I: \text { unit current. }
\end{aligned}
$$

It is apparent that the case: $m=n=1$ corresponds to the fundamental synchronization, the case: $n=1$ corresponds to the subharmonic synchronization of m-th order
and the case : $m=1$ corresponds to the higher-harmonic synchronization of n-th order.
The differential equation takes the form

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=-z-\mu F(x, y-\gamma \sin m \tau) \\
\frac{d y}{d} \bar{\tau}=z-\mu b(1-a) k y-\mu q-\mu G(x, y-\gamma \sin m \tau) \\
\frac{d z}{d \tau}=\alpha x-\left(n^{2}-\alpha\right) y+\mu p y-\mu b z+O_{2}(\mu)
\end{array}\right.
$$

By a further transformation of the variables:

$$
\begin{aligned}
& x=x_{1}+\left(n^{2}-\alpha\right) x_{3} \\
& y=-x_{1}+\alpha x_{3} \\
& z=n x_{2}
\end{aligned} \quad\left(\frac{\partial(x, y, z)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=-n^{3}\right)
$$

we have

$$
\begin{align*}
& \frac{d x_{1}}{d \tau}=-n x_{2}+\mu f_{1}\left(x_{1}, x_{3}, \tau\right) \\
& \frac{d x_{2}}{d \tau}=n x_{1}+\mu f_{2}\left(x_{1}, x_{2}, x_{3}, \tau, \mu\right) \tag{1-4}\\
& \frac{d x_{3}}{d \tau}=\mu f_{3}\left(x_{1}, x_{3}, \tau\right)
\end{align*}
$$

where

$$
\begin{aligned}
f_{1}= & -b\left(1-\frac{\alpha}{n^{2}}\right)(1-a) k x_{1}+b \alpha\left(1-\frac{\alpha}{n^{2}}\right)(1-a) k x_{3} \\
& -\frac{\alpha}{n^{2}} F+\left(1-\frac{\alpha}{n^{2}}\right) G+\left(1-\frac{\alpha}{n^{2}}\right) q \\
f_{2}= & -\frac{p}{n} x_{1}-b x_{2}+\frac{\alpha p}{n} x_{3}+O(\mu) \\
f_{3}= & \frac{b}{n^{2}}(1-a) k x_{1}-\frac{\alpha b}{n^{2}}(1-a) k x_{3}-\frac{1}{n^{2}} F-\frac{1}{n^{2}} G-\frac{q}{n^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& F=F\left(x_{1}+\left(n^{2}-\alpha\right) x_{3},-x_{1}+\alpha x_{3}-\gamma \sin m \tau\right) \\
& G=G\left(x_{1}+\left(n^{2}-\alpha\right) x_{3},-x_{1}+\alpha x_{3}-\gamma \sin m \tau\right) .
\end{aligned}
$$

Note that f_{i} 's are periodic functions of τ with the least period $2 \pi / m$.
Ex. 3 Parametron circuit

Fig. 3.

In Fig. 3, let us suppose first that the nonlinear characteristic (magnetization curve) of the two iron-cored transformers are identical and that it is represented by a single-valued analytic function f.

Then we have

$$
\left\{\begin{array}{l}
N \frac{d \phi_{1}}{d t}+N \frac{d \phi_{2}}{d t}=-\frac{1}{C} \int i_{C} d t=-R i_{R} \\
i=i_{C}+i_{R} \\
N_{0} \frac{d \phi_{1}}{d t}-N_{0} \frac{d \phi_{2}}{d t}+r i_{0}=E+e \sin \omega t \\
N i+N_{0} i_{0}=f\left(\phi_{1}\right) \\
N i-N_{0} i_{0}=f\left(\phi_{2}\right)
\end{array}\right.
$$

where N_{0} is the number of turns in the primary winding and N is that of the secondary winding of each transformer, ϕ is the flux.

Letting $x=\phi_{1}+\phi_{2}, y=\phi_{1}-\phi_{2}, f(\phi)=\alpha \phi+\mu k(\phi)(\alpha>0, \mu>0, k(\phi)$ is a power series of ϕ which does not contain the first order term),

$$
g(x, y)=k\left(\phi_{1}\right)+k\left(\phi_{2}\right), \quad h(x, y)=k\left(\phi_{1}\right)-k\left(\phi_{2}\right)
$$

we get

$$
\begin{align*}
& 2 C N^{2} \frac{d^{2} x}{d t^{2}}+\frac{2 N^{2}}{R} \frac{d x}{d t}+\alpha x+\mu g(x, y)=0 \\
& 2 N_{0}{ }^{2} \frac{d y}{d t}+r \alpha y+\mu r h(x, y)=2 N_{0} E+2 N_{\bullet} e \sin \omega t \tag{1-5}
\end{align*}
$$

Introducing new variables τ and z by

$$
\begin{aligned}
& \omega t+\theta=m \tau \quad(m: \text { positive integer }) \\
& y=\bar{y}+y_{0} \cos (\omega t+\theta)+z \\
& \bar{y}=\frac{2 N_{0} E}{r \alpha}, \quad y_{0}=\frac{2 N_{0} e}{\sqrt{4 N_{0}{ }^{4} \omega^{2}+r^{2} \alpha^{2}}}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{d^{2} x}{d \tau^{2}}+\frac{m}{C R \omega} \frac{d x}{d \tau}+\frac{m^{2} \alpha}{2 C N^{2} \omega^{2}} x+\frac{\mu m^{2}}{2 C N^{2} \omega^{2}} g=0 \\
& \frac{d z}{d \tau}+\frac{m r \alpha}{2 N_{0}{ }^{2} \omega} z+\frac{\mu r m}{2 N_{0}{ }^{2} \omega} h=0
\end{aligned}
$$

where $g=g\left(x, \bar{y}+y_{0} \cos m \tau+z\right), \quad h=h\left(x, \bar{y}+y_{0} \cos m \tau+z\right)$.
If there exists a positive integer n, which is prime with m and such that

$$
\omega \div \sqrt{\frac{\alpha}{2 C N^{2}}} \fallingdotseq m \div n
$$

then letting $0<\mu \ll 1$, we set as follows.

$$
\begin{aligned}
& \frac{m^{2} \alpha}{2 C N^{2} \omega^{2} n}=n+\mu a, \quad \frac{m}{C R \omega}=\mu b \\
& \frac{m r \alpha}{2 N_{0}{ }^{2} \omega}=-\sigma, \quad x=x_{1}, \quad \frac{d x}{d \tau}=-n x_{2}, \quad z=x_{3}
\end{aligned}
$$

The differential equation takes the form

$$
\begin{align*}
& \frac{d x_{1}}{d \tau}=-n x_{2} \\
& \frac{d x_{2}}{d \tau}=n x_{1}+\mu f_{2}\left(x_{1}, x_{2}, x_{3} \tau\right) \tag{1-6}\\
& \frac{d x_{3}}{d \tau}=\sigma x_{3}+\mu f_{3}\left(x_{1}, x_{3}, \tau\right)
\end{align*}
$$

where

$$
\begin{aligned}
& f_{2}=a x_{1}-b x_{2}+\frac{m^{2}}{2 C N^{2} \omega^{2} n} g \\
& f_{3}=-\frac{r m}{2 N_{0}^{2} \omega} h
\end{aligned}
$$

and $g=g\left(x_{1}, \bar{y}+y_{0} \cos m \tau+x_{3}\right), \quad h=h\left(x_{1}, \bar{y}+y_{0} \cos m \tau+x_{3}\right)$.
It is to be noted that $\sigma<0$ and f_{i} 's are periodic functions of τ with the least period $2 \pi / m$.

These examples lead to the general consideration of which we shall investigate in the following.
For the linear differential equation:

$$
\begin{equation*}
\dot{\boldsymbol{y}}=B \boldsymbol{y} \quad(\dot{\boldsymbol{y}}=d \boldsymbol{y} / d \tau) \tag{1-7}
\end{equation*}
$$

where \boldsymbol{y} is a 3 -vector and B is a 3×3 constant real matrix, assume that there exists a real periodic solution with period 2π. This is equivalent to the fact that B has a pair of characteristic root of the form $\pm i n$ where n is a positive integer. We shall be interested in the purturbed differential equation:

$$
\begin{equation*}
\dot{\boldsymbol{y}}=B \boldsymbol{y}+\mu \boldsymbol{g}(\boldsymbol{y}, \tau, \mu) \tag{1-8}
\end{equation*}
$$

where μ is a small positive parameter, \boldsymbol{g} is a real 3 -vecter, the components of which are real analytic functions of ($\boldsymbol{y}, \tau, \mu$) and periodic of period 2π in τ. (The case where g does not contain τ explicitely is not excluded.)
Setting $\boldsymbol{y}=P \boldsymbol{x}$ where P is a real nonsingular constant 3×3 matrix, the differential equation (1-8) can be replaced by a differential equation for \boldsymbol{x}

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x}+\mu \boldsymbol{f}(\boldsymbol{x}, \tau, \mu) \quad(0<\mu \ll 1) \tag{1-9}
\end{equation*}
$$

where $A=P^{-1} B P$ is in real canonical form, $\boldsymbol{f}(\boldsymbol{x}, \tau, \mu)=P^{-1} \boldsymbol{g}(P \boldsymbol{x}, \tau, \mu)$. Moreover, this new differential equation satisfies the same assumptions as (1-8).
It is obvious that A takes the form

$$
A=\left(\begin{array}{rrr}
0 & -n & 0 \\
n & 0 & 0 \\
0 & 0 & \sigma
\end{array}\right)
$$

where σ is a real number.

II. Periodic solution

We now proceed to investigate (1-9). Periodic solutions of (1-9), which are almost sinusoidal and analytic in μ for small μ, can be determined by the method of

Coddington and Levinson.*

We shall classify the type of the equation (1-9) in four cases which arise from special choices of the function \boldsymbol{f} and the coefficient matrix A.

To begin with we devide these cases into two main groups:
(1) the nonautonomous case for which \boldsymbol{f} contains τ explicitely, and (2) the autonomous case in which \boldsymbol{f} does not depend explicitely on τ.

(1) Nonautonomous case

For small μ, (1-9) has an almost sinusoidal periodic solution $\boldsymbol{x}(\tau, \mu)$ with period 2π, if the approximate (with respect to μ) periodic solution $\boldsymbol{x}^{(0)}(\tau)$ can be decided and $J_{1} \neq 0$.

Case i) $\sigma=0$

$$
\begin{aligned}
& x_{1}^{(0)}(\tau)=a_{1} \cos n \tau-a_{2} \sin n \tau \\
& x_{2}^{(0)}(\tau)=a_{1} \sin n \tau+a_{2} \cos n \tau \\
& x_{3}^{(0)}(\tau)=a_{3}
\end{aligned}
$$

where a_{1}, a_{2} and a_{3} are given by

$$
\begin{aligned}
& H_{1} \equiv \int_{0}^{2 \pi}\left(\left[f_{1}\right] \cos n s+\left[f_{2}\right] \sin n s\right) d s=0 \\
& H_{2} \equiv \int_{0}^{2 \pi}\left(-\left[f_{1}\right] \sin n s+\left[f_{2}\right] \cos n s\right) d s=0 \\
& H_{3} \equiv \int_{0}^{2 \pi}\left[f_{3}\right] d s=0 \\
& \quad\left[f_{i}\right]=f_{i}\left(\boldsymbol{x}^{(0)}(s), s, 0\right)
\end{aligned}
$$

and

$$
J_{1}=\frac{\partial\left(H_{1}, H_{2}, H_{3}\right)}{\partial\left(a_{1}, a_{2}, a_{3}\right)} .
$$

Case ii) $\sigma \neq 0$

$$
\begin{aligned}
& x_{1}^{(0)}(\tau)=a_{1} \cos n \tau-a_{2} \sin n \tau \\
& x_{2}^{(0)}(\tau)=a_{1} \sin n \tau+a_{2} \cos n \tau \\
& x_{3}^{(0)}(\tau)=0
\end{aligned}
$$

where a_{1} and a_{2} are given by

* E. A. Coddington and N. Levinson, Contributions to the Theory of Nonlinear Oscillations (II), Annals of Mathematics Studies, No. 29 (1952), Princeton Univ. Press or E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York (1955), Chap. 14.

$$
\begin{gathered}
H_{1} \equiv \int_{0}^{2 \pi}\left(\left[f_{1}\right] \cos n s+\left[f_{2}\right] \sin n s\right) d s=0 \\
H_{2} \equiv \int_{0}^{2 \pi}\left(-\left[f_{1}\right] \sin n s+\left[f_{2}\right] \cos n s\right) d s=0 \\
\quad\left[f_{i}\right]=f_{i}\left(x^{(0)}(s), s, 0\right) \\
\quad J_{1}=\frac{\partial\left(H_{1}, H_{2}\right)}{\partial\left(a_{1}, a_{2}\right)}
\end{gathered}
$$

and

(2) Autonomous case

In this case we may assume $n=1$ without loss of generality. For small $\mu,(1-9)$ has an almost sinusoidal periodic solution $\boldsymbol{x}(\tau, \mu)$ with period $T(\mu)$, if the approxımate periodic solution $\boldsymbol{x}^{(0)}(\tau)$ and the approximate period $T^{(1)}$ can be decided and $J_{2} \neq 0$.

Case i) $\sigma=0$

$$
\begin{aligned}
& x_{1}^{(0)}(\tau)=a_{1} \cos \tau \\
& x_{2}^{(0)}(\tau)=a_{1} \sin \tau \\
& x_{3}^{(0)}(\tau)=a_{3} \\
& T^{(1)}=2 \pi+\mu_{\nu}
\end{aligned}
$$

where a_{1}, a_{3} and \downarrow are given by

$$
\begin{aligned}
& H_{1} \equiv \int_{0}^{2 \pi}\left(\left[f_{1}\right] \cos s+\left[f_{2}\right] \sin s\right) d s=0 \\
& H_{2} \equiv \nu a_{1}+\int_{0}^{2 \pi}\left(-\left[f_{1}\right] \sin s+\left[f_{2}\right] \cos s\right) d s=0 \\
& H_{3} \equiv \int_{0}^{2 \pi}\left[f_{3}\right] d s=0 \\
& {\left[f_{i}\right]=f_{i}\left(\boldsymbol{x}^{(0)}(s), 0\right) \quad[\boldsymbol{f}=\boldsymbol{f}(\boldsymbol{x}, \mu)],}
\end{aligned}
$$

and

$$
J_{2}=\frac{\partial\left(H_{1}, H_{2}, H_{3}\right)}{\partial\left(a_{1}, a_{3}, \nu\right)}=a_{1} \frac{\partial\left(H_{1}, H_{3}\right)}{\partial\left(a_{1}, a_{3}\right)} .
$$

Case ii) $\sigma \neq 0$

$$
\begin{aligned}
& x_{1}^{(0)}(\tau)=a_{1} \cos \tau \\
& x_{2}^{(0)}(\tau)=a_{1} \sin \tau \\
& x_{3}^{(0)}(\tau)=0
\end{aligned}
$$

$$
T^{(1)}=2 \pi+\mu \nu
$$

where a_{1} and ν are given by

$$
\begin{aligned}
& H_{1} \equiv \int_{0}^{2 \pi}\left(\left[f_{1}\right] \cos s+\left[f_{2}\right] \sin s\right) d s=0 \\
& H_{2} \equiv \nu a_{1}+\int_{0}^{2 \pi}\left(-\left[f_{1}\right] \sin s+\left[f_{2}\right] \cos s\right) d s=0 \\
& {\left[f_{i}\right]=f_{i}\left(\boldsymbol{x}^{(0)}(s), 0\right),}
\end{aligned}
$$

and

$$
J_{2}=\frac{\partial\left(H_{1}, H_{2}\right)}{\partial\left(a_{1}, \nu\right)}=a_{1} \frac{\partial H_{1}}{\partial a_{1}} .
$$

III. Stability

We now investigate the stability of the periodic solution $\boldsymbol{x}(\tau, \mu)$, the existence of which has been guaranteed and the approximate periodic solution $\boldsymbol{x}^{(0)}(\tau)$ has been calculated as in II.

The variation equation of (1-9) with respect to the periodic solution $\boldsymbol{x}(\tau, \mu)$ is

$$
\begin{equation*}
\dot{\xi}=\{A+\mu D(\boldsymbol{x}(\tau, \mu), \mu)\} \xi, \quad D_{i j}=\frac{\partial f_{i}}{\partial x_{j}} \tag{3-1}
\end{equation*}
$$

where ξ is a 3 -vector. Corresponding to this variation equation, we consider the matrix equation:

$$
\begin{equation*}
\dot{\bar{E}}=\{A+\mu D(\boldsymbol{x}(\tau, \mu), \mu)\} \Xi \tag{3-2}
\end{equation*}
$$

where Ξ is a 3×3 matrix. The first task then is to investigate the value of the solution $\Xi(\tau, \mu)$, with the initial condition $\Xi(0, \mu)=E$ (3×3 unit matrix), at $\tau=T(\mu)$ where $T(\mu)$ is the period of the periodic solution $\boldsymbol{x}(\tau, \mu)$. (In nonautonomous case $T(\mu)=2 \pi$.)

To carry out this program, we expand $\boldsymbol{x}(\tau, \mu), D(\boldsymbol{x}, \mu)$ and $\Xi(\tau, \mu)$ in power series of μ

$$
\begin{aligned}
& \boldsymbol{x}(\tau, \mu)=\boldsymbol{x}^{(0)}(\tau)+\mu \boldsymbol{x}^{(1)}(\tau)+\cdots \cdots \\
& D(\boldsymbol{x}, \mu)=D^{(0)}(\boldsymbol{x})+\mu D^{(1)}(\boldsymbol{x})+\cdots \cdots \\
& E(\tau, \mu)=\Xi^{(0)}(\tau)+\mu \Xi^{(1)}(\tau)+\cdots \cdots .
\end{aligned}
$$

Substituting these into (3-2) and identifying the coefficients of the powers of μ on both sides, we obtain

$$
\begin{align*}
& \dot{\Xi}(0)=A \Xi^{(0)} \tag{3-3}\\
& \dot{\bar{\Xi}}(1)=A \Xi^{(1)}+D^{(0)}\left(\boldsymbol{x}^{(0)}(\tau)\right) \Xi^{(0)} \tag{3-4}
\end{align*}
$$

The solution of (3-3), with the initial condition: $\Xi^{(0)}(0)=E$ is $\Xi^{(0)}(\tau)=\exp (\tau A)$.

Making use of this result, the solution of (3-4), with the initial condition: $\Xi^{(1)}(0)$ $=O$, becomes

$$
Z^{(1)}(\tau)=\int_{0}^{\tau} \exp \{(\tau-s) A\} \cdot D^{(0)}\left(\boldsymbol{x}^{(0)}(s)\right) \cdot \exp (s A) d s
$$

Hence

$$
\begin{align*}
L & \equiv \Xi(T(\mu), \mu)=\Xi^{(0)}(T(\mu))+\mu \Xi^{(1)}(T(\mu))+O_{2}(\mu) \\
& =\Xi^{(0)}(T(\mu))+\mu \Xi^{(1)}(2 \pi)+O_{2}(\mu)=\exp (2 \pi A) \cdot(E+\mu \pi K) \tag{3-5}
\end{align*}
$$

where

$$
K=K^{0}+O(\mu)
$$

and

$$
\begin{aligned}
& K^{0}=\frac{1}{\pi} \int_{0}^{2 \pi} \exp (-s A) \cdot D^{(0)}\left(\boldsymbol{x}^{(0)}(s)\right) \cdot \exp (s A) d s \\
& K^{0}=\frac{\nu A}{\pi}+\frac{1}{\pi} \int_{0}^{2 \pi} \exp (-s A) \cdot D^{(0)}\left(\boldsymbol{x}^{(0)}(s)\right) \cdot \exp (s A) d s
\end{aligned}
$$

in autonomous case.
Now let the characteristic value of L be ρ, that is $\operatorname{det}(L-\mu E)=0$. If we put $\rho=1$ $+\mu \pi \lambda$, then λ is a root of $\operatorname{det}(L-E-\mu \pi \lambda E)=0$ or

$$
\begin{equation*}
\lambda^{3}+U \lambda^{2}+V \lambda+W=0 \tag{3-6}
\end{equation*}
$$

where

$$
\begin{aligned}
U & =\frac{1-\exp (2 \pi \sigma)}{\mu \pi}-\left\{t_{r} M+\exp (2 \pi \sigma) \cdot K_{33}\right\} \\
V & =-\frac{1-\exp (2 \pi \sigma)}{\mu \pi} t_{r} M+\operatorname{det} M+\exp (2 \pi \sigma) \\
& \times\left\{\left(K_{11} K_{33}-K_{13} K_{31}\right)+\left(K_{22} K_{33}-K_{23} K_{32}\right)\right\} \\
W & =\frac{1-\exp (2 \pi \sigma)}{\mu \pi} \operatorname{det} M-\exp (2 \pi \sigma) \cdot \operatorname{det} K
\end{aligned}
$$

and

$$
M=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right)
$$

If we set $\lambda=\alpha+i \beta,|\rho|^{2}=1+2 \mu \pi \alpha+\mu^{2} \pi^{2}\left(\alpha^{2}+\beta^{2}\right)$ and hence $|\rho|<1$ is equivalent to $\alpha<0$ or to R. P. $(\lambda)<0$.

(1) Nonautonomous case

Let the three roots of (3-6) be λ_{1}, λ_{2} and λ_{3}. We will say the periodic solution under consideration is "stable" if and only if $\left|\rho_{i}\right|<1$, i. e., R. P. $\left(\lambda_{i}\right)<0 \quad(i=1,2,3)$.
Then the condition that the periodic solution is stable is given by (Routh-Hurwitz criterion)

$$
\begin{equation*}
U>0, \quad V>0, \quad W>0, \quad U V>W \tag{3-7}
\end{equation*}
$$

case i) $\quad \sigma \neq 0$
Since μ is a small quantity, it follows immediately that (3-7) becomes

$$
\sigma<0, \quad t_{r} M^{0}<0, \quad \operatorname{det} M^{0}>0
$$

where

$$
M^{0}=\left(\begin{array}{ll}
K_{11}^{0} & K_{12}^{0} \\
K_{21}^{0} & K_{22}^{0}
\end{array}\right) .
$$

Further it is obvious that the following relations hold.

$$
t_{r} M^{0}=\frac{1}{\pi} \int_{0}^{2 \pi} t_{r} G^{0}\left(\boldsymbol{x}^{(0)}(s)\right) d s, \quad J_{1}=\pi^{2} \operatorname{det} M^{0}
$$

where

$$
G^{0}=\left(\begin{array}{ll}
D_{11}^{(0)} & D_{21}^{(0)} \\
D_{12}^{(0)} & D_{22}^{(0)}
\end{array}\right)
$$

case ii) $\quad \sigma=0$
It is easily observed that (3-7) reduces to

$$
U_{0}>0, \quad V_{0}>0, \quad W_{0}>0, \quad U_{0} V_{0}>W_{0}
$$

where

$$
\begin{aligned}
& U_{0}=-t_{r} K^{0}, \quad V_{0}=\sum_{i<j}\left(K_{i i}^{0} K_{j j}^{0}-K_{i j}^{0} K_{j i}^{0}\right) \\
& W_{0}=-\operatorname{det} K^{0}
\end{aligned}
$$

Further it is apparent that the following relations hold.

$$
U_{0}=-\frac{1}{\pi} \int_{0}^{2 \pi} t_{r} D^{(0)}\left(\boldsymbol{x}^{(0)}(s)\right), \quad J_{1}=-\pi^{3} W_{0}
$$

(2) Autonomous case

In this case, one of the ρ_{i} 's is equal to 1 (Poincaré) and hence one of the λ_{i} 's is equal to 0 . The other two roots (say λ_{1}, λ_{2}) are decided from

$$
\begin{equation*}
\lambda^{2}+U \lambda+V=0 \tag{3-8}
\end{equation*}
$$

We will say the periodic solution under consideration is "stable" if and only if R. P. $\left(\lambda_{i}\right)<0 \quad(i=1,2)$.

Then the condition that the periodic solution is stable is given by

$$
\begin{equation*}
U>0, \quad V>0 \tag{3-9}
\end{equation*}
$$

case i) $\sigma \neq 0$
It is obvious that (3-9) becomes

$$
\begin{equation*}
\sigma<0, \quad t_{r} M^{0}<0 \tag{11}
\end{equation*}
$$

where

$$
t_{r} M^{0}=\frac{1}{\pi} \int_{0}^{2 \pi} t_{r} G^{0}\left(\boldsymbol{x}^{(0)}(s)\right) d s
$$

case ii) $\sigma=0$
It is easily seen that (3-9) becomes

$$
U_{0}>0, \quad V_{0}>0
$$

where

$$
\begin{aligned}
& U_{0}=-t_{r} K^{0}=-\frac{1}{\pi} \int^{2 \pi} t_{r} D^{(0)}\left(\boldsymbol{x}^{(0)}(s)\right) d s, \\
& V_{0}=\sum_{i<j}\left(K_{i i}^{0} K_{j j}^{0}-K_{i j}^{0} K_{j i}^{0}\right) .
\end{aligned}
$$

IV. Pseudo-harmonic Oscillations of the Third Order

From the discussion mentioned above we know that the pseudo-harmonic oscillations of the third order are classified into four types corresponding to the classification of the differential equations which describe the oscillations.

An example of the pseudo-harmonic oscil-

\boldsymbol{f}	σ	$\sigma=0$	$\sigma \neq 0$	
\boldsymbol{f} contains plicitely	τ	ex-	tpye	B
type	C			
\boldsymbol{f} does not contain τ explicitely	type	A	type	D

An example of type B is the synchronized oscillation of the Colpitts oscillator (Ex. 2 in I.).
Finally, an example of type C is the periodic oscillation of the Parametron circuit (Ex. 3 in I.).
The remaining case - the pseudo-harmonic oscillation of type D-_ is essentially equivalent to the pseudo-harmonic autonomous oscillation of the second order and hence it will be unnecessary to give an example.
We now show some practical results which are obtained by applying above analysis to the Colpitts oscillator.

IV-A. Self-sustained Oscillation of the Colpitts Oscillator

In Fig. 1 the oscillating current $A \sin \Omega t$ through the $L C$ circuit and the $d c$ voltage V_{20} (dc component of the oscillating voltage V_{2}) are approximately determined by

$$
\left\{\begin{array}{l}
\frac{f_{c}}{A} \frac{1}{C_{2}}-\frac{g_{c}}{A} \frac{1}{C_{1}}=-\frac{1}{\Omega}\left(\frac{L \Omega^{2}}{r C}+\frac{1}{R C_{1}{ }^{2}}\right) \tag{4-1}\\
\left(1+\frac{f_{s}}{A}\right) \frac{1}{C_{2}}+\left(1-\frac{g_{s}}{A}\right) \frac{1}{C_{1}}=L \Omega^{2} \\
f_{0}+g_{0}=-\frac{2}{R}\left(V_{20}+E_{2}\right)
\end{array}\right.
$$

where

$$
\begin{cases}f\left(V_{20}-E_{1}+\frac{A}{\Omega C_{2}} \cos s,\right. & \left.V_{20}-\frac{A}{\Omega C_{1}} \cos s\right)=\frac{f_{0}}{2}+\left(f_{c} \cos s+f_{s} \sin s\right)+\cdots \cdots \\ g\left(V_{20}-E_{1}+\frac{A}{\Omega C_{2}} \cos s,\right. & \left.V_{20}-\frac{A}{\Omega} \overline{C_{1}} \cos s\right)=\frac{g_{0}}{2}+\left(g_{c} \cos s+g_{s} \sin s\right)+\cdots \cdots .\end{cases}
$$

Especially if $\left|f_{s}\right| \ll A,\left|g_{s}\right|<A$, then $\Omega \fallingdotseq 1 / \sqrt{L C}$, hence A and V_{20} are determined from

$$
\int \begin{align*}
& \frac{f_{c}}{A} \frac{1}{C_{2}^{-}}-\frac{g_{c}}{A} \frac{1}{C_{1}}=-\sqrt{L C}\left(\frac{1}{r C^{2}}+\frac{1}{R C_{1}^{2}}\right) \tag{4-4}\\
& f_{0}+g_{0}=-\frac{2}{R}\left(V_{20}+E_{2}\right) \tag{4-5}
\end{align*}
$$

where

$$
\begin{cases}f\left(V_{20}-E_{1}+\frac{A \sqrt{L C}}{C_{2}} \cos s,\right. & \left.V_{20}-\frac{A \sqrt{L C}}{C_{1}} \cos s\right)=\frac{f_{0}}{2}+\left(f_{c} \cos s+f_{s} \sin s\right)+\cdots \cdots \\ g\left(V_{20}-E_{1}+\frac{A \sqrt{L C}}{C_{2}} \cos s,\right. & \left.V_{20}-\frac{A \sqrt{L C}}{C_{1}} \cos s\right)=\frac{g_{0}}{2}+\left(g_{c} \cos s+g_{s} \sin s\right)+\cdots \cdots\end{cases}
$$

(1) Transistor Colpitts Oscillator

Let the "in-the-large characteristic" of a p-n-p transistor be represented by*

$$
\left\{\begin{array}{l}
I_{E}=\frac{-I_{E 0}}{1-\alpha_{N} \alpha_{I}}\left(e^{\gamma V_{E}}-1\right)+\frac{\alpha_{I} I_{C 0}}{1-\alpha_{N} \alpha_{I}}\left(e^{\gamma V_{C}}-1\right) \\
I_{C}=\frac{\alpha_{N} I_{E O}}{1-\alpha_{N} \alpha_{I}}\left(e^{\gamma V_{E}}-1\right)-\frac{I_{C O}}{1-\alpha_{N} \alpha_{I}}\left(e^{i V_{C}}-1\right)
\end{array}\right.
$$

where $\gamma=q / k T, \alpha_{N} I_{E 0}=\alpha_{I} I_{C 0}<0$.
The relations between the notations of the transistor in Fig. 1 and that in Fig. 4 are

$$
\begin{cases}V_{E}=-V_{2}, & V_{U}=V_{1}-V_{2} \\ I_{E}=-I_{1}-I_{2}, & I_{C}=I_{1} .\end{cases}
$$

In this case we have $f_{s}=0, g_{s}=0$ and hence the period is approximately $2 \pi / \sqrt{ } \overline{L C}$. The oscillating current through the $L C$ circuit $A \sin (t / \sqrt{L C})$ and the $d c$ voltage $V_{20}(d c$ component of the oscillating voltage $V_{B E}=V_{B}-V_{E}$) are decided from

Fig. 4.

$$
\begin{gathered}
\left(\frac{1}{C_{2}}+\frac{1-\alpha_{I}}{C_{1}}\right) \alpha_{N} e^{-\gamma E_{1}} I_{1}(\gamma)-\left(\frac{\alpha_{N}}{C_{2}}-\frac{1-\alpha_{N}}{C_{1}}\right) \alpha_{I} e^{-\gamma V_{20}} I_{1}(\xi) \\
\quad=\frac{\alpha_{I}\left(1-\alpha_{N} \alpha_{I}\right)}{I_{E O}} A \sqrt{L C}\left(\frac{1}{r C^{2}}+\frac{1}{R C_{1}^{2}}\right) \\
\alpha_{N} e^{-\gamma E_{1}} I_{0}(\eta)-e^{-\gamma V_{20}} I_{0}(\xi)=\frac{1-\alpha_{N} \alpha_{I}}{R I_{E O}}\left(V_{20}+E_{2}\right)-\left(1-\alpha_{N}\right)
\end{gathered}
$$

[^1]where $\xi=\gamma A \sqrt{ } \overline{L C} / C_{1}, \eta=r A \sqrt{ } \overline{L C} / C ; I_{0}, I_{1}$ are modified Bessel functions.

(2) Vacuum-Tube Colppitts Oscillator

We shall consider the vauum-tube Colpitts oscillator of Fig. 5. Proceeding as before, we find that the oscillating current $A \sin \Omega t$ through the $L C$ circuit and the grid bias voltage V_{20} are approximately determined by the followin relations.

Fig. 5.

$$
\left\{\begin{array}{l}
\frac{f_{c}}{A} \frac{1}{C_{2}}-\frac{g_{c}}{A} \frac{1}{C_{1}}=-\frac{1}{\Omega}\left(\frac{L \Omega^{2}}{r C}+\frac{1}{R C_{1}^{2}}\right) \\
\left(1+\frac{f_{s}}{A}\right) \frac{1}{\widetilde{C_{2}}}+\left(1-\frac{g_{s}}{A}\right) \frac{1}{C_{1}}=L \Omega^{2} \\
g_{0}=-\frac{2}{R} V_{20}
\end{array}\right.
$$

where

$$
\begin{aligned}
& f\left(E+\frac{A}{\Omega C_{2}^{-}} \cos s, \quad V_{20}-\frac{A}{\Omega C_{1}^{-}} \cos s\right)=\frac{f_{0}}{2}+\left(f_{c} \cos s+f_{s} \sin s\right)+\cdots \cdots \\
& g\left(E+\frac{A}{\Omega C_{2}} \cos s, \quad V_{20}-\frac{A}{\Omega C_{1}} \cos s\right)=\frac{g_{0}}{2}+\left(g_{c} \cos s+g_{s} \sin s\right)+\cdots \cdots .
\end{aligned}
$$

Especially, if $\left|f_{s}\right| \ll A,\left|g_{s}\right|<A$, then $\Omega=1 / \sqrt{L C}$, hence A and V_{20} are decided from

$$
\begin{aligned}
& \frac{f_{c}}{A} \frac{1}{C_{2}}-\frac{g_{c}}{A} \frac{1}{C_{1}}=-\sqrt{\overline{L C}}\left(\frac{1}{r C^{2}}+\frac{1}{R C_{1}^{2}}\right) \\
& g_{0}=-\frac{2}{R} V_{20}
\end{aligned}
$$

where

$$
\begin{array}{ll}
f\left(E+\frac{A \sqrt{L C}}{C_{2}} \cos s,\right. & \left.V_{20}-\frac{A \sqrt{L C}}{C_{1}} \cos s\right)=\frac{f_{0}}{2}+\left(f_{c} \cos s+f_{s} \sin s\right)+\cdots \cdots \\
g\left(E+\frac{A \sqrt{L C}}{C_{2}} \cos s,\right. & \left.V_{20}-\frac{A \sqrt{L C}}{C_{1}} \cos s\right)=\frac{g_{0}}{2}+\left(g_{c} \cos s+g_{s} \sin s\right)+\cdots \cdots
\end{array}
$$

These results are practically calculated by the analytical method making use of
the analytical representation of the vacu-um-tube characteristic,* or by the graphical method using the "constant-current characteristic curves" (See Fig. 6).

The efficiency η of this oscillator is easily obtained. Since $v \fallingdotseq(A / C \Omega) \cos \Omega t$, the average power dissipated at the load resistance r is $L A^{2} / 2 r C$. On the other hand, the averaage supplied power at E is $E f_{0} / 2$. Accordingly

$$
\eta=\frac{L A^{2}}{E r C f_{0}}
$$

where

Fig. 6.

$$
f_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f\left(E+\frac{A \sqrt{L C}}{C_{2}} \cos s, \quad V_{20}-\frac{A \sqrt{L C}}{C_{1}} \cos s\right) d s
$$

(3) On the Representation of the Characteristic of the Nonlinear Element

For the time being, we have proceeded under the assumption that the nonlinear 3pole is static (=resistive). However in some cases it will be necessary to characterize the nonlinear 3-pole by a dynamic (=non-resistive) representation. An example for the capasitive case is as follows.

$$
\begin{array}{llll}
I_{1}=f\left(V_{1},\right. & V_{2}, & \frac{d V_{1}}{d t}, & \left.\frac{d V_{2}}{d t}\right) \\
I_{2}=g\left(\begin{array}{lll}
V_{1}, & V_{2}, & \frac{d V_{1}}{d t}, \\
\frac{d V_{2}}{d t}
\end{array}\right) .
\end{array}
$$

In this case we have the differential equation:
*) To cite an example,
$I_{g}=0 \quad$ when $\quad V_{g}+D V_{p} \leqq 0 \quad$ or $\quad V_{g} \leqq 0$
$I_{p}=0 \quad$ when $\quad V_{g}+D V_{p} \leqq 0 \quad$ or $\quad V_{p} \leqq 0$
$I_{p}=0, \quad I_{g}=\beta V_{s}{ }^{\alpha}$ when $V_{g}+D V_{p} \geqq 0$ and $V_{p \leqq 0}$
$I_{p}=\beta V_{s} \alpha, \quad I_{g}=0 \quad$ when $\quad V_{g}+D V_{p} \geqq 0 \quad$ and $\quad V_{g} \leqq 0$
$I_{p}=\beta V_{s^{\alpha}} V_{p^{\alpha}} /\left(V_{g^{\alpha}}+V_{p^{\alpha}}\right), \quad I_{g}=\beta V_{s^{\alpha}} V_{g^{\alpha}} /\left(V_{g^{\alpha}}+V_{p^{\alpha}}\right)$ when $V_{g} \geqq 0$ and $V_{p} \geqq 0$
where $V_{s}=\frac{V_{g}+D V_{p}}{1+D}, \quad D$ is Durchgriff ; α, β are positive constant and $\alpha \fallingdotseq 1.5$.
This representation is not analytic in the whole (V_{p}, V_{g})-plane but can he used in the former analysis since four conductances $\left(\frac{\partial I_{p}}{\partial V_{p}}, \frac{\partial I_{p}}{\partial V_{g}}, \frac{\partial I_{g}}{\partial V_{p}}, \frac{\partial I_{g}}{\partial V_{g}}\right)$ are continuous functions of variables (V_{p}, V_{g}).

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=-z+\mu F(x, y,-z, z)+O_{2}(\mu) \\
\frac{d y}{d \tau}=z-\mu b(1-a) k y-\mu q-\mu G(x, y,-z, z,)+O_{2}(\mu) \\
\frac{d z}{d \tau}=a x-(1-a) y-\mu l z+O_{2}(\mu)
\end{array}\right.
$$

instead of (1-2) since we may write

$$
\left\{\begin{array}{l}
\frac{f\left(V_{1}, V_{2}, \frac{d V_{1}}{d t}, \frac{d V_{2}}{d t^{2}}\right)}{I}=\mu F\left(x, y, \frac{d x}{d \tau}, \frac{d y}{d \tau}\right)=\mu F(x, y,-z, z)+O_{2}(\mu) \\
\frac{g\left(V_{1}, V_{2}, \frac{d V_{1}}{d t}, \frac{d V_{2}}{d t}\right)}{I}=\mu G\left(x, y, \frac{d x}{d \bar{\tau}}, \frac{d y}{d \tau}\right)=\mu G(x, y,-z, z)+O_{2}(\mu) .
\end{array}\right.
$$

This cquation can be treated by the similar procedure as before.

IV-B. Synchronized Oscillation of the Colpitts Oscillator

In this section we shall consider the case of subharmonic synchronization ($n=1$) for practical importance.

The oscillating current through the $L C$ circuit: $A \sin \frac{\omega}{m} t+B \sin \frac{\omega}{m} t$ (m-th order subharmonic of the synchronising signal) and the $d c$ voltage V_{20} ($d c$ component of the oscillating voltage V_{20}) are decided from

$$
\left\{\begin{array}{l}
\frac{f_{c}}{C_{2}}-\frac{g_{\underline{c}}}{C_{1}}=B\left(\frac{\omega^{2} L}{m^{2}}-\frac{1}{C}\right)-\frac{A m}{\omega C r}\left(\frac{\omega^{2} L}{m^{2}}+\frac{r C}{R C_{1}{ }^{2}}\right) \\
\frac{f_{s}}{-g_{s}}-\frac{g_{s}}{C_{1}}=A\left(\frac{\omega^{2} L}{m^{2}}-\frac{1}{C}\right)+\frac{B m}{\omega C r}\left(\frac{\omega^{2} L}{m^{2}}+\frac{r C}{R C_{1}{ }^{2}}\right) \\
f_{0}+g_{0}=-\frac{2}{R}\left(V_{20}+E_{2}\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
f\left(V_{20}\right. & \left.-E_{1}+\frac{A m}{\omega C_{1}} \cos s-\frac{B m}{\omega C_{2}} \sin s, V_{20}-\frac{A m}{\omega C_{1}} \cos s+\frac{B m}{\omega C_{2}} \sin s-e \sin m s\right) \\
& =\frac{f_{0}}{2}+\left(f_{c} \cos s+f_{s} \sin s\right)+\cdots \cdots \\
g\left(V_{2 c}\right. & \left.-E_{1}+\frac{A m}{\omega C_{1}} \cos s-\frac{B m}{\omega C_{2}} \sin s, V_{29}-\frac{A m}{\omega C_{1}} \cos s+\frac{B m}{\omega C_{2}} \sin s-e \sin m s\right) \\
& =\frac{g_{0}}{2}+\left(g_{c} \cos s+g_{s} \sin s\right)+\cdots \cdots
\end{aligned}
$$

If the sychronising signal is insertcd as in Fig. 7, we have the differential equation:

$$
\left\{\begin{array}{l}
\frac{d V_{1}}{d t}=-\frac{1}{C_{2}^{-}}-\frac{1}{C_{2}} f\left(V_{1}, V_{2}\right) \\
\frac{d V_{2}}{d \bar{t}}=\frac{1}{C_{2}} i-\frac{1}{R C_{1}} V_{2}-\frac{1}{R C_{1}} E_{2}-\frac{1}{C_{1}} g\left(V_{1}, V_{2}\right)
\end{array}\right.
$$

$$
\left\{\begin{aligned}
\frac{d i}{d t} & =\frac{1}{L}\left(V_{1}+E_{1}\right)-\frac{1}{L} V_{2}+\frac{e}{L} \sin \omega t-\frac{1}{r C} i+\frac{1}{r R C_{1}} V_{2} \\
& +\frac{1}{r R C_{1}} E_{2}-\frac{1}{r C_{2}} f\left(V_{1}, V_{2}\right)+\frac{1}{r C_{1}} g\left(V_{1}, V_{2}\right)
\end{aligned}\right.
$$

Fig. 7
In case of $\left|\omega^{2} L C-1\right| \ll 1$, we can treat as before provided $e \lll \omega L I$. If this is not the case, putting

$$
\begin{aligned}
& V_{1}=V_{1}^{\prime}+\frac{C e}{\left(1-\omega^{2} L C\right) C_{2}} \sin \omega t \\
& V_{2}=V_{2}^{\prime}-\frac{C e}{\left(1-\omega^{2} L C\right) C_{1}} \sin \omega t \\
& i=i^{\prime}-\frac{\omega C e}{1-\omega^{2} L C} \cos \omega t
\end{aligned}
$$

and making use of new variables ($V_{1}^{\prime}, V_{2^{\prime}}^{\prime}, i^{\prime}$) instead of (V_{1}, V_{2}, i) we can proceed as before.

Acknowledgements

The author would like to thank Professor M. Mashima for his leadership and encouragement.

[^0]: ＊）南雲化一 Dr．of Eng．，Assistant Prof．at Keio University．
 ＊＊）In the following we shall simply say＂equation＂instead of＂system of equations．＂

[^1]: *) W. Shockley, M. Sparks aud G. K. Teal, Phys. Rev. 83 (1951) 151 or J. J. Eber S and J. K. Moll, Proc. I. R. E. 12 (1954) 1761.

