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On Pseudo-harmonic Oscillations of Third Order

(Received Jan. 22, 1958)
Zin-ich NAGUMO*

Abstract

Nonlinear oscillations have so far primarily been considered in the case of second
order differential equations. However, actual problems of nonlinear oscillations fre-
quently lead to differential equations of higher order. The present paper is concerned
with pseudo-harmonic oscillations which are represented by periodic solutions of third
order differential equations of a special type. The periodic solutions are determined
by the method of Coddington and Levinson, and their stability is investigated. This
method of analysis is applied to electronic oscillating circuits, self-sustained and
synchronized Colpitts oscillator and Parametron circuit, obtaining some new results
which will be useful for practical design.

I. Introduction

Nonlinear oscillations have so far primarily been considered in the case of second
order differential equations. However, actual problems of nonlinear oscillations fre-
quently lead to differential equations of higher order. The present paper is concerned
with a special type of nonlinear oscillations, so-called “ pseudo-harmonic oscillations”,
which are represented by periodic solutions of third order differential equations of a
particular type.

We will begin with giving the following three examples.

Ex. 1 Self-sustained oscillation of
the Colpitts Oscillator -
In Fig. 1, the only nonlinear ele- &

ment in the circuit is the static (=re- h WYV

sistive) 3-pole (for example, vacuum- /@ I ——
- :
/l
\‘\ v Ez [-

tube, transistor) which determines

the currents I,, I, as analytic

v
functions of the voltages V,, V, L+l J C
’ R Cv]‘ I’

12 ¥ —

Il =f(Vl’ V2)y 12=g(Vl; V2)- (1‘1)

The differential equation** of the

e Fig. 1.
circuit 1s

* B & £ — Dr. of Eng., Assistant Prof. at Keio University.
*%) In the following we shall simply say “equation” instead of “system of equations.”
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28 Zin-ichi NAGUMO

i E VLV

ToCi RV RG E”‘lg(v" Vi)

1 =LV H+E) =L Vim it i Vit pe B

—,—C—zf(Vl, Vz)-!-;(:g(Vn V).
Setting -é—=-cl—1+61;, co2=L—16, T=wt,

xzw_c_zil/idﬂ, y=9£_I1_‘f_z, z=_}'_,
a:é (0<a<1), k=7,
pF(x, y)=f———(V‘I’ V2, pG(x, y)=g—(K‘I’—V’—) ,
b= —= rC' yq—IEZI I : unit current

and assuming that 0<pu<1, we have

dx _ _ .,
d;_ 2 rlF(xry)

r
J} 99— ub(1—a) by —pa—1G x,5)
|

_‘éﬁ—ax (1—a)y—pbz+0,(p),

where O,(x) means terms of the order =2 in g.
By a further transformation of variables:

}/ x=x+(1—a)x;

— 0%, 5,2 _
l Y fitax (a(xl’ X3, X3) 1>
R=X,
we obtain
B =zt fi (51 3)
dT 1 1y 3
. Lfix:) x +luf2(rl’ xZ) x3r #)
‘
j Ccilxa #fﬂ (xh xa) ’
where

J fi= —b(1—a)kx,+ab(1—a)kx;—aF +(1—a)G+(1—a) q
fzz—bxz+0(/l)
l fi=b(l—a)kx,—ab(l—a)kx;—F—G—q

(2)

(1-2)

(1-3)
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and .
F=F(x,+(1—a)x;, —x,+ax;)
G=G(x1+(1—a)x3, —"x1+ax3).
-
iy )
Er
A Ex. 2 Synchronized osillation of

the order n/m of the Colpitts Oscil-

lator

L
Or:s7—
Oro
1,41 ' D E

b_) R . C

0

L.
r6 B
v In Fig. 2, choosing three variables :
- V., V/=V,+esinwt and 7, and set-

ting C'=C,'4+C,;™*, we get

1r

L

Fig. 2.

[ %:——:z——f(Vl, V/—esin wt)

d__c‘lftz ZCL"“'—RIC Vy— C Ez——-g(V,, Vy'—esin wt)
1 1
dz 1 1
L L(V1+E1) Vz rc rRC VZ RCIEZ

_m f(Vly Vz"—e sin (l)t)+ Eg(vl, Vz’—e sin Q)t) .

If there exist two positive integers m and #, which are prime one another and such
that

m+:/}‘—__c=:.=m—:n,
then letting 0< <1, we set as follows.
)up:nz—wziljc, wt=mT, a=a77-zjc—2,
a=CQ2 (0<a<1), k=%, =92,

pF (%, y—rsinmt)=f(V,, V/—esinwt)/I,
uG(x, y—rsinmt)=g(V,, V'—esin wt)/I,

ﬂb:a:n__;.é , uq= —% R I : unit current.

It is apparent that the case: m=#n=1 corresponds to the fundamental synchroniza-
tion, the case: n=1 corresponds to the subharmonic synchronization of m-th order

(3)



30 Zin-ichi NAGUMO

and the case: m=1 corresponds to the higher-harmonic synchronization of n-th order.
The differential equation takes the form

dx .
( = —z—uF (x, y—7 sinmt)
dy :

o =z—pb(1—a)ky—pq—pG(x, y—y sinmrt)

92 — ax—(nt—) 3 +upy— b2+ 05(4)

f
|

By a further transformation of the variables:

‘ x=x+m—a)x,

: = -— a(x’y!z) —_ —n3

[ y= x1+a’x3 (a——(xwl, Xg xs) n ) B

~ z=nx2 .
we have

[ %’%=—"xz+ﬂf1(xu X3, T)

! dx

< —d—‘[;t’ :nx1+/lf2(x1, X3y X3, T, /J) (1_4)

|

|

(g;s =pf3(x,, X3, T)

where

“ . a

| fi= —b(l——%)(l—a)kx,+ba (1_72)(1__@]@,3

|

i a a o

j — P+ (1= )G+ (1= )

| fa= —%xl—bx2+ ‘-lnl—,xs—l-O(p)

b ab 1 1

\ f3=ﬁz(l—a)kxl—m(l—a)kxs—;ﬁ[«‘—.’?(;_gz.

and

F=F(x,4+(n*—a)x;,—x,+ax;—y sinmz)
G=G(x,+(n?*—a)x;,—x,+ax;—y sinmt).
Note that f;’s are periodic functions of = with the least period 2z/m.

Ex. 3 Parametron circuit

In Fig. 3, let us suppose first
that the nonlinear characteris-

c T g tic (magnetization curve) of the
l l § two iron-cored transformers are
ic ir ﬁ< identical and that it is repre-

sented by a single-valued ana-
lytic function f.
Then we have

(4)
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Aoy  ndby 1 (i o
NL 4N = cfzcdt~ Rin

i=ictig
N[,dd’1 N(,dd)z-}-rzo—-E-i—e sin wt

Ni+Nyio=f(9,)
Ni—Noio=f(¢z)

where N, is the number of turns in the primary winding and N is that of the secondary
winding of each transformer, ¢ is the flux.

Letting x=¢,+¢,, y=¢,—0,, f(P)=adp+pk($) (>0, ;£>0, k($) is a power series of
¢ which does not contain the first order term),

g%, y)=k($)+k($s), h(x,y)=k($.)—k($2),

we get
J ZCNZ“i”’f 2g3;+ax+pg(x »=0

| o ady (1-5
i 2N°d +ray+prh(x, y)=2N,E+2N sin wf .

Introducing new variables ¢ and z by

wt+0=m7 (m : positive integer)
y=y+43y,cos(wt+0)+2

2N.E yo= 2Noe

r= ra ’ VAN o+ r2a?

we have

( dx m dx+ mia

a2t CRadc T3CNTa " T

2CN2 18=0
| dz mra nrm o _
1\ d’L‘ + ZNQZQ) +2N02(1)h 0

where g=g(x, ¥+y,cosmr+2), h=h(x, y+y,cosmr+2).

If there exists a positive integer », which is prime with m and such that

w+\/§_c"‘7v._z-—;:m+n,

then letting 0<p<k1, we set as follows.

mia m__
3CN%win " TH TR M
ani:;‘Zo =—g, x=x, Z—i:——nxh z=x,

The differential equation takes the form

(5)
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(¢ de —_
. = nx,
! dx
J} T2 =826, %2, %5 T) (1-6)
; ‘;—’?=ax3+ﬂf3(x1, X3, T)
where
2
Sr=an—brst gonigm®
rm
f3= _2N020.)h

and g=g(x,, ¥+, cosmt+x,), h=h(x, y+y,cosmz+x;).
It is to be noted that ¢<0 and fi’s are periodic functions of ¢ with the least period
2r/m.

These examples lead to the general consideration of which we shall investigate in
the following.
For the linear differential equation:

y=By (y=dyldo) 1-7)

where y is a 3-vector and B is a 3X3 constant real matrix, assume that there exists
a real periodic solution with period 2z. This is equivalent to the fact that B has a
pair of characteristic root of the form =+:# where #» is a positive integer. We shall
be interested in the purturbed differential equation:

y=By+rgy, 7, 1) (1-8)

where | is a small positive parameter, g is a real 3-vecter, the components of which
are real analytic functions of (y, 7, ) and periodic of period 27 in z. (The case where
g does not contain 7 explicitely is not excluded.)

Satting y=Px where P is a real nonsingular constant 3x3 matrix, the differential
equation (1-8) can be replaced by a differential equation for x

x=Ax+pf(x, 7, p) (0<p<Kl) (1-9)

where A=P~!'BP is in real canonical form, fx, 7, t)=P~g(Px, 7, ). Moreover, this
new differential equation satisfies the same assumptions as (1-8).
It is obvious that A takes the form

A=/0 —n 0
n 0 0
0 0 o

where o is a real number,

II. Periodic solution

We now proceed to investigate (1-9). Periodic solutions of (1-9), which are almost
sinusoidal and analytic in p for small p, can be determined by the method of

(6)



On Pseudo-harmonic Oscillations of Third Order 33

Coddington and Levinson.*

We shall classify the type of the equation (1-9) in four cases which arise from
spacial choices of the function £ and the coefficient matrix A.

To begin with we devide these cas¢s into two main groups:
(1) the nonautonomous case for which f contains z explicitely, and (2) the autonomous
case in which £ does not depend explicitely on 7.

(1) Nonautonomous case

For small ¢, (1-9) has an almost sinusoidal periodic solution x (z, ) with period 2z,
if the approximate (with respect to i) periodic solution x (7) can be decided and
J.#0.

Case i) 06=0

%0(7)=qa, COs #T—a, sin nt

xP(t)=a, sin nt+a; cos nt

| *P(t)=a,

where a,, a, and a; are given by
2r
Hl‘ff([f,] cos ns+ [ f,] sin ns)ds=0
0
‘ 2

' stf(—[flj sin s+ [ f2] cos ns) ds =0
| 0

[fi]=fi(x(s), s, 0),
and
J = 0UHy Hy Hy)
a(a;, as a;)
Casz ii) o+0

- xP(r)=a, cos nt—a; sin nt

xP(z)=a,sinnrt+a,cos nt

I

| xP(r)=0

where a, and a, are given by

* E. A. Coddington and N. Levinson, Contributions to the Theory of Nonlinear Oscil-
lations (II), Annals of Mathematics Studies, No. 29 (1952), Princeton Univ. Press
or E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York (1955), Chap. 14.

)



34 Zin-ichi NAGUMO

27
lef([flj cos ns+[ f,] sinns)ds=0
0

\‘ 2n
‘] zEf(—-[fJ sinns+[ f,] cosns)ds=0
. 0

Lfd=Ffi(x©(), s, 0),
and

J :a(Hn H,)
' 9(ay, @)

(2) Autonomous case

In this case we may assume #=1 without loss of generality. For small i, (1-9) has
an almost sinusoidal periodic solution x(z, p) with period T(i), if the approximate peri-
odic solution x‘“(7) and the approximate period T°¥ can be decided and /,#0.

Case i) o=0

L xP(r)=a,cosT

xP(t)=a,sint

é xP(r)=a;
TO=2r+py

where a,, a; and v are given by

i 2
1 lef([f,] coss+[f2] sins)ds=0
‘ 0

27
HZEua1+f(—[f1] sins+[ f;] coss)ds=0
0

2r
H,= [[£]ds=0
0

Lfil=fi(x(s), 0) [F=f(x, 1)J,
and
_oH, H, H)_ ,9(H, Hy)

a(al: as, V) ! a(ab a3) )

Ja

Case ii) v#0
xP(r)=a,cosT
xP(t)=a,sint

\ xP(r)=0

(8)
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TO=2n+py

where @, and v are given by

2r
[ lef([fl] coss+[f,]sins)ds=0
J 0

2n
{ szya{+f(—[f1] sin s+ [ f,] cos s) ds=0
0

[fil=fi (x(s), 0),
and
o(H,, Hy)
a‘(alx V)

a[[l
'2a,

Je=

=a

II. Stability

We now investigate the stability of the periodic solution x(z, p), the existence of
which has been guaranteed and the approximate periodic solution x(”(z) has been cal-
culated as in II.

The variation equation of (1-9) with respect to the periodic solution x(z, i) is

E={A+1D(x (7, 1), WIE, ow:g_g 3-1)

where £ is a 3-vector. Corresponding to this variation equation, we consider the matrix
equation: _

E={A+pD(x(z,p), )}E . (3-2)
where £ is a 3x3 matrix. The first task then is to investigate the value of the solution
Z(z, ), with the initial condition 5(0,1)=E (3X3 unit matrix), at t=7(p) where
T (1) is the period of the periodic solution x(7,#). (In nonautonomous case T(p)=2z.)

To carry out this program, we expand x(z, 1), D(x,) and £(z,p1) in power series
of p

X(T, 0y =xC(T)+RXV(T) 400

D (x, 1) =D (x)+pDOCX) A weevee

E(r, w)=50(1)+pED(T) 4 erne .

Substituting these into (3-2) and identifying the coefficients of the powers of p on
both sides, we obtain

S0 = 45D (3-3)
ZW = AFW 4 DO (xO(7))EW (3-4)

...........................

The solution of (3-3), with the initial condition: Z®(0)=FE is Z®(z)=exp(zA).

(9)
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Making use of this result, the solution of (3-4), with the initial condition: Z®(0)
=0, becomes

T

Fw(r) = f exp{(z—5)A}-DO(x(s))-exp (sA)ds .

0
Hence
L=E(T(p), p) =T (p))+rEPCT())+0,(1)
=EOCT())+1p ZP(22)+ 0y () =exp(2rA)-(E+pzK) 3-5)
where
K=K"+0(ux)
and
2n
Ko= ‘}? [exp(—sA)-DP(x® (5))-exp(sA)ds
’ , in nonautonomous case,
T
K0 ="A 4 L fexp(—sA)- DOV () exp(sA)ds
0

in autonomous case.
Now let the characteristic value of L be p, that is det(L—pE)=0. If we put p=1
+paX, then A is a root of det(L—E—uaAE)=0 or

MHUNHV A+ W=0 (3-6)
where

U= 1—:%‘2@ —{t:M +exp(2zc): Ky}
V=— L“‘”jfﬂ__(@)trM+detM+exD(2M)
X {(K11K33-‘K13K31)+(K22K33—K23K32)}
W= I%WdetM—exp (2ro)-detK
and
M:(Kll KIZ)'
K, K,

If we set A=a+iB, |plP=1+2pra+ p?z?(a?+P2) and hence |p|<1 is equivalent to a<0
or to R. P. (\)<0.

(1) Nonautonomous case

Let the three roots of (3-6) be A;, A, and A;. We will say the periodic solution under
consideration is “stable” if and only if |p:|<1, i. e, R. P. \)<0 (=1, 2, 3).

Then the condition that the periodic solution is stable is given by (Routh-Hurwitz
criterion)

U>0, V>0, W>0, UV>W. G-7

(105
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case i) a#0
Since u is a small quantity, it follows immediately that (3-7) becomes

<0, tM°<0, detM°>0
where
M'= (Kl‘i Klg)~
K; Ka

Further it is obvious that the following relations hold.
27
t, Mo= % [1.Go(x¥s))ds, Ji=r*detM®
0

where
G'= (D(;P D‘;’B) .
D(IOZ) l)(zoa)
case ii) o=0
It is easily observed that (3-7) reduces to

U,>0, V>0, Wi>0, UV, >W,
where

Uy=—tK’, V,=X(K:K},—K}K}),
1<y

a=—detK°.

Further it is apparent that the following relations hold.
2r
Uy=— ;t—fer“”(x(‘”(S)) y Ji=—oW,.
0

(2) Autonomous case

In this case, one of the p;’s is equal to 1 (Poincaré) and hence one of the A;’s is equal
to 0. The other two roots (say A,, A,) are decided from

AUV =0, (3-8)

We will say the periodic solution under consideration is “stable” if and only if
R. P. \)<0 (¢=1, 2).

Then the condition that the periodic solution is stable is given by
U>0, V>0. 3-9)
case i) o#0
It is obvious that (3-9) becomes
<0, t,M°<0
an
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where
27

0— l (0
LM noftrG“(x (s))ds .

case ii) o=0
It is easily seen that (3-9) becomes

Uo >0, Vo >0
where

2w
—- 0___l O 3eC 0
Up=—1t,K= ﬂft,D"(x (s))ds ,

Vo :Z (K?iKJ% _Klojlilot .

AN}

IV. Pseudo-harmonic Oscillations of the Third Order

From the discussion mentioned above we know that the pseudo-harmonic oscillations
of the third order are classified into four types corresponding to the classification of

the differential equations which describe the oscillations.
An example of the pseudo-harmonic oscil-

N o 7 | e=0 a#0 lation of type A is the self-sustained oscil-
£ contains r ex- lation of the Colpitts oscillator (Ex.1 inI.).
. tpye B |type C . .
plicitely An example of type B is the synchronized
f does not contain | I 1 oscillation of the Colpitts oscillator (Ex. 2 in L.).
+ explicitely (type A|type D Finally, an example of type C is the peri-

odic oscillation of the Parametron circuit (Ex.
3 in L).
The remaining case —— the pseudo -harmonic oscillation of type D ——is essentially

equivalent to the pseudo-harmonic autonomous oscillation of the second order and hence
it will be unnecessary to give an example.

We now show some practical results which are obtained by applying above analy-
sis to the Colpitts oscillator.

IV-A. Self-sustained Oscillation of the Colpitts Oscillator

In Fig. 1 the occillating current Asin{}¢ through the LC circuit and the dc voltage
Va (dc component of the oscillating voltage V,) are approximately determined by

Jol gl 1/(LQP, 1 -
[ AC, AC T a5 "RCﬁ) (4-1)
fs i ——g—s‘ ._1—= 2 )
<1+Z)c,+<1 A)Cl La (4-2)
fot&y=—2(V+E») (4-3)

(12
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where
i f(Vy— A coss, V cusa)—f°+(f Cos S+ fs8ins) 4.
| % QC » v QC ¢

L gV iy~ El'f'Q{lC.—COSS, Va— QC CO‘:»S)—'g0 +(gccoss+gssins) -eee- .

Especially if |fs|<«<A4, |gs|<A, then Q=1//LC, hence A and V,, are determined from

fol g1 _ +. 1 ~
AT, T AC ~VIC(;m+ Ru) (4-4)
Sotgo=— %(Vzo‘FEz) (4-5)

where

1

AVIC o5, 17,y AVIE cos )=

J/ f(Vzo—E1+Achcoss, VQO—A“C/LCCUSS) ]-cz-+(fccobs+f.,:,ms)+ ------
2
&
2

g(Vzo—E1+ G, o +(8:COS S+ g5 Sin §)+«eeeee

i
N

(1) Transistor Colpitts Oscillator
Let the “in-the-large characteristic” of a p-n-p transistor be represented by*

J/ IE—T%( Ve 1)+_a1_!co (,
l IC:_ﬁ‘.’_I_flf’_(gTVE_l)__Jco (e;V'VC—-l)

1—aya; l—aya;

where r=q/kT, ax Izo=a:Ic0<0.
The relations between the notations of the transistor in Fig.1 and that in Fig. 4 are

{ Ve=—V,, Ve=V,—V, E & e c
Ip=—n—1,, Ic=I,.
In this case we have f;=0, g,=0 and hence the period is . Vc

approximately 2z//C. The oscillating current through the
LC circuit Asin({/s/LC) and the dc voltage V,, (dc component

of the oscillating voltage Vzr=Vy—Vg) are decided from
Fig. 4.

Cl CZ cl

‘ ('(%-I-l—a’)azve rE h(n)— (V—k‘ﬂ)ale—r%%(f)
1 = ailaven) 4 TE (s + )

| aNe‘TE‘A(r;)—e"TV”I.,(s)=1”“”“’(V20+E2>—(1—a,\»>
. R[EO

* W, Shockley, M. Sparks aud G. K. Teal, Phys. Rev. 83 (1951) 151 or J. J. Ebers
and J. K. Moll, Proc. I. R. E. 42 (1954) 1761,

(13
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where E=TANILC/Ci, n=rANVIC/C; I,, I, are modified Bessel functions.

(2) Vacuum-Tube Colppitts Oscillator

We shall consider the vauum-tube Colpitts oscillator of Fig.5. Proceeding as before,
we find that the oscillating current Asin{¢ through the LC circuit and the grid bias
voltage V,, are approximately determined by the followin relations.

,_d@v;_
L

‘QH‘T
T
.. <
.y
L

Sl gl _  1(LO*, 1
[A L TAC al5e +RC12>
IARE &\ 1 _10e
<1+A)cz+<1 A)Cl_m
goz—R'g*Vzo
where
f 5 _,iq_ 3 ___‘A_ﬁ _._f() 1IN s)4 ceeees
f(E-FQC2 coss, Vi ac, coss)72—+(fccoss+fssms)—|—

A _ A _ & (o ins)d.eeee-
: g<E+ ac; coss, Vi ac, cos s)— —2~+(g’c cos s-+g;sins)+ .

Especially, if | fs|< A, |gs|< A, then Q=1//7C, hence A and V,, are decided from

(fel gl (1o, 1
| AC,TAG, “/Lc(rcﬁ?ec‘z)
é go-—'lze"vzo
where
f(E+A“/Lccoss, V20~A__“C{z—ccoss) :1£1+(fccoss~kfssin S)Feneen
1

g(E-i-_A_“/_L—_Ccoss, VZO—A_*éEcos s> =%9+(gc COS S g sin §)4«++ e .

1

These results are practically calculated by the analytical method making use of

(14)
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the analytical representation of the vacu- Ve
um-tube characteristic,* or by the graphical
method using the “constant-current char-
acteristic curves” (See Fig.6).

The efficiency 7 of this oscillator is easily
obtained. Since v=(A/CQ)cosOt, the aver-
age power dissipated at the load resistance
ris LA?*/2vC. On the other hand, the avera-
age supplied power at E is Ef,/2. Accord-
ingly

Ip=const.

Iq =const.

Veo

_ LA
= ErCH,
where
2r o . o
Sfo= -}?B/‘f(E—l- A*ézLC coss, Viy— AxélLC cos s)ds .

(3) On the Representation of the Characteristic of the Nonlinear Element

For the time being, we have proceeded under the assumption that the nonlinear 3-
pole is static (=resistive). However in some cases it will be necessary to characterize
the nonlinear 3-pole by a dynamic (= non-resistive) representation. An example for the
capasitive case is as follows.

( I;=f(V,, Vs, %_1, f{d_‘;z)
!\ Iz=g<V1, VvV, ddI;l’ %2)

In this case we have the differential equation:

*  To cite an example,
I;=0 when V¢+DV <0 or V<0
I,=0 when Vy+DVp=0 or V<0
I,=0, I,=BV s when Ve+DV =0 and V=0
I,=8Vse, I;=0 when Vy+DV =0 and Vy<0
I,=BVsaV 2 [(Vy@+V o), I;=8VV,2/(Vya+V ) when Vyz0 and Vp=0

where Vs=w’ ’ D is Durchgriff ; o, B are positive constant and «=:1.5.

1+D
This representation is not analytic in the whole (V;, V) - plane but can he used

in the former analysis since four conductances ol oI, oI, ol

e —_— are con-
oV, 5V, @V, WV,

tinuous functions of variables (V ), V).

(15
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{ gi; =—z4pF(x, y,—2 2+0,(s)

‘ gy-»:zapb(l—a)ky—yq—yc(x, ¥1—2 2)+0,(s)
dz _ 1 _

Wi (1—a)y—pl2+0,(p)

instead of (1-2) since we may writc

[ (v v %’1" Eld[;g) dx dy

| 5 =uF (x, 3, G, B)=pF @, 3-2, 2+ 0:()
e v G ) dx

*?L 7 =#G< ¥ o7 ,d) =pG(x, ¥,—2, 2)+0,(p).

This equation can be treated by the similar prccedure as before.

1V-B. Synchronized Oscillation of the Colpitts Oscillator

In this section we shall consider the case of subharmonic synchronization (#=1) for
practical importance.
The oscillating current through the LC circuit: Asin—;‘nlt+Bsin%t (m-th order sub-

harmonic of the synchronising signal) and the dc voltage V. (dc component of the
oscillating voltage V) are decided from

( ,Ji‘g__gg=3(ei@__l_.)_§£(ef£+ig)

| C. G m: C m? = RC?
| fs _ & _g(@®L_1), Bm rC
C, G =A% C>+wc1’< +R(4)
f0+30=_P‘(V20+E2)
where
’ Am Bm _: Am Bm _
f(Vzo 1+~—c—coss -a—)—;SHlS, Va— oC. coss+——c—zsms esmms)

='f29 +(fecoss+fssin s)+-eeee

, Am ,_p_B“ Am Bm _
g,(V —E4 oC, CO3 —aczsms V 30— oC coss+ Czsms esmms)

N z‘" +(g: COs s+ gs sins)+-oeeee
If the sychronising signal is incerted as in Fig.7, we have the differential equation:

dvi__ 1 _1
'a’t“ - C—Z ‘ f(VI! V2)

av,_ 1, 1 1 _
2 =i RV T RGET clg(v“ V)
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1 e . 1. 1
(V1+E1)—ZV2+z31nwt—;él +1T—C—1 Vz

1
L
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di
di

o
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N4 e
r
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+
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In case of |w?LC—1|«K1, we can treat as before provided ekwLl. If this is not the

case, putting

Ce

(———l—szC)Cz sin wt

V1= Vi +

——

V,=V,/— sin wt

Ce
\ (1 ——(.OZLC)Cl
=i wCe

and making use of new variables (V,’, V/, ¢*) instead of (Vy, V,, i) we can proceed as

before.
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