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On the Steady Motion of a Viscous Fluid 

through Double Pipes 
(Received Dec. 14, 1957) 

Abstract 

Eiji KASAHARA * 
Masayuki SIMIZU ** 

It is pointed out by Greenhill that the Navier-Stokes equation of an incompressible 

viscous fluid flowing in a pipe has the same form as the equation which is satisfied 

by the "torsion function " in the theory of elasticity under some conditions. In this 

paper, by using this theory, we obtain the velocity distributions and the discharges 

per unit time over the pipe sections, boundary curves of which are confocal ellipses 

and eccentriC circles. Furtheremore, for a special case, the flow in confocal elliptic 

pipes is numerically estimated and compared with that in the corresponding singl 

elliptic one. Similary, comparisons are made between the flow in pipes of eccentric 

circles and that of concentric ones. 

I. Introduction 

There are many cases in which the exact solutions of laminar flows of viscous 
fluids through straight pipes can be obtained. These cases, however, are almost 
limited to the single straight pipes of certain cross-sections. If the cross-section 
of a pipe is composed of doubly connected domain, the exact solution of laminar 
flow through such a pipe has scarecely been obtained, except the trivial case of 

concentric circles. 
We have solved two cases of steady laminar flows of viscous fluids through 

straight uniform pipes. The one is the case where the boundary curves of the 
cross-section of the pipe are confocal ellipses ; the other is the case of eccentric 

circles. 
In this paper, first, it is shown that the solution of the Navier-Stokes equation 

of pipe flow is reduced to the "torsion functz'on" of the torsion problem for the 
same cylinder as the pipe under some appropriate conditions. Second, by applying 
the above theory, the general expressions of the velocity distributions and the dis
charges per unit time are obtained over the pipe sections, boundary curves of 
which are confocal ellipses and eccentric circles;. Furtheremore, for a special case, 
the velocity distribution and the discharge of confocal elliptic pipe are numerically 
obtained and compared with those of the correspondent single elliptic one. Similary, 
comparisons are made between the pipe of eccentric circles and that of concentric 
ones. 

* 'tf. * "!If:. '§] Dr. Eng., Assistant Professor at Keio University 

** tl"f %K lE Z. Assistant at Keio University 
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II. Fundamental Theory 

We shall describe a motion of a viscous fluid by the Cartesian coordinate x, y 

and z. By denoting the velocity components along x-, y-, z- directions by u, v, 
w respectively ; the components of the body force by X, Y, Z; the density of the 
fluid by p; the viscosity by J.L; and the pressure by p, the Navier-Stokes equations 
of a incompressible viscous fluid are expressed as follows, 

p Du = pX _ Op + J.L''\l2U 
Dt ax 
Dv aP 2 p- =pY----+J.LV v 
Dt pY 

Dw ap 2 p---=pZ-- -+JlV w , Dt oz 

where Du/Dt etc. are 

and v2u etc. are 

Du_ =-a!!_+ u-~~+ v au+ w?_u__ etc. 
Dt at ax ay az 

~zu ozu azu 
V2U=---+ ..,-+---etc. 

OX2 OJ" OZ2 

(1) 

Let us consider the case where a fluid flow in a straight pipe with a uniform 
cross-section. Take the z- axis in the direction of the pipe length, and assume 

the following four conditions ; 
i) No body force are exerted, 

i.e. X= Y=Z=O. 

ii) w does not depend on z but x and y, 

i.e. ow 
oz =O. 

iii) The flow of the fluid is laminar, 

i.e. u=v=O. 

iv) The flow is steady, 

i.e. au av aw 
a(= at =-at =O. 

Under these conditions, the equations (1) are reduced to 

and 

op_ =O 
ox 

!Jp__=O 
ay 

~t( ~~~)+( ~~~ )= ~-. 

(2) 

(3) 

It follows that the pressure is a function of z alone and that the pressure gradient 

(9) 
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along the direction of the flow is constant. Let the constant pressure gradient 
denote by P, the equation (3) is reduced to 

_q_~t£_ + (J2~ = _!:_ ( 4) 
ox2 oy2 1-' • 

By the boundary condition, it is required that w=O at the boundary. 
Hence, if we put 

-.r. P ( 2+ 2) W-'t'- 4i£- X y with V2,Y=O (5) 

we can show that w satisfies the relation (4), and the boundary conditions turns 

out 

,P=-.r_ (x2+y2) 
4/1-

(6) 

at the boundary. Since the equation ( 4) is a linear equation, we can treat the 
problem more easily. 

As be pointed out by Greenhill, the equation ( 4) is the same form as the equa
tion which is satisfied with the ''torsion function" in the theory of elasticity, and 

our problem is equivalent to seek for the torsion function of the cylinder of the 
corresponding cross-section. 

III. The Case where the Boundaries are Confocal Ellipses 

Using the previous results, we shall discuss the flow between a double pipe, of 
which outher and inner boundaries are confocal ellipses. 

Introducing the elliptic coordinate ~' r; by the relation 

x+iy=c·cosh (~+i17) 
i.e. x= c·cosh~·COSYJ 

y = c·sinh~·sinYJ, 

it is immediately shown that the relation 

1C --

(7) 

is satisfied. Hence, 
x-y curves correspond

ing ~=~0 and ~=~1 

--+--+---+--~ become confocal ellip-
~' ~o ses. (See Fig. 1) 

Figure 1 

(10) 

Substituting the ex
pressions (7) for x and 
y into the first equation 
of (5), we obtain the 
expression 
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W=l/J--R8~(cosh 2E+cos 21']) 
f), • 

(8) 

Then, the boundary conditions become as follows, 

Pc2 

l/J= BJL (cosh 2Eo+cos 21']) 

and 
Pc2 

l/1=-8-;-(cosh2;1+cos2l'J) (at E=E1). (9) 

Since the functions 

l/!n={ An sinh n (E?-E)+Bn~_~!lh n (E-fl)}cos nr; (n=O, 1, 2,. ..... ) 
smh n(fo-El) 

satisfy the relations V2l/!n=O, l/J can be put in the form, 

(10) 

The boundary conditions (9) are described as follows, 

"" Pc2 L: Bn cos nr; =---
8
-(cosh 2E0 +cos 21']) 

n=O JL 

and 

Comparing the coefficients of cos n!J of the right hand side with those of the left 

hand side, we obtain 

and 
for n~O or 2. 

Substituting these coefficients into the equation (10), after a few calculations we 

obtain 

(11) 

Hence, the velocity w is expressed as follows 

(11) 
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(12) 

Discharge per unit time Q is obtained by the double integration of the velocity 

over the sectional area S of the pipe and expressed as follows 

~~~ ~~·I· 
Q= Jfw(x,y)dxdy= ffw(f,'I)·I

0
Y O:v. df dYJ, 

~ ~~ \a!; 'aifi 

(13) 

where S' is the domain of the 1;-r; plane corresponding to the pipe section S. Since 

the Jacobian is easily calculated as c2/2 ·(cosh 21;- cos 217), the equation (13) is 

expressed as follows ; 

to .,. 
Q = Pc!_ JJ{<~-{1 )<:~?.h.?~()_-tj_~o-!;)cosh2!;, + ~inh2(~~=~)+ sin_11.2(~-E_0 cos 217 16tL Eo-Et smh2(!;0 -!;,) 

t,-.r 

-(cosh 2~ +cos 2 r;)} (cosh2!;-cos2r;) drt d!; 

_ sinh2(t~-e) + sinh2(t-tt)cos2 2r;-(cosh22(-cos22r;)} dr; d~ . (14) 
smh2(t0-t,) 

According to the elementary integral calculus, 

eo.,. 

and 

J J cosh2~ dr; d!; = 7t(sinh2!;0 -sinh2~1) , 

tl-.r 
to., 
J J!; cosh2!; dr; d!; = 7t (~osinh2~o-Et sinh2!;,)- ; (cosh 2~o-cosh2~,) , 
t,-.r 
to.,. 
J J { sinh2(~o-~) + sinh2(~-~,)}cosh2 2'7 dYJ d~ = 7l'{cosh2(~o-~1) --1} 
t -1( 

(o ., 

J Jccosh2 2~-cos2 2r;)dr;d~=: {sinh4~o-sinh4~1 } • 

.;,-1( 

Putting these results in the expression (14), Q is reduced to 

Q = Pn:c4 {sinh4~0 -sinh4~'- (cosh2~o-cosh2~,)2 -tanh(!;o-E,)} . 
16f! 4 2(!;o-~t) 

(15) 

As a special example, we have performed numerical calculations for the case 
where ~u = 1, ~~ = 0 and c= 1. The velocity distribution is shown in Fig. 2, and the 

(12) 
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discharge per unit time is 0.4408P I J.t. For the single elliptic pipe of the same outer 
boundary, we can see in Fig. 3, and the flow quantity is 0.8838P/ p,. 

Figure 3 

Figure 2 

V= w X 8JL p 

IV. The Case where the Boundaries are Eccentric Circles 

As another example, we shall consider the case where the inner and outer 
boundaries are circles which are not concentric. If the bipolar coordinate ~, r; is 
introduced by the relation 

x+ iy =a tan!(~+ir;) 

i. e. X= asin~ 
cosE +coshE 

(16) 

_ a sinhr; 
Y - cos g + cosh 17 ' 

the expression, 

(13) 
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x2 + (y-acoth r;)2 = a2cosech2 71 

shows that x-y curves corresponding to YJ=a and r;=/3 produce eccentric circles. 
(See Fig. 4) And, inversely, if the radii of two circles Yt, r2 and the distance 
between them d, are arbitrarily given, the necessary parameters a, a, fJ for these 
eccentric circles are easily obtained by the following relations, 

a/rl = cotha-J(;:r -sinh2a 

a= r 1sinha 

(3 = sinh-1 .!!:... 
r2 

Figure 4 

0: 

Substituting the equation (16) into the equation (6), we obtain 

w = \f!- Pa2 (coshYJ-COs~) . 
4t-t cosh r;+cos~ 

The boundary conditions are 

and 

'YJ =a: '-f! = Pa2 (cosha-cos~) 
4t-t cosha+cos~ 

'YJ = f3: "'= Pa
2 (cosh(3-cos~) 

4t-t cosh/3+cos~ · 

Since the functions 

{ 
sinhn(YJ-a) B sinhn(/3-r;)} t: 

\f!n = An --;--h (~) + " . h (/3 ) cosns sm n ,..~-a sm n -a ( n = 0, I, 2, · · · · · ·) 

(17) 

satisfy the equations \'2\f!n = 0, it may be considered the function '-f! is expanded 
as follows 

'-f! =~{An s~nhn(r;-a) + Bn s~nhn(,8-r;) }cosn~ w smhn((3-a) smhn(,8-a) 
n=O 

(18) 

to satisfy the boundary conditions 

(14) 
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r; =a: :E Bncosn~ = Pa2 
• cosh a- cos~ 

n=o 4,_, cosh a+ cos~ 

r; = (3: :E Ancosn~ = Pa2 
• cosh(3- cos~ 

n=o 4JL cosh(3 +cos~ 

(..19) 

And the coefficients An, Bn can be determined as the coefficients of Fourier series. 

The results of calculations are 

.,. 
Ao = Pa2 ..!.Jcosh,8- cos~ d~ = Paz (2coth,8-1) 

411- 7t cosh(3 +cos~ 4p ' 
0 

1t' 

Bo = Pa2 _! Jcosha- cos~ d~ =Paz (2cotha-1) 
4p 7t cosha +cos~ 4p ' 

0 

.,. 
An= Pa2 _g_Jcosh,8- cos~ cosn~ d~ = Pa2 • ( -1)" coth,S·e-»13 

4t-L 1t cosh,&+ cos~ 11-o 

and 

Then, we can obtain 

"'= Pa
2 

{ "1- a . (2coth,8-1) + ,8- r; · (2cotha-1) 
4/L (:3-a {:J-a 

+ 4 ~( _ 1)n e-nl3 coth,8sinhn(r;:-a) + e-na;cothasinhn(,8-a)}cosn~ 
L.J smhn(,8-a) 
n=O 

and 

w = Pa2
{ 2• (r;-a)coth,8 + (,8-r;)cotha 

4p ,8-a 

+ 4 ~( _ 1)ne-nl3 coth,8sinhn(r;:-a) + e-na;cothasinhn(,8-r;) ·cosn~ _ 2cosh r; }. 
L.J smhn(,8-a) cosh r; +cos~ 
11=1 

·····{20) 

After easy but tedious calculations, the discharge per unit time is expressed as 

follows 

(15) 



16 On the Steady Motion of a Viscous Fluid through Double Pipes 

f3 ~ 

Q = J J w(x,y)dx dy = J J w(~, tJ) • (cosh 'YJa~cos~)2 d~ dr; 
s ~ -~ 

= 7tPa2 [cotha -1 _ cothB -1 _ (cotha-coth,8)2 

2,u sinh2 a sinh2 ,8 ,8- a 
3 ( 1 1 ) 
4 sinh4 a - sinh• {:3 

"' 
"{ -e-n<a;+fD( coth,8-cotha)2 (cotha +coth,8+2n) 

+ w sinh n(,8-a) 
n=l 

+ . -----e-cf3-a;)coth,8-e""cf3-a;)cotha ( e- 2 ·~f3 e-2na; )}] 

sinh n(,8-a) sinh2 ,8 sinh2 a · 
(21) 

For a special case (a= 1, ,8 = 2 and a= 1), the velocity distribution is shown in 
Fig. 5 and the numerical comparisons of the discharge between the case the ec
centric circles and that of concentric ones of the same dimention are seen in the 
following, 

·J.O 

Eccentric circles · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Q = 0.07369P/ f1 

Concentric circles······················································ Q = 0.05727 PI 1-t • 

Figure 5 

(16) 

V = W X ____!!:__ 
Pa2 


