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On the Steady Motion of a Viscous Fluid
through Double Pipes

(Received Dec. 14, 1957)

Eiji KASAHARA *
Masayuki SIMIZU **

Abstract

It is pointed out by Greenhill that the Navier-Stokes equation of an incompressible
viscous fiuid flowing in a pipe has the same form as the equation which is satisfied
by the “ forsion function”’ in the theory of elasticity under some conditions. In this
paper, by using this theory, we obtain the velocity distributions and the discharges
per unit time over the pipe sections, boundary curves of which are confocal ellipses
and eccentric circles, Furtheremore, for a special case, the flow in confocal elliptic
pipes is numerically estimated and compared with that in the corresponding singl
elliptic one. Similary, comparisons are made between the flow in pipes of eccentric
circles and that of concentric ones.

1. Introduction

There are many cases in which the exact solutions of laminar flows of viscous
fluids through straight pipes can be obtained. These cases, however, are almost
limited to the single straight pipes of certain cross-sections. If the cross-section
of a pipe is composed of doubly connected domain, the exact solution of laminar
flow through such a pipe has scarecely been obtained, except the trivial case of
concentric circles.

We have solved two cases of steady laminar flows of viscous fluids through
straight uniform pipes. The one is the case where the boundary curves of the
cross-section of the pipe are confocal ellipses; the other is the case of eccentric
circles.

In this paper, first, it is shown that the solution of the Navier-Stokes equation
of pipe flow is reduced to the “lorsion function” of the torsion problem for the
same cylinder as the pipe under some appropriate conditions. Second, by applying
the above theory, the general expressions of the velocity distributions and the dis-
charges per unit time are obtained over the pipe sections, boundary curves of
which are confocal ellipses and eccentric circles. Furtheremore, for a special case,
the velocity distribution and the discharge of confocal elliptic pipe are numerically
ohtained and compared with those of the correspondent single elliptic one. Similary,
comparisons are made between the pipe of eccentric circles and that of concentric
ones.
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Eiji KASAHARA and Masayuki SIMIZU 9

II. Fundamental Theory

We shall describe a motion of a viscous fluid by the Cartesian coordinate x, y
and z. By denoting the velocity components along x-, y-, 2- directions by u, v,
w respectively ; the components of the body force by X, Y, Z; the density of the
fluid by p; the viscosity by u; and the pressure by p, the Navier-Stokes equations
of a incompressible viscous fluid are expressed as follows,

pg’t‘—=pX—/a”~+w2u
P-gz; =pY— @Z +uviv
Dw _ _,82 2

where Du/Dt etc. are

Du _ ou ou on ou
Dt —*a’t—’*‘ u 5 + v oy + wréiz“ etc.

and v’ etc. are

ou +

2y? 9—2— etc.

\'72u~-—-+

Let us consider the case where a fluid flow in a straight pipe with a uniform
cross-section. Take the z- axis in the direction of the pipe length, and assume
the following four conditions ;

i) No body force are exerted,

ie. X=Y=7=0.
ii) w does not depend on z but x and y,

. ow _
1.e. EN 0.

iti) The flow of the fluid is laminar,
i.e. u=v=0.
iv) The flow is steady,

: ou _ ov _ ow _
Le. S5 =o T o 0.

Under these conditions, the equations (1) are reduced to

and
(ax~ )+( ayuj) oz - *

It follows that the pressure is a function of z alone and that the pressure gradient

(9)



10 On the Steady Motion of a Viscous Fluid through Double Pipes

along the direction of the flow is constant. Let the constant pressure gradient
denote by P, the equation (3) is reduced to

dw  o*w___ P

w oy @
By the boundary condition, it is required that w=0 at the boundary.
Hence, if we put
w=— :;;(xz—iryz) with vap=0 5)

we can show that w satisfies the relation (4), and the boundary conditions turns
out

V= ) )

at the boundary. Since the equation (4) is a linear equation, we can treat the
problem more easily.

As be pointed out by Greenhill, the equation (4) is the same form as the equa-
tion which is satisfied with the “ forsion function” in the theory of elasticity, and
our problem is equivalent to seek for the torsion function of the cylinder of the
corresponding cross-section.

1II. The Case where the Boundaries are Confocal Ellipses

Using the previous results, we shall discuss the flow between a double pipe, of
which outher and inner boundaries are confocal ellipses.
Introducing the elliptic coordinate &,» by the relation
x+éy=c-cosh (E+in)
i.e. x=c-coshé-cosy
y=c-sinh&-siny, N

it is immediately shown that the relation

7 LT A
4 (c-coshg)? + (c-sinh§)? ™ 1

is satisfied. Hence,

K x—y curves correspond-

ing £=f, and E=§

(’— _\ x e become confocal ellip-
\\__// & & ses. (See Fig. 1)

. Substituting the ex-
pressions (7) for x and
-% |- y into the first equation
of (5), we obtain the
Figure 1 expression

(10)
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2
w= t}/——rgfr(cosh 2E+cos 2»7).
Then, the boundary conditions become as follows,
1{/- 8 (cosh 25,+cos2n)  (at E=E))
and
=g (cosh 2t1+cos2y) (at E=E).
Since the functions

%2{ A, sinh n(E,—E)+ B, sinh n (§—§))

sinh 7 (E,—&) }cos ny (n=0,1, 2,

satisfy the relations v*»=0, Y can be put in the form,

‘!, E An Slnhn(go S)""Bn sinh »n (E'—El)

prva sinhn(£,—&,) " CoS M7 .

The boundary conditions (9) are described as follows,
od _ Pc?
Z_)O B, cos ny —wsuf(cosh 2E,+cos 27)

and w P
> A.cosnuy = 8 (cosh 2&;+cos 2n) .

n=0

11

)

€

(10)

Comparing the coefficients of cos n#7 of the right hand side with those of the left

hand side, we obtain

B0= fRZiCOSh 2&0 y

Pc?
Be= 8u,
A= Pe? ~-cosh 2£;,
8
_ Pc?
Az=g,

and
A.,=B.=0 for n=x0 or 2.

Substituting these coefficients into the equation (10), after a few calculations we

obtain

A e (g

sinh 2(8,—&) + sinh 2(E—-§&))
Sy s}

Hence, the velocity w is expressed as follows

an

@4 )
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S =

Sinh2(&,—¢) +sinh2(6—¢,) ., X
AT cos 2y — (cosh2é+cos 2. 12)

+

Discharge per unit time @ is obtained by the double integration of the velocity
over the sectional area S of the pipe and expressed as follows

ox ox
oF on
Q= ffw(x y) dxdy= j‘fw(E,n)°‘ 5 dt dn , (13)
|
a‘g‘ on |

where S’ is the domain of the é—» plane corresponding to the pipe section S. Since
the Jacobian is easily calculated as c?/2-(cosh 2 —cos 2y), the equation (13) is
expressed as follows;

Pct (&— E)cosh250+(5n—’g‘)cosh2£ sinh2(E,—&) + sinh2(F—£))
lﬁuff{ - 3 + Snh2E,—£)  cos2n

— (cosh2&+cos?2 r))} (cosh2&—cos2y) dn dE

Pct [ ((E,cosh2s,—E cosh2E, | hog 4 cosh2& —cosh2§, | 9
16/1.f £ —& cosh2E + E—& Fcosh2g
_ sinh2(6—8) +sinh2(E—8) . 4o\ tios
s cos?2y—(cosh*2i —cos?2q)} dy df . (14)

According to the elementary integral calculus,
’30 k4
ffcoshZE dn df = 7 (sinh2E,—sinh2§,) ,

El_’
EO g

f f Ecosh2E dy df = (Essinh2Ey—Eisinh2£,) — 7 (cosh2Ey—cosh2E1)
£
4“:0 "

f f {sinh2(E,—&) + sinh2(E—E,)} cosh?2y dn dE = 7 {cosh2(E,—E,) — 1}
E -7
and
‘SO ”
f f (cosh? 25 —cos?27) dy d = T {sinhaf,—sinh4f,} .
51_'

Putting these results in the expression (14), @ is reduced to

_ Pnct (sinh4f,—sinh4E;  (cosh2,—cosh2£,)* B
0= 16/1-{ 4 2(E—E) tanh(&, El)} . (15)

As a special example, we have performed numerical calculations for the case
where £,=1, £,=0 and c=1. The velocity distributicn is shown in Fig.2, and the

12)
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discharge per unit time is 0.4408P/u. For the single elliptic pipe of the same outer
boundary, we can see in Fig.3, and the flow quantity is 0.8838P/u.

IV. The Case where the Boundaries are Eccentric Circles

As another example, we shall consider the case where the inner and outer
boundaries are circles which are not concentric. If the bipolar coordinate £, 7 is
introduced by the relation

x+zy=atan%—(§+m)

. _ asing
Le x= cosE + coshé& (16>

asinhy

y= cos& +coshn ’

the expression,

(13)
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22+ (y—acothy)® = a*cosech?n

shows that x—y curves corresponding to »=a and =28 produce eccentric circles.
(See Fig. 4) And, inversely, if the radii of two circles 7;, 7, and the distance
between them d, are arbitrarily given, the necessary parameters @, a, 8 for these
eccentric circles are easily obtained by the following relations,

alr = cotha—J(%)z— sinh?a

a=r;sinhx
B=sinh—tZ
£)
4
7
a cothg
[
a coih a
o
x T T £

Figure 4

Substituting the equation (16) into the equation (6), we obtain

_ 4 _ Pa*(coshn—cos&
w =1y du \coshn+cos£) ’ an

The boundary conditions are

_ Paz (cosha—cos’g’)

@ v= 4 \cosha+cos&

7

and
Pa? (coshﬁ——cos’g‘) )

7=p: \p=—4~ﬁ- coshB+cosE

Since the functions

_ sinhzn(y—a) sinhn(8—7) 1o
V= {A "sinhz(f—a) +B. sinh n(ﬂ_a)}cosnf n=0,1, 2, )

satisfy the equations vy, =0, it may be considered the function  is expanded
as follows

_y sinh#(y—a) sinh#n(8—7)
v _'"E{An sinhn(8—a) + Ba sinhn(B——a)}cosnE (18)

0

to satisfy the boundary conditions

(14)
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cosha —cosé

—a: % Y cosé
nEa EancosnE_ 4y  cosha + cosf

Pa? _ coshB—cosE (19

n=B: B Ancosng = - BT cosE

And the coefficients A., B, can be determined as the coefficients of Fourier series.

The results of calculations are

_Pa* 1 fcoshB—cost 4 Pa _
4o dp 7, coshB—i—cosEd‘f 4p (2cothS—1),

_Pat1 tcosha—cosf _ Pa? _
Bo=g =) coshaToost 4 = Ty (eotha—1),

_ Pa? 2 [coshB —cos _Pa i g8
,._4_#7_[0 mcosnfdf - (=D cothB-e

and

_ Pa* 2 ﬂCOSha—COSE ___E_. —1)* cot .ena
B,,__.ZJ_;0 —_——coshcx+cosfcosn5d£ m (=D*cotha-e™ .

Then, we can obtain

- Pein—a 1+ B=n. 1
‘U{b’—a (2coth—1)+ £=2 - (2cotha—1)

3 __1yn € " cothBsinhn(p—a) + e **cothasinhzn(B8—a)
+4) (1) sinh7 (B—a) }°°s 3

n=0

and
w= E{z.(’i“a\) cothB + (B—n)cotha
4r B—a
T e coth Bsinhn(n—a) + e cothasinhn(8—1). _ 32coshy
+4”Z_:f_1) (A=) cosnk W}
...... (20)

After easy but tedious calculations, the discharge per unit time is expressed as

follows

(155
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Q:ijmwwwmjﬁ%@m%a&mgaﬁyﬁ¢7

_ mPa*[cotha—1 _cothB—1 (cotha—cothﬁ)2_§( 1 1 )
2u sinh?a sinh? 3 B—a 4 \sinh*a sinh'@B

+ i{ —e @B cothB—cotha)? (cotha+cothB+2n)
= sinh n(B—a)

1

4 &P coth B — e P~ cothar | ( e"2p eine )}:l 21)

sinh n(B—a) sinhi?8 ~ sinhPa

For a special case (@=1, 8#=2and a=1), the velocity distribution is shown in
Fig.5 and the numerical comparisons of the discharge between the case the ec-
centric circles and that of concentric ones of the same diméntion are seen in the
following,

Eccentric Circles o veeerresmieiiiiiiiiiiiiiiii i e Q= 0.07369P/H
Concentric circles:« oo eereerreniniiiiiiiiiiiiii Q= 0.05727P/I1' .

oF

X} d

-05%

b

Figure 5 v=wx L
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