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Frequency Stabilization of Transistor Oscillator 
(Received May 6, 1957) 

Toshio TSUNOGAE* 

Abstract 

This report contains an analysis of the condition under which the frequency of an 

oscillator may be independent of variations in the operating conditions. The method 

of analysis is based upon the theory of four-pole networks and applied in detail to the 

basic transistor oscillators. Experimental data are not discussed in the present paper. 

I. Introduction 

The ability to maintain the frequency constancy is the most important re
quirement and considerable works have been done by various individuals to make 
an oscillator as free from the effects of variable quantities. F. B. Llewellyn m c2) 

attacked the problem from a circuit theoretical standpoint and showed that in 
certain cases of vacuum tube oscillators the mathematical procedure indicates 
means of making the oscillation frequency independent not only of a variable load 
resistance, but also of the battery voltages. Experimental data were cited which 
show that the best adjustment was in substatial agreement with that predicted by 
the theory. The purpose of this paper is to develope the method of Llewellyn in 
terms of the familier theory of four-pole networks interchanging the vacuum tubes 

with the transistors. 

II. Basic Formulae 

First of all, the basic formulae are derived. The definition of stable oscillator 
used in this study is given to such oscillator that produces oscillation of natural 
frequency of the passive network, and which is independent of the characteristics 

of the active elements. 

The feedback oscillator consists of or may be resolved 
into, a passive four-pole net\\iork to which is attached a 
transistor. Fig. 1 shows the schematic representation of 
such oscillator. In accordance with the theory of the ope-
ration of oscillators, the following relation must be satisfied Fig. 1 

in the system when the assumed current conditions are as shown by the arrows: 
. . 

(A-1)(D-1)=B C, (1) 

* jij ~ ;fiJ ~ Assistant at, Keio University 

(I) F. B. Llewellyn, "Constant Frequency Oscillators," Proc. I. R. E., Vol. 19, Dec., 1931, 

pp. 2063-2094 

<2) F. B. Llewellyn, "Constant Frequency Oscillators," B. S. T. J., 1932. pp. 67-100. 

(11) 



104 Toshio TSUNOGAE 

where 
• ! 

;A B a /3 A B i 

lc D ry 0 c • I 
D I· 

The transmission constants of the transistor are shown with real quantities 

(a, /3, ry, o) since the operation of transistor is supposed to be independent of fre

qneucy. cA. B, c, D) show the complex transmission constants of the passive four

pole network. 

In order for (1) to be true, both the real and the imaginary portions must 
separately be equal to zero. From ( 1), then, following two equations are derived: 

~+ 1-(aA+ (:JC+ryB+oD)=O, 

aA+/3C+ryB+oD=O, 

(A) 

(B) 

where ~=ao-{3ry, and (A, B, C, D), (A, B, C, b) are the groups of the real and the 

imaginary terms of cA. :8, t, D). A great simplification results when it is recalled 
that the circuits external to the transistor are assumed to have no other elements 

than reactance. With this understanding, A, IT, B and C vanish from (A), (B) 

Accordingly for the oscillator with reactance four-pole network, (A), (B) become: 

~+1-(aA+oD)=O, 

/3C+ryB=O. 

(A)' 

(B)' 

It may be clear that the representation of oscillation frequency derived from 

(B)' contains the transistor parameters, and which does not coincide with the 

natural frequency since /3~'0, ry~O. In other words, the definition of stable oscil

lator given at the beginning is satisfied only when both terms B and C become 
zero at the natural frequency. 

Fig. 2 

For instance, from (B)' of the familier Colpitts type 

transistor oscillator shown in Fig. 2, the actual angular 

frequency is given by the expression: 

(2) 

The natural angular frequency mo is given by the first term. The second one 
indicates the quantity of frequency deviation from roo. Furthermore, it is very 

clear that the real frequency of oscillation is affected by the transistor character
istics /3, y, which are sensitive to temperature and other conditions. Then it will 
be evident that it is necessary to introduce some means to cancel out the second 
pJrtion in order to make the oscillator become stable. 

Needless to say, however, there are some networks which are satisfactory to 
the necessary condition of stable oscillator. For instance, if the passive four-pole 

(12) 
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network is a series impedance type of single tuning circuit of L, C and R, then 

the term C becomes zero and the frequency is decided only by B =0. In this case 
the real frequency coincides with the natural frequency. When the passive network 
is parallel admitance type four-pole network with L, C, R tuning circuit, the term 

B becomes null. Then C=O gives the natural frequency of this stable oscillator. 
Although the above are special examples of feedback oscillator, in the following 
part, the principles of frequency stabilization by cascade arrangements applicable 
to general configurations are considered with ll type and T type reactance four

pole networks. 
In the oscillator with 11 type reactance four-pole network 

shown in Fig. 3 (a), (B)' becomes: 

X~Xc (Xa+Xb+Xc) + ry Xa = 0. 

Fig. 3 (a) 

(3) 

For instance, for the oscillator of the Colpitts type, the above equation has 

the form: 

/3 w Cb Cc ( w La - w ~b - w ~c) - ry La = 0 . (4) 

Generally speaking, as was also pointed out previously and is clear with practical 

examples such as (4), both terms of (3) cannot become null at the same frequency. 
However, connection of series impedance type reactance four-pole netwowk on the 
left hand of the 11 type as shown in Fig. 3 (b) gives the transmission matrix: 

I 0
1 jXd II A_ jB I= I ~~xdc 

1 jC D jC ·\if~ 
Fig. 3 (b) 

Then (B)' of this newly examined oscillator becomes: 

/3C + y(B+XaD) = o, (5) 

or 

(6) 

As is evident, the natural frequency of the original passive network is decided 
by the first term. Thus it may be reasoned that the frequency must be stabilized 
if the value of this additional element Xd is selected so as to make the second 
term become null at the frequency given by the first term. 

The natural angular frequency roo of the Colpitts type oscillator is decided by 
(4), namely: 

(7) 

Equating the second term of (6) to zero at this angular frequency roo, the value of 

(13) 
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Ld is given by the expression: 

Ld = Cc ·La. cb 
For capacitance stabilization, negative value is needed. 

The above discussion is on the method of left hand insertion of stabilizer only. 

Analogous considerations are possible for the method of right hand and both hands 
stabilizations. Generally speaking, the values of stabilizers connected on the left 

and right hands are different. Furthermore the two elements connected on the both 

hands are so correlated that one cannot be decided independently of the other one. 

There are four combinations of reactance stabilizers at both sides, but one of them 

must b2 neglected where negative value is required in the real element. 
The results of the abov~ consideration are summarized in 'Table (1). From now 

on, let the left and the right of the passive network be named the input and the 

output of it for brevity's sake. 

Similar treatments are possible in the oscillators of T type four-pole networks 

schematically shown in Fig. 4 (a). The stabilizer elements should be inserted into 

the parallel arms of the original networks. When the stabilizer is inserted in the 

input of the T type four-pole network as is indicated in Fig. 4 (b), the transmission 

matrix becomes : 

Fig. 4 (a) Fig. 4 (b) 

1
1 0 II A jB I I A 
jYc 1 /C D = j(C+ YeA) 

jB I 
D-YeB 

Then (B)' is written as follows : 

(8) 

The oscillator may be stable if the two terms of (8) are nullified at the natural 

frequency. The results of similar consideration with that previousely mentioned 

are also summarized in Table 1. 

Ill Results of Calculation 

Table 2 and Table 3 respectively show the results of calculations of the stab
ilizers for oscillators of I1 type and T type reactance networks. 

The discussion stated above is limited to the condition (B)'. But for sustained os

cillation, (A)' must also be satisfied. So some remarks about this are given in brief. 
Comparison of (A)' of the stabilized oscillator and the unstabilized one is possible 

by insertion of the natural frequency and the real frequency into (A)' respectively. 
Let the Colpitts type oscillator be used as an example to show the relation. (A)' is 

(14) 



Table 1. 

Oscillators 
I 

(B) ' 
I 

Design Formulae of 
Stabilizers 

I 
Vx•Q~ 

f3C+ ry B= o. 

Lxc (Xa+Xb+Xc) + y X a = 0. 

I X.~ (3C + y(B+XaD) = 0. B+XaD= 0. 

(3 X X ( Xa + Xb) XaXb v~.g·_xc XbXc ( a+ b+Xc)+y Xa+Xd · Xb =0. X d = Xa+Xb 

I Xa ~I (3C + ry(B+XgA) = o. B+XgA=O. 

VQx~ gx, (3 (X X ( Xa+X,') X __ X aX c 
X

11 
X c a+Xb+ c)+ ry Xa+Xg · ---x;- = 0. g- X a+Xc 

I ~~ 
((3-ryXdX u) C + ry(B+XdD+XgA ) = 0. /3 + XaD+ X aA = 0. 

(3 -;,;:xg · (X a+Xb+Xc) + 'Y( X a + X a · X al X b + X g · X ai X c) = 0. X Xb (x X X a+Xc) j}_ x,g_xc 
a=- X a+ Xb a+ g" ---x;;--

I v r (3 c + ry lJ = 0. 

(3 + ry(XaXb + XbXc +X aX e)= 0. 

I T f3(C +YeA) + ry B= o. C+ Y eA= 0. 
1 Vi:___:__ (3{1 + Y e(X a+Xb)} + ry(XaXb+XbXc+XcX a) = 0. Y e=- X a+Xb 

~v~ 
/3(C+ Y hD) + ryli = 0. C+ YhD=O. 

1 
(3 {1 + Y h (X b+Xc)} + ry(XaX b+XbXc + X cX a) = 0. Yh=- X b+Xc 

I TI 
(3(C+ Y eA+ Y hD) + (ry-f3YeYh)B = 0. C + Y eA + Yh D = 0 . 

1 Viy~-xb ~Y" (3{1+ Ye(X a+Xb) + Y h(X b+Xc) } + (ry-(3YeY,1)(XaX b+XbXc+XcX a) = 0. Ye=- X a+Xb {1+ Y h(Xb+Xc)} 



Table 2 . 

(A)' of St abilized 

Input Stabilization Output Stabilization Input - Output Stabili zation Oscillat ors (A)' of Unstabilized Oscillators 
0 

~ + 1+a k +k = O 

L + L (La+ L b) Cc L _ 0 ~ + 1 + a! .Q_+o-) + ~ =0 
{ 

0~ 
I La C~ I c: La La c9:W a d --y;;;- - Cg b -

1 - ko- k 
c .= (L ~+ Lo) 2 C V~c:f, c./ = !::!l... c c v·~~ L(l Cc(La + L u)2 + Lb La = 0 k - - Lu VI~ '' L,t Lo c La Lb Ca (La+ L u) La+ Lo 

Cc(L 'l + L b)2 L /i Cc lc = ---~ "/ La 
L :J. 

LoCa C, 
= 0 La+ Lb 

. (T = /:3 . C,, 

.! 

-~- + L r. L rt -~ = O 0 

1V~c~ j Co Cf-J 
~ + 1 + a !?(1+ o-) + k (1+ ko-) = 0 

I Ca.
1
L a 

fl o~ f~ 
Ca L u(Lo+ Lc)Ca LcCo 

Ca = L c Ca v~L~~ C Lo C 
\] 

11 

Lo~ 
_1_ _ _b._ + L~; La = 0 k = L ,, 

Lo u= -r; a Lc Ca L o Ca Lc(L o + Lc)Ca Lc 
k = L b 'Y Lc 

_l_ _ _b_ _ _b_ = O Lc ' 0" = fJ Ca 
Ca LbCa Lc Ca 

_!___ ~ _ (Ca+Cc)2 L g = 0 ~ + 1 +a k + o· 1 + a- = O 

I +ct+ I ~ l )1:rc~:r~ 
Ca L b Cc Lo Ca2 C, k- o-

L C., L L CnCc I 1 _ Ld + Ca+Cc _ 0 1~ = - (Ca + C:) 

v~~ ct = Ca b v~L,I I c' u = .(Ca + Cc)2 ' b 'Sl CcT Ca L bCc CaCa - Cu - (Ca+ C·) 'Y Lo 
_!_ +~.l__ (Ca+ CY L g= O k = ' 

cr = -·-
Ca Ca+ Cc Ca L a Ca:! Cc 

Ca /:3 Ca 
~ 

L a+ LeLa _ (La+Lr)~ Co= 0 ~+ 1 + a h·+ 8 1 + (r = 0 
I '"IT I La C~ r LaCa La c'~ .. L'~ j 

L a+Lc LcC; k - cr 

C Lc C C!l = (La+ L~)~ Cb L a- LcCb + (L a+ Lc) La= 0 k = _ La+ L ,, 

VFl~ · \1 ; ~ II 
a= - u v cb Lc L(t LaLc cbT Lc C,z Lc Lc 

k = -(L a+ L ) 'Y La 
L _ L ,, Cb _ (L a+ Lr) 2 C _ O Lc ' (T = (:J Co 

a --c;;- Lc Ca b-

r-~ 
La- Co L r1 - Cc L 1 = 0 ~ + 1 + a (k+ o- ) + * (l + cr) = 0 

V+~ 
r Ld Cd La LwJ Cc Cb 

L j = g: L(l La= g~ L -1 
L Co L + L a C.,2 _ 0 k = ~ \] c.f c, T v :r:r - a- Cc a (Co+ C·)Ca- Co 

k = c . 'Y La 
L + L aCb2 Cc L _ 0 ' (T = f:J -c~· Co a (Cu+ Cc)Cz- Co fJ -

_l_ _ (Ca+Cu)2 La-~ = 0 ~ + 1 +a ! C1 +cr) +~= 0 
I 
v~;f I 1:• c,L Lc Ca2 Co Lc c b 

j La Cd ,C.a ~ 
1 - k o k 

L Ca Co L La= Z: Lc 
1 (Ca+ f brL,

1
+ , Ca -Ca 0 k = Ca+ Co rt= (C.l+ Co)~ c V±c. Lc V cbf 

11

Lc~ Ca LcCa-Cu (Ca+Cb)Ca 
k = _ Ca a- = l. L~ 

.l_ + Ca + Co _~= O ' 
Ca Ca C,z Lc Co 

Ca+ Co /:3 Ca 



Table 3. 

Input Stabilization Output Stabilization 

C L e e e= ·- u 
La 

1------------------------------l----------------------

I f~ \1 L1_:± 

I . Ca eli] 

\1 ¥·'1· 

Input- Output Stabilization 

1 + La+ Lb _ LbC,, = O 
Le LaCe 

1-(La+ L IJ)2 Ce' L b2 =0 
LaLuCc ' (L ,t+Lb) Lh 

1 (La+Lb) 2 Ce _ Lv C" = O 
LaLbCc L rr. Cr 

1 _ Lc(Cu.+ Cb) 2 
_ L . Ca. = 0 

Cu. CuLe Cli Lh 

(A)' of Stabilized 
Oscillators 

6 
~ + 1 + ak+ k =0 

- Lu k = -
Lv+ Lc 

1- Lc(Ca+ Cb)2 + CaCh =0 k = - (Ca. +Co) 
Ca.CuLe C,,(Ca+ Cu) Cr 

1 + Ca + Cb . Ce _ Lc Ca. = o 
Ca Cu Cv Lh 

(A)' of Unstabilized 

Oscillators 

~ + 1 +ak+ a· ~=: = 0 

~+ 1+ a(k+ a-)+o· 1 ~<T = 0 

~ + 1+ a(k+ a-) +o 1 ~a- = o 

~+ 1+ ak+ o 1 + a- = o 
k-o-
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given by the following equation : 

~ + 1-a(1-w2 LaCe)- S(1-w2 LaCb) = 0. (9) 

When the stabilization is completed, insertion of roo shown by (7) into (9) produces 

the following : 

~ + 1 + a Cc + S C/) = 0 . (10) 
Co Cc 

Introducing a new coefficient k = g: , it becomes : 

~ + 1 + ak + % = 0. (11) 

As is shown in Table 2 and Table 3, (A)' has the form of (11) which is common 

to all types of oscillator included in the tables. The common form (11) is extracted 

and the coefficient is shown in each case. 
(A)' for the original Colpitts oscillator is obtained by insertion of (2) into (9). 

That is: 

~ + l + a ( Cc + ']_ Ln) + 0 (1 + ']__ La) Cb = O . 
Cb fl Cb fl Cb Cc 

(12) 

Introducing another representation (J" = ~ ~;, , (12) becomes: 

~ + 1 + a(k+(J") + S(1+(J")} = 0. 

The similar kind of (J" appears in each case as is shown in the tables. 

IV. Remarks and Conclusions 

At the end of this report, several remarks may be made about the theory 

mentioned above. 
First of all, about the method of frequency decision which has an important role 

in the theory: (A)', (B)' are derived as the necessary conditions for sustained os
cillation and they have quite the same significance to the frequency decision. In spite 
of this, in the theory the frequency is regarded as given only by (B)'. Of course, 
when the frequency is not contained in (A)', there remain no matters to be discussed 
about the subject. Although, if (A)' contains ro either in explicit or in implicit, it 

may not be reasonable to consider that the way of frequency decision and stabilizer 
design are completely sufficient method. After all, an oscillator may become constant 
frequency when one of the conditions (A)' or (B)' decides the frequency and the other 
is completely independent of the frequency. 

In the second place, about the premise of the theory: It may be pointed out 
that it is not an easy matter in general to realize in practice the premise used in 
th~ theory. For instance, it is required that the passive networks must not contain 
other than the reactance elements. But there are many cases where this condition 
cannot be satisfied even in approximation. For such cases, (A) and (B) must be 
considerd in stead of (A)' and (B)'. 

(15) 
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On the other hand, the active elements should be independent of frequency and 
their characteristics must be represented by real quantities. In transistors, however, 
the effects of capacitances appear even at comparatively low frequencies. Further
more, it may be considered that variation of temperature affects primarilly the 
inductance and the capacity of the passive circuit, but does not change the per
formance of vacuum tubes. In general, however, semiconductors have undesirable 
sensitively to temperature. Consequently, there may be severer restriction for 
transistor oscillators than for vacuum tube oscillators from the standpoint of fre
quency stabilization. 

The theory is based upon the assumption that the sustained oscillation has 
only pure sine wave of single frequency. But practical transistor oscillators may 
contain a good deal of higher harmonic frequencies. The stabilizer designed by the 
theory is not effective to the harmonic components. 
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