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Frequency Stabilization of Transistor Oscillator
(Received May 6, 1957)

Toshio TSUNOGAE*

Abstract

This report contains an analysis of the condition under which the frequency of an
oscillator may be independent of variations in the operating conditions. The method
of analysis is based upon the theory of four-pole networks and applied in detail to the
basic transistor oscillators. Experimental data are not discussed in the present paper.

I. Introduction

The ability to maintain the frequency constancy is the most important re-
quirement and considerable works have been done by various individuals to make
an oscillator as free from the effects of variable quantities. F. B. Llewellyn @ @
attacked the problem from a circuit theoretical standpoint and showed that in
certain cases of vacuum tube oscillators the mathematical procedure indicates
means of making the oscillation frequency independent not only of a variable load
resistance, but also of the battery voltages. Experimental data were cited which
show that the best adjustment was in substatial agreement with that predicted by
the theory. The purpose of this paper is to develope the method of Llewellyn in
terms of the familier theory of four-pole networks interchanging the vacuum tubes
with the transistors.

II. Basic Formulae

First of all, the basic formulae are derived. The definition of stable oscillator
used in this study is given to such oscillator that produces oscillation of natural
frequency of the passive network, and which is independent of the characteristics
of the active elements.

The feedback oscillator consists of or may be resolved | _Iil

into, a passive four-pole network to which is attached a )
transistor. Fig. 1 shows the schematic representation of an 4 ‘721
such oscillator. In accordance with the theory of the ope- —

ration of oscillators, the following relation must be satisfied Fig. 1
in the system when the assumed current conditions are as shown by the arrows:

(A-1)(D-1)=BC, @
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104 Toshio TSUNOGAE
where
Lo e
A B a/&iABi
lC D _wy ) 1C Dl\
The transmission constants of the transistor are shown with real quantities
(a, B, v, 8) since the operation of transistor is supposed to be independent of fre-
gneucy. (A, B, C, D) show the complex transmission constants of the passive four-
pole network.

In order for (1) to be true, both the real and the imaginary portions must
separately be equal to zero. From (1), then, following two equations are derived :

E+1—(aA+BC+vyB+8D)=0, (A
aA+BC+yB+8D=0, (B)

where £=ad—2v, and (A, B, C, D), (A, B, C, D) are the groups of the real and the
imaginary terms of (A, B, C, D). A great simplification results when it is recalled
that the circuits external to the transistor are assumed to have no other elements
than reactance. With this understanding, A, D, B and C vanish from (A), (B)
Accordingly for the oscillator with reactance four-pole network, (A), (B) become:

E+1—(aA+8D)=0, (AY
BC+9B=0. (BY

It may be clear that the representation of oscillation frequency derived from
(BY contains the transistor parameters, and which does not coincide with the
natural frequency since 80, v:0. In other words, the definition of stable oscil-
lator given at the beginning is satisfied only when both terms B and C become
zero at the natural frequency.

r I For instance, from (B)Y of the familier Colpitts type
TN transistor oscillator shown in Fig. 2, the actual angular
& +Cb Cc+ frequency is given by the expression:

Fig. 2
e GGy 1
L.GC T BGGC - 2

w

The natural angular frequency e, is given by the first term. The second one
indicates the quantity of frequency deviation from w, Furthermore, it is very
clear that the real frequency of oscillation is affected by the transistor character-
istics B3, ¥, which are sensitive to temperature and other conditions. Then it will
be evident that it is necessary to introduce some means to cancel out the second
portion in order to make the oscillator become stable.

Needless to say, however, there are some networks which are satisfactory to
the necessary condition of stable oscillator. For instance, if the passive four-pole
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Frequency Stabilization of Transistor Oscillator 105

network is a series impedance type of single tuning circuit of L, C and R, then
the term C becomes zero and the frequency is decided only by B=0. In this case
the real frequency coincides with the natural frequency. When the passive network
is parallel admitance type four-pole network with L, C, R tuning circuit, the term
B becomes null. Then C=0 gives the natural frequency of this stable oscillator.
Although the above are special examples of feedback oscillator, in the following
part, the principles of frequency stabilization by cascade arrangements applicable
to general configurations are considered with II type and T type reactance four-
pole networks.

In the oscillator with 11 type reactance four-pole network
shown in Fig. 3 (a), (BY becomes:

B =
XX, (Xa+Xo+Xe) + 7 Xa=0. )

For instance, for the oscillator of the Colpitts type, the above equation has
the form:

BwCyC.(wLa— ) —vL.=o0. @

w Cb —-Cl)—c—c
Generally speaking, as was also pointed out previously and is clear with practical
examples such as (4), both terms of (3) cannot become null at the same frequency.
However, connection of series impedance type reactance four-pole netwowk on the
left hand of the I1 type as shown in Fig. 3 (b) gives the transmission matrix:

1 jX||A jB| |A-X.C j(§+XaD)| L xa x|
o 1 ||jc | |jC D ' \\“'7 E]xbxc[:
Fig. 3 (b)
Then (B)Y of this newly examined oscillator becomes :
BC+ y(B+X:D)=0, 5)
or
8 CXat+ X\ _
< Xc(xa+Xb+Xc)+y(Xa+X¢ & )=0. (6)

As is evident, the natural frequency of the original passive network is decided
by the first term. Thus it may be reasoned that the frequency must be stabilized
if the value of this additional element X, is selected so as to make the second
term become null at the frequency given by the first term.

The natural angular frequency w, of the Colpitts type oscillator is decided by
(4), namely:

s GG
wy° = Lacbcc . (7)

Equating the second term of (6) to zero at this angular frequency e, the value of

(13>



106 Toshio TSUNOGAE

Lq is given by the expression:

=G,
Ld——-c—b La.

For capacitance stabilization, negative value is needed.

The above discussion is on the method of left hand insertion of stabilizer only.
Analogous considerations are possible for the method of right hand and both hands
stabilizations. Generally speaking, the values of stabilizers connected on the left
and right hands are different. Furthermore the two elements connected on the both
hands are so correlated that one cannot be decided independently of the other one.
There are four combinations of reactance stabilizers at both sides, but one of them
must bz neglected where negative value is required in the real element.

The results of the above consideration are summarized in Table (1). From now
on, let the left and the right of the passive network be named the input and the
output of it for brevity’s sake.

Similar treatments are possible in the oscillators of T type four-pole networks
schematically shown in Fig. 4 (a). The stabilizer elements should be inserted into
the parallel arms of the original networks. When the stabilizer is inserted in the
input of the T type four-pole network as is indicated in Fig. 4 (b), the transmission
matrix becomes:

] Xe X |
& ¢Ye Xo
Fig. 4 (b
1 0||A jB| |A B
iY. 1115C ol |i©+v.A) D-Y.B|
Then (B) is written as follows:
B(C+Y.A) +vB=0. )

The oscillator may be stable if the two terms of (8) are nullified at the natural
frequency. The results of similar consideration with that previousely mentioned
are also summarized in Table 1.

III. Results of Calculation

Table 2 and Table 3 respectively show the results of calculations of the stab-
ilizers for oscillators of IT type and T type reactance networks.

The discussion stated above is limited to the condition (B). But for sustained os-
cillation, (A) must also be satisfied. So some remarks about this are given in brief.

Comparison of (A) of the stabilized oscillator and the unstabilized one is possible
by insertion of the natural frequency and the real frequency into (A) respectively.
Let the Colpitts type oscillator be used as an example to show the relation. (A) is

as



Table 1.

Oscillators

B)’

Design Formulae of

Stabilizers
BC+vyB=0.

] % P Xt Xk X+ 7 Xa =0,
Xd Xa B(T+y(§+XdD)=O. B+ X:D=0.

X X _@_ Xa+Xh _ XaXb

& i X, X, (Xa+Xb+Xc)+V(Xa+Xd' X, )=0' Xu= D A

Xo X BC+v(B+X,A)=0. B+X,A=0.
X X B X+ X, X. X.

L. Y%, (Kart X0k X) 7 (Xu X, - S5 ) = 0. X=-%XIx

(B—vX,X,)C+v(B+X.D+X,A)=0,

B+ X«D+X,A=0.

X X B_—ZMJ X(l + X[) X(L+ Xe . _ Xb 1Y(l.+Xc
b i X, X. '<X"+X”+X”)+7<X“+X"' X, +tXTx )"0 Xa=—% H+X5<Xa+Xg‘ Xe >
Xa Xc BC+yB=0.

B + 'y(XaXb + Xch + XaXc) =0.

Xa X B(C+Y,A) +vB=0. C+Y.,A=0.
Ye Xb Y = — ——1
B+ Yo (Xu+Xo)} + v (XaXo+ XoXe+ X.X0) = 0. . X5 X
B(C+Y,D)+vB=0. C+Y,D=0.
1
l'l B+ Y X+ XD} + 7(XoXo+ X Xo+ X Xo) =0. Yo=—-%7Tx,

B(C+Y. A+ YD)+ (yv—RBY,Y) B=0.

B{1+ }76<Xa+Xb> + Y7L<Xl»+XC>} + ('}'—,BYE le) (Xszb+Xch+X:Xa> = 0

6+ YeA + Y)LDZO-
1
Ye=—m{1+ Yiu(Xo+ Xe)}




Table 2.

Input Stabilization

Output Stabilization

Input - Output Stabilization

(A) of Stabilized
Oscillators

§+1+ak+%:o

(A)’ of Unstabilized Oscillators

L.+ L, C. _
[of] La La C"-J Calu La CgLf_] La+Ld( Lb >__CJ-LD B 0 E ’ 1 ’Jf" aklgi}ei;'l - % - 0
Co= LAl oo =L, Pg“ ' 1 CdLatL®, LiL, _g oo —Li
ug o 1. C L o L wg T I % (LatLo) i L,
L . Cr(er'*‘Lb): _ Lh Ca — 0 /e = - Lb o = l-L—‘”
! L,C: C, L.+ L, 3 C.
A 0 1+ ak(+o) +21+ka)=0
Ca Ca Ca CF,_J Cala Ca CfE' C. L(L,+LoC. L.C, E+1+ak(lto) k( o
C — -—lic C _QC 1 . Lc + LI;L(/ :0 _ I,«P,
LY L T, b Fhe L S Ls Le C. LiCi  LALy+Lc)Co T L
1 L L__, R e
C. LG LC ‘ B Ca
’}_____ Lri . (Ca+cc)2 L - 0 1
— =] E e G LG LiCFC 5+1+ak+5-kj§=o
L = Cw L '—-LJ L., = Cn C:' l v A4}_J _i ——~_£i_ + gﬁig =0 k ----- _7(0"+C")
Lg. G T Ly ==ce “¢ = (CatCot (3= e C. L,C. = C.C, C ,
l \ a+Ce T @ S
= s _ —(Cut+Ch) . L
_1_+ Ca ._1__(Crz+64'> L :0 k-*—‘_c——' ’ g = C
G Oy G B Gl g L
LcL (L11+L’)2 —
Cd La l La Cﬂ LaCa La C? Lg L“+ L(L"‘ldlc h Lccg C,‘ B 0 E + 1 +a k i 8 /]éi Z‘ - 0
b Cd — Ln C 0 { . (L,, -f—L,.)Z '_J _ La Ch (L,I+Lﬂ) I s = L/1+L4'
Co da b Cy = —— Ch La + —_—7F <4 O
Le L, Cp Le - Lo L Co Lc Ca e L.
T T e T . ‘ pe —utl) _ 2 Lo
L _L.C,  (Lu+L) C=0 L. d Uh,b’
“TTC, L.C, ‘ ’
Ch Cl’ — "
L Lg e L Lt Lo 0] L b "a=0 ’E+1+a(k+d)'§_%(‘l+g":O
"’EE _C & o\TomT Ziaa G L.C*>  _ _C.
ch Ce Li - a LJ Co Ce Lg = C Lz c Q L(I‘C_wZ‘L(I + -———(CL+C1) —Cg =0 k= Ch
T“FT T T : T “T Lce | C =S o=
Lot wmab e ],=0 S B Cy
(Cr+Ce)Ca b
1 (Co+Co)? L, _
o . LCEG LG Erltallia) 29
L Ca Ca ¢ La C C Ti 1 ko k
L. GG g .-G l sl o 1 oy, G ol - =G
Co Le “ —(-C;‘*‘Cn): ‘ Co Le e _C‘:; ’ -L L ~‘” L. Ca2 C, ‘ (Cu"’ch) CV Ca +C1‘ ~
T°? T CbT ¢ C.,+C L k= Ca 0'=1-L”
u b g Co+Cy B Ca

o s e o o/




Table 3.

Input Stabilization

Output Stabilization

Input - Output Stabilization

(A) of Stabilized
Oscillators

(A) of Unstabilized

S .
E-f-lﬁ’“/'k—i-% _ Oscillators
L(1T14 [41) C/? —_— 1
1 =0 +U -
10 CIiJ G c L PR o5 E+l+akta- g2 =0
Co= L Lo Ce C,=Lac, (L,,+L,,> PR B b _L_;_L»_
TCe (La+Ly)? Lo ChT Ly T;_e T/_h L.L,C (La+Lo) Ly, b pe_LAL __C B
(L«1+Lb)2 C Lb Ch == 0 L[, ’ Lr) 7
L.L,C. ~° 'L.C.
La? _ LG _ 1+ (7
L%J - O o Lot LoL. T.C, 0 Et+l4+alk+o)+3- =0
l L,C L.? L,
! N a _ a e C — k e
Cb C C (/’ _-I Cb Lc Cb + (La+Lc) Lh . Lc L C /5
b , ” k==t g=_20.02
T“T _L.C. _L.Ci_ L' Ly
LL‘ Cb L/L C’A
] _LeCo_ L (GHCP klta) , & _
L {cc La Cc La -G L C,C. L, Etltam——+7=0
C. (Cr+C.)? °°Ti _ LG, CHCe o _g po__Co
L.= L. Ly=-—=% Lq Ce Ln 1 o +——C~‘—‘ he C,+C.
Le Co Cy Cb Ln C, C. Co C G L. G.Ce b ¢ B (8 _ Gy f_j_
T T Te T° 2%, _cC LGiCr_, k=gt o=p L
Cb(Cb+(/ ) C,C. Ly
L7 (LTLyr_, |
“YWTFonL T LLC £Filiakdio) 8
Ca Lec Co Lc Ca Lc 1—ko k
[ L I C —‘| 1 Lh (/(' [411+14{' . 0 k —Ll
( =i Crz Cl:' "Li—“v, & La L. C(( [zz
e b “PCT By T 3™ Sa [0 derLy bt pe—L LGB
T I— 20 — L C,=0 L,+L."~ b
L.Ca L,L.C,
L,C. L,C. 1
= — =0 -1-0'
Ca Cc Ca Cc Ca Ce J 1 C.L. C.L, E+1+a(k+0>+8 =0
y:' ol g o B g — - T LC GG po Ce
Le Lp B C. ’ - Lhi ¢ - Ee SLls _%F: Cals (M(C’f}_CC)' Co k= Ce =75 E
T 7 P GG LG, =G o=k
C.(C.+C)  C.Ly
T L(CatGC _ LCu_
— E—7 — I==eGh Gk " E+l+akts s =0
o (Cat+C)? A - J 1 LelCut G | Culh __g | ,_ —(CutC)
L=t 220 L c L Li=%e1, c La C.CG L. " C(CatC) = Cc, . .
LeTCo C. Ce bT r% G TL: TCD Ca C LC 1.C e *(C/(,,‘-,LC:/) . G B
1+=22L.C—Z=4 =0 C. Le 1
C.C Cy Ly
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given by the following equation:
E+1l—a(l—e’L.C)—86(1-wL.C)=0. €©))

When the stabilization is completed, insertion of @, shown by (7) into (9) produces
the following :

§+1+ac +8§2= . (105
Introducing a new coeflicient &= g" , it becomes :
b
E+lvak+d =0 (11)

As is shown in Table 2 and Table 3, (A) has the form of (11) which is common
to all types of oscillator included in the tables. The common form (11) is extracted
and the coefficient is shown in each case.

(AY for the original Colpitts oscillator is obtained by insertion of (2) into (9).
That is:

G

§+1+a(CC+"L")+3(1 .LC~)_ 0. 12)

G BG

+ X
&
Introducing another representation o = %—‘

% (12) becomes:
E+1+alkts)+8(1+0) 1=
The similar kind of o appears in each case as is shown in the tables.
IV. Remarks and Conclusions

At the end of this report, several remarks may be made about the theory
mentioned above.

First of all, about the method of frequency decision which has an important role
in the theory: (A), (B) are derived as the necessary conditions for sustained os-
cillation and they have quite the same significance to the frequency decision. In spite
of this, in the theory the frequency is regarded as given only by (BY. Of course,
when the frequency is not contained in (AY, there remain no matters to bz discussed
about the subject. Although, if (A)Y contains e either in explicit or in implicit, it
may not be reasonable to consider that the way of frequency decision and stabilizer
design are completely sufficient method. After all, an oscillator may become constant
frequency when one of the conditions (A) or (B)Y decides the frequency and the other
is completely independent of the frequency.

In the second place, about the premise of the theory: It may be pointed out
that it is not an easy matter in general to realize in practice the premise used in
the theory. For instance, it is required that the passive networks must not contain
other than the reactance elements. But there are many cases where this condition
cannot be satisfied even in approximation. For such cases, (A) and (B) must be
considerd in stead of (A) and (B)'.
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108 Toshio TSUNOGAE

On the other hand, the active elements should be independent of frequency and
their characteristics must be represented by real quantities. In transistors, however,
the effects of capacitances appear even at comparatively low frequencies. Further-
more, it may be considered that variation of temperature affects primarilly the
inductance and the capacity of the passive circuit, but does not change the per-
formance of vacuum tubes. In general, however, semiconductors have undesirable
sensitively to temperature. Consequently, there may be severer restriction for
transistor oscillators than for vacuum tube oscillators from the standpoint of fre-
quency stabilization.

The theory is based upon the assumption that the sustained oscillation has
only pure sine wave of single frequency. But practical transistor oscillators may
contain a good deal of higher harmonic frequencies. The stabilizer designed by the
theory is not effective to the harmonic components.
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