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Thermal Stress In a Semi- Infinite Solid and a Thick 

Plate under Steady Distribution of Temperature* 
(Recieved March 13, 1957) 

Rokuro MUKI ** 

Abstract 

This paper contains the exact and general solutions for the thermal stress in 

a semi-infinite solid and a thick plate under steady distribution of tempera

ture. The approach used rests on the method of Hankel transforms in the 

three dimensional theory of elasticity which is introduced into the axisymmetric 

case by Harding and Sneddon and generalized to the unsymmetric case by 

the present author. It is found that the stresses in the direction normal to 

the plane surface, that is, ae, T9z and Tzr vanish everywhere in a semi-infinite 

solid and a plate with infiinite extent when the distribution of temperature is 

steady. The general solution is then used to solve some particular problems 

of a thick plate. Numerical calculation is carried out in detail and the result 

is compared with the corresponding solution for a thin plate. 

Nomenclatures 

The following nomenclatures are used in this paper: 

1-' = Modulus of rigidity 
v = Poisson's ratio 

c = linear thermal expansion coefficient 
T = distribution of temperature in the medium 

u, v, w; err, a-o, ··· ··· = components of displacements and stresses, respectively. 

" 32 1 0 1 32 o2 

v~= a-rz + ror + r2 o0:! + oz2 

" 32 1 0 m 2 o2 

\7rn~ = OY2 + raY- -yZ- + OZ2 

Introduction 

Although considerable attention has been paid to the thermal stress in a body 
due to an inclusion of different material in it, comparatively little is known of the 

thermal stress in a body with three dimensional distribution of temperature varying 

* This investigation was supported in part by a Grant in Aid for Develop

mental Scientific Research from the Japanese Ministry of Education. Part of 

of this work has been presented in Japanese to the Trans. Jap. Soc. Mech. 

Eng. Vol. 22, No. 12:-3, p. 795, (19.56] 

** $ ~ /l:g ~ ; Lecturer at Keio University 
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from place to place. The solution of the latter problem have been obtained for a 
sphere by E. Almansi, D for a circular cylinder by T. Suhara, 2) by E. Melan 3) and 
by T. Tsubouchi 4 ) and for a spheroid by the present author. 5) 

In this paper, the problem of the thermal stress in a semi- infinite solid and a 
thick plate with steady distribution of temperature is considered. In the first part 

of the paper is introduced the general expression in form of the Hankel tranforms 
for the particular solution of the thrmo-displacement equations which can be applied 

to any (steady or unsteady) state of temperature distribution. The procedure used 
is similar to what was adopted to obtain the transforms of the general solution of 

the displacement-equilibrium equations in the previous papers 6) 7) which dealt with 
the generalization of Sneddon's method !l) o) to the unsymmetric case. The general 

solution for the thermal stress in a semi- infinite solid and a thick plate with the 
steady distribution of temperature are then obtained by the aid of the foregoing 

method of solution by Hankel transforms. 

The Transformation of a Particular Solntion of 
the Thermo-displacement Equations 

If we employ the cylindrical coordinates (r, e, z), a particular solution of the 

thermo-displacement equations can be taken as 10
) 

v = 1_+11 8 of2 
1-v roe. 

and the corresponding stress components are 

o-r/2p, = ~-±v s[ 02!~- T] 
1-v ar2 , 

w=l+v 8 aa 
1-v az' 

a-o/2p, = 1±1' s[!afl + !_ ~.Q- T] 
l-11 r a8 r 2 a(J2 ' 

a-z/2JJ- = 1±!! s[ 02~- T] 
1-v az ' 

1 ) S. Timoshenko,'&J.N. Goodier, Theory of Elasticity, McGraw-Hill. p.433 (1951) 

2 ) T: Suhara, read at the Congress of the Japan Soc. Mech. Eng. Nov. 11th, 
(1951) 

3 ) E. Melan, & R Parkus, Warmespannungen, Springer Verlag, Wien, (1953) 

4 ) T. Tsubouchi, Trans. Jap. Soc. Mech. Eng., Vol. 19, No.83, p. 35 (1953) 

5 ) R. Muki, Proc. Fac. Keio Univ. Vol. 6, No. 20, p. 10, (1953) 

6 ) R. Muki, Proc. Fac. Eng. Keio Univ. Vol. 8, No. 30, P. 8, (1955) 

7 ) R. Muki, Proc. 5th Japan National Congress for Applied Mechanics. p.119, 
(1955) 

8 ) J. W~ Harding and I. N. Sneddon, Proc. Camb. Phil. Soc., Vol. 41, p. 16, 
(1945) 

9 ) I. N. Sneddon, Fourier Transforms, McGraw-Hill, (1951) 

10) See (1), p. 433. The expressions employed here differ from Timoshenko's 

in the multiplier 1 + v which is introduced for the sake of convenience. 
1- ll 

( 11) 
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where 

Rokuro MUKI 

1 +v o20 
Tez/2!-L = -- c --1-v raBoz. 

1+v o20 
Tzr/2{L = -- C --

1-v oroz' 

Tre/2JJ. = ~ + v c ~[30 - .Q] 
1-v rae or r ' 

(2) 

(3) 

In the derivation of (1), it is assumed that the inertia terms in the displacement 

equations are so small that they can be neglected in comparison with the other 
terms. 

We may write n. and T in the following forms; 

O(r, O,z, t)= iJCDm(r,z,t)cosmB+iim(r,z, t) sinm8J 
m=O 

(4) 

T(r, e. Z, t)= t [Tm(r, z, t)cosmO+ Tm(r, z, t) sinm8J 
m=O 

For the sake of simplicity, we put Om= T m = 0 ll) and consider only a single value 

of m without loss in generality. 
Substituting ( 4) in (3), the relation between Om and T m is obtained as 

(5) 

Using the formulas of the Hankel transforms, 12) it can be shown that 

(6) 

where 
<X> "' 

Lm = j rD,m]m(~r) dr, Mrn = f r Tm]m(~r) dr. (7) 

Now, we obtain the result that if the temperature distribution is prescribed in the 
medium, then the Hankel transforms of the corresponding particular solution of the 
thermo- displacement equations is given as a particular solution of the ordinary 
differential equation (6). 

Next, we consider the transformation of the expressions for the displacement and 
stress components into relations involving Lrn, Mrn and their derivatives. Substitut
ing one term of (4) into the expression of w in (1) we have 

w = lf_v can.,~ cosmO. 
1-v oz 

If we multiply both sides of the above equation by r ]m(~r) and integrate it with 

- -
11) The solution for Tm is readily obtained if the one for T m is given. 

12) See (9) , p. 61. 

( 12) 
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respect to r over the range 0, oo, we obtain 

f wr ]mC~r) dr = lfv s4f-.!!!cosme. 
1-v dz 

0 

Inverting the result by the Hankel trnsform theorem ta) we have 

45 

(8) 

By a similar procedure, the expression for a-z can be obtained. A single expression 
of the remaining components for displacement and stress, however, does not permit 
the transformation in terms of Lm and Mm. Constructing the following pairs of 

the components and carrying out similar calculations, we have 

"' 

ufcosm() + vfsinm8 =- ~-!~ c J ~2 Lm]m+t (~r)dE, 
0 

ufcosm()- v/sinm() = i~~ c J ~2 Lmfm-t(~r)d~, 
0 

u-r/cosm8 + a-8/sinm() = -2~ti~~ c J[d~~m + Mm ]~fmd~, 
0 

co 

Toz/sinm8 + Tzr/cosm() = -2/L i~~ c J ~2 llj;m ]m+t d~, (9) 
0 

TfJz/sin m{)- Tzr/COS m{) = -2~ti~~ c f ~2 dizm }m-td~, 
0 

a- r/COS m() + 2~tU/YCOS m() + 2~tmvjrsin m() 

co 

1+v J d2Lm = -2/L - c ~-]m(~r)d~, 
1-v dz2 

0 • 

TrfJ/Sin m{) + 2~tmU/YCOS m() + 2~tV/rsin m{) = 0. 

Solving these equations, we can find the expressions for the displacement and stress 
components in terms of Lm, Mm and their derivatives. Summing them up with 
respect to m, the expressions for displacement and stress component due to the 
particular solution of the thermo- displacement equations are obtained as follows. 

l 
13) See ( 2), p. 48. 

( 13) 



46 Rokuro MUKI 

oo ro 

V= -i-!-~ ~m~JJ~z LmfmHd~ + J~z Lmfm-1 d~] sin m(}, (10) 
0 0 

w = 1±!' F.~[j~liJ.-!!!:_]md~]cosm(), 
1-V m=O dz 

0 

w 00 

U"r = 1±~ c iJ [-j~tJ!Lm ]md~ + l(m+ 1)~~2 Lm]mH d~ 
2,u 1-V m=O dz2 2r 

0 0 

w 

+ 2~(m-1) J~z Lmlm-1d~ ]cosmO, 
0 

00 

- 2
1
/m-1) f ~2 Lmlm-1 d~ ]cos me, 

0 (11) 

00 

a.:~= 1_-t~ c ~ [J"'~3 Lm]m d~ ]cos mB, 
2,u 1-v m=o 

0 

00 00 

!zr = _lf~~ ~[J~zt}_Lm ]mHd~- r~zdL1Yl]m_ 1 d~]cosmO, 
2tL 1-v2 m=O dz ' dz 

0 0 

Up to this point, the theory is applicable to any state of temperature, that is, steady 
or unsteady. Now, we shall confine our discussion to the steady state of tempera
ture and assume that heat is not generated in the solid. Then, it follows from (4) 
that Tm is the solution of the following differential equation 

V'm2 Tm = 0. (12) 

After the operation of Hankel transforms, we have, in view of (7), that 

(
d2 ) dz 2 - ~ 2 M m = 0 . (13) 

The general solution of (12) is 

(14) 

( 14) 
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or 
Mm =am cosh ~z + bm sinh ~z, (15) 

where am, bm are constants to be determined from the boundary ~onditions for 
temperature. When these constants have been determined, the expression for Tm may 
be obtained directly from (14) or (15) by means of the Hankel transform theorem 

Tm = J Mm~]m(~r)d~. 
0 

Furthermore, in view of (6) (14) and (15), Lm is easily found to be 

or 

The Transformation of the General Solution of the Equations 

of Equilibrium 

(16) 

(17) 

(18) 

In the previous paper 6) 7) the expressions for displacement and stress components 
which satisfy the equations of equilibrium of an isotropic medium have been shown. 
For the sake of completeness the results are summarized here. 

(19) 

co 

w = m~[f{c1~2v)t.!~~~-2(1-v)~2Gm}~fm(~r)d~]cosm8. 
0 

= "' 
!Tr = 2j[J{vd

3

~~ + (1- v)~2 4~~}~ ]m(~r)d~ 
2/L m=O dz dz 

0 

(m+1) (m-1) J e - 2r · Um+l- 2 r Vm-1 cos m , 

(m+ 1) (m-1) J + 2r ·Um+1 + 2r ·· Vm-1 cos me, 

( 15) 
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= 00 

T(}z = 1 ~[J{v4_2GTTI- + (1-v)~2Gm + dHm}~2fm+t(~r)d~ 
2~ 2m~ ~2 ~ 

0 

+ f{vd~~m+(1-v)~2Gm-t!fm}~2]m-l(~r)d~]sin me, 
0 

- j {vd~~~ + (1-v)~2 Gm- d_f£.!!! }~2 ]m-l (~r)d~] cos me, 
0 

2
Trp = ~ [Jnm~3 ]m(~r)d~- (m2+ 1) Um+l + (m2-:D Vm-l] sin me, 
~ m=O Y Y 

0 

where 

Um+l(r,z)= .f(dfizm_ + 2Hm )~2]m+t(~r)d~, 
0 

Vm-l(r,z)= J(t!_:iz_!!!:-2Hm)~2]m-l(~r)d~, 
0 

and Grn and 11m are the solutions of the ordinary differential equations 

(ff;2 - ~2 r Gm = 0 , 

(;;2 - ~2)Hm = 0. 

Solution for a Semi - infinite Solid 

(20) 

(21) 

(22) 

Choose the z axis normal to the plane surface and pointing into the semi-infinite 
body. It will be supposed that the distribution of temperature is prescribed on 
the surface. The boundary condition for tenperature on z = 0 then becomes 

T(r,O,o)= ~tm(r)cosmO. 
m=O 

(23) 

Furthermore, we assume that the surface is free from external tractions which 
requires at z = 0 that 

U z = T oz = T zr = 0 . (24) 

For the time being, we shall consider only a single value for m. 
From the requirement that temperature tends to zero as z tends to infinity, we 
assume the solution of (1:-3) in the form. 

( 16) 
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"' 

Mm = J Tm(r,z)r ]m(l;r)dr = bme-t;z. 
u 

Putting z = 0 and inserting the prescribed boundary condition (23) we obtain 

"' 
bm = J tm(r)r ]m(l;r)dr. 

0 

In view of (17) and (25), we have 

Lrn = - ~'t e -t;z 

Inverting a-z in equation (11) by the Hankel transform theorem, we obtain 

and combining T8z and Tzr, we find 

f [T8z/2J.£Sin me+ Tzr/2~-tCOS m{}] r ]m+l (l;r)dr =- t:: E ~;d-fizm 
0 

f [Toz/2JLSin m(}- Tzr/2J.LCOSm{}J Y }m-1 (/;r)dr =- i=~ c/;4Jim 
0 

= 1+v§b~(1 -l;z)e-t;z. 
1-v 2 

49 

(25) 

(26) 

(27) 

(28) 

Since the stresses due to Lm do not satisfy the boundary conditions (24) at z = 0, 

we employ the solution of (22) of the forms. 

Gm(l;,z) = (Cm + Dmz)e-f;~, 
Hm(l;,z) = Fme-f;z. 

In similar procedures as to Lm, we obtain 

"' J [a-z/2JLcosm{}] r ]m(l;r)dr = [<1-v) d~~m- (2-v) l;2 d~zm J 
0 

= [!; Cm + {!; z + (1-2,, )} Dm] e-t;z, 

"' J [ T8z/2~-tsin m{} + Tzr/2~-tcos mO] r ]m+I (l;r) dr 
0 

( 17) 

(29) 

(30) 
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.f [Toz/2JLsin me+ Tzr/2JLCOS me] 
0 

= ~[vf.E(;"'! + (l-v)~2 Gm- fj_lf!!!:J 
dz2 dz 

From the boundary conditions (24), the sum of the corresponding components of 
(28) and (30) must vanish for z = 0. Solving these equations for Cm, Dm and Fm, 

and substituting them into (29), we have 

Gm = 1±~c bm [- (l-2v)+ ~z] e-~z, 
l-v 2~3 

Hm=O. 
(31) 

Calculating the components of displacement and stress due to Lm and Gm inde
pendently and then adding them up, we find the general solution for the thermal 

stress in a semi-infinite solid with steady distribution of temprature as follows ; 

00 

T = ~ lm 1(r, z) cos me (32) 
m=O · 

(33) 

U' =- (l+7J)C ~ fm° COS me. 
m=O 

u r c ;, [m + 1 I o + m-1 I oJ e 
E.=- c "'-' -2-- m+! -2-- m-! cos m ' 

m=O Y Y 

Uo c;,r I !+m+ll 0 m-1z o] e -E =c "-'I- m -
2
·- m+l + -

2 
- m-t cosm , 

m=O- Y Y (34) 

U z = T (JZ = T zr = 0 , 

Tro c;, [m+1 1 0 m-11 o] · o -E· = -
2
. "'-' - ml-! - m-·! SlnJnu. 

m=O Y Y 

where 
"' 

11'm+a(r,z) = ,{bme-f:z]m+a(~r)~JJd~ (35) 

0 

and brn is given by (26). 

It is interesting to riote that the steady distribution of temperature does not produce 
any stress in the direction normal to the plane surface. Moreover, the distribution 

( 18) 
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of stress is not affected by Poisson's ratio 11. As will be seen later, these results 

are also true for a region bounded by two parallel planes. 

Solution for a Thick Plate 

Consider a thick plate bounded by two parallel planes z = ± d and with infiinite 

extent. We assume the boundary conditions for temperature in the forms 

T = L: t1
"' (r) cosmO, at z = +d 

m=O 

T = L: t2m(r)cos me, at z = -d 
m=O 

and for stresses 

rFz = Toz = Tz;- = 0. at z= ±d 

Assuming a solution of (13) in the form 

Mm = J Tm(r,z)r ]m(fr)dr =am cosh cz + bm sinh tz. 
0 

and inserting the boundary condition (36 ), we obtain 

- -
tl -t2 bm = m_~_m._ 
2 sinh td. 

where 

fh
2 m= Jt"2m(r)!m(fr)dr. 

0 

From (18), we have 

Lm = c}e [am sinh fz + bm cosh fz] . 

We assume the solutions of (12) in the forms 

Gm =[Am+ Brnz] cosh fz + [C"' + Dmz] sinh tz, 

Hm =[Em cosh fz +[<~,sinh fz] . 

l 
f 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

Inserting Lm and Hm .into (28) and (30) respectively, and considering the boundary 
conditions (37), we obtain six linear equations. Solving these equations for Am, Bm, . 
···Frn, and substituting them into ( 42), we obtain finally 

(34) 

Inserting Lm and Gm into (10) (11) and (19) (20) respectively, and adding them 
up, we can find the general solution in integral forms for the thermal stress of a 
thick plate. 

( 19) 
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Now, we shall consider the case where the distribution of temperature is symmetric 
about the plane z = 0. In this case 

t 1m(r) = t2m(r) = tm(r) (44) 

and Lm and Gm are reduced to 

-
Lm= z_!_~ sinhfz 

2f cashed ' 

Gm = §_ 1+v lm {q_-:=_?v)sinhez + ezcoshez} 
21-v e3 coshed 

(45) 

Substituting Lm and Gm into (10) (11) (20) respectively, and then adding them up, 
we obtain 

, , "" [J- cosh f z J 7 = ~ tm --h f:df]m(fr)df cos me' 
m=O COS <, 

(46) 
0 

c "" 
u = (1+v)

2 
~[UmH(r,z)- Vm-t(r,z)] cosmO, 

m=O 

(47) 
c "" . 

V = (1+v)2~0[Um+l (r,z) + Vm-l (r,z)] Slll m0, 

w = ( 1 + lJ) c :E [f"tm sinhh ~zd ]mCfir) de] cos me . 
m=O COS ~ 

0 

lTr 
00 

[m+1 m-1 J e -- =- c ~ - -UmH+ -- Um-l cosm , 
E m=O 2r 2r 

Uz = T9r: = Tzr = 0, 

Tr(J _ c- ;, [ m + 1 + m -1 J · e --- c "-' -- Um+l -- --Um-1 Stnm , 
E m=O 2r 2r 

where 

(49) 

00 

tm= jtmr]m(Er)dr. 
0 

When the distribution of temperature is antisymmetric about the plane z = 0, that 

( 20) 
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is, 
(50) 

the expressions for the components of displacement and stress can readily be ob
tained by transcribing 

cosh --) sinh , 

in equations ( 46) ( 47) and ( 48). 

cosh --) sinh (51) 

We again arrive at the result, as in the semi-infinite solid, that every stress acting 
in the direction normal to the plane surface of a thick plate vanish identically 
throughout the plate when the distribution of temperature is steady and no heat is 
produced in the solid. It is also known from the general solution that the distri

bution of stress is not affected by the Poisson's ratio v and the stresses on the 
surface are completely determined by the distribution of the surface temperature. 

Example 1. 

We shall consider the problem of a plate where the surface temperature are kept 
constant, say T0 , over the circles r < a ane zero outsides of them. The boundary 

conditions then assume the forms ; 

T(r, +d)= T(r,- d) =t0 (r), 

for 
for 

From ( 41), we have 

- J l: T aft (~a) to = t0 r ]o Cs r) dr = o ~ ··· ·• 
0 

In view of (46) (47) (48) and (53), it is easily found to be 

T = T 0 R0 (r, z) 

where 

u = (l+v)ac T 0 R1, 

~!:= -cToU..Rl E r ' 

V = ffz = Trz = 'Tz(} = Tr(} = 0 , 

w = Cl+1J)ac T 0 R2, 

E=cTo{-Ro+iRl}. 

R1 (r,z) = f ~~~~~~zd !1 (~a)ft (~r)d~, 
() 

r<a 
r>a 

(52) 

(53) 

(54) 

(55) 

(56) 

To determine the distribution of stress on z = ± d, we must calculate Ro (r, d) and 

( 21) 
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R1 (r,d) which are reduced to Weber-Schafheitlin discontinuous integrals 14 >; the com
putations yield 

R0 (r,d) = 1 r<a, 

=0, r>a, 

1r 
Rt(Y d)= -

' 2a 

_1a 
-2,. 

In view of (55) and (57), we have on z = ± d 

1 <rr/cET0 =- 2 
1 a2 

2r2 ' 

1 
a-e IcE To = -

2 

1a2 

2r2 ' 

r~a 

O<;;r<a 

r>a 

j O<:;r<a 

r>a 

Eq. (58) coincide with the ones computed from the solution for a thin plate. 

(57) 

(58) 

The integrals (56) for arbitrary values of z and r can be evaluated by the method 
of calculus of residues. 15) The convergency of the series thus obtained is rapid except 

the vicinity of r= a where some devices are introduced to accelerate the convergence. 
The results of the evaluations are as follows. 

r~a 

r=a 

r~a 

(59) 

r=a 

1 a 4 "' ( -1)n ( a) ( r) z = ·-- -- L: --/1 f3n- Kt f3n- cosf3n ·, 
2 r 7tn=o2n+l d d d 

r~a 

14) Watson, "Theory of Bessel Functions " p. 398, ( 1922) 
15) See the Appendix A. 

( 22) 
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r= a 

=- ~--- /1 fln- Ko f3n- smfln -, 4 "' ( -1)n ( a) ( r) . z 
7l'n=o2n+1 d d d 

where 

fJn = ?1'!2+ 17l'. (60) 

In view of (54) (55) and (59), temperature and the components of displacement 
and stress at any point in the plate are readily computed. Numerical calculations 

are carried out in detail for the case a/d= 1. Fig. 1 and Fig. 2 show the variations 
of <rr I cET0 and a-o/EET0 respectively, for planes parallel to the faces of the plate. 
The contours of equal temperature and equal maximum shearing stress are shown 
in Fig. 3 and Fig. 4 respectively. The shape of curves in Fig. 4 shows clearly the 

t2 
lU 
~ 0. 3 '"'--=---+-_-,.~-;--h!--f-tf-
~ ,-~--

1 

o.s 1.0 /.S 2.0 
r/a 

Fig. 1. Variation of ffr/EET0 with r 

and z fos afd=l. 

Fig. 3. Contours of Equal Temperature 

for ajd=l. 

0.6 

Q4 

() 0.2 
~ 
UJ 

~ 
~ 0 
I 

-0.2 

-0.4 

25 -0.6 

( 23) 

0 o.s 1.0 l5 
r;a 

Fig. 2. Variation of (} o IE E T0 with 

rand z for afd=l. 

2.5 

~---+---0--~~~~----~W 

~a 
Fig. 4. Contours of Equal Maximum 

Shearing Stress for a I d=l. 
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concentration of stress in the neighbourfood of the point from which the step of 
temperature begins. Fig. 5 shows the displacements u and won the upper and the 
middle planes of the plate. In Fig. 6, the thermal expansion of the plate at r = 0 are 
plotted for the ratio between the thickness of the plate and the diameter of the circular 
area in which the temperature is kept constant, T0• The chain line represents the 
thermal expansion of the plate when the temperature of the whole plate is raised to 
T 0 , that is dET0• It is interesting to note that the expansion at r = 0 for a partly 
heated case is greater than the expansion for a completely heated case in a certain 

range of the ratio afd. 

1.0 

0.'8 

06 

0 0.5 1.0 I.S 2.0 2.5 

Fig. 5. The Variations ot u and won the Upper 

and the Middle Planes of the Plate. 

Example 2. 

"ti 
1.0 

II 
N 
c; 0.8 II 

~ 
r:: 0.6 
w 
""d 
';:"' 
+ 0.4 
~ 

/.0 0 . .5 4-'a. 0 
----~·-·---' o.s 0.25 }) {) 

Fig. 6. The Varia:tion of the Expansion 

of the Plate at r=O with ajd. 

Consider the problem of a plate where temperature is kept constant T 0 over the 
circle r <a, z=d and - T 0 over the circle r <a, z =-d. The boundary conditions 

then assume the forms ; 
T(r,+d) = t0 (r), 

and t0 (r)= T0 

=0 
From (49), we have 

for 
for 

T(r,-d) = -t0 (r). 

r<a 

r>a 

1 
f 

(61) 

(62) 

As in the previous example, we have from (50) (51) 

T= ToSo(r,z) (63) 

u = (l+z,)ac T 0 St (r,z), 

rrr/E =- c T0 a St (r,z), 
r 

V = (}' z = T rz = 0 , 

( 24) 

w = (l+v)ac T0 Sz(r,z), 

rro/E = c To{-So+ ~s~}, (64) 



where 

Thermal Stress in a Thick Plate 

So(r,z) = aJ~~nhh[dz !1 (~a)]0 (~r)d~, 
Sill "' 

0 

S2(r,z) = J tsi~~~~]1(~a)]0 (~r)d~. 
0 

57 

(65) 

From the fact that rrz and Tzr vanish everywhere in the plate, it is easily seen that 

(64) also gives the solution for the following probiem; 

T(r, d) = t0 (r) , 

and CTz = Tzr = 0, 

T(r,O) = 0, 

at z=d and z=O. 
l 
J (66) 

In a similar procedure as in the previous example, the distribution of stress on 

z = ±d can be calculated. The variations of stresses on the plane z = d are the same 

with (58) while the ones on z = - d differ from (58) in the sign. 

The integrals So and S1 for arbitrary values of z and r can be evaluated by the 

method of calculus of residues as in the previous example. The integral 52 is, 
however, divergent and can not be evaluated. Considering the physical meaning of 
52, we introduce the following convergent integral <16) ; 

w' 1 [Jr ow ] fr oSz s ------ = - -- ··· -dr+w(O z)-w(O 0) = --dr+ [ 2CO z)- S2(0 0)] 
(1+v)acT0 (1+v)acT0 or ' · ' or ' ' 

0 0 

(67) 

The results of the evaluations are ; 

S0 (r,z) = ~ + ~ rt
1 

( -1)n K1 ( n1rd) 10 ( n7t:J)sin n7t d 

= ~ + 2a i; ( -1)n [K1 / 0 - _ __!]___]sin n7l ~ 
2d d n=1 2n7la d 

r=a 

(68) 
1 Z d OJ ( -1)n · Z 2 OJ n 1[ [ d J · Z =--+--I::-- smn7t-+--L: (-1) - K1 1--- stnn7t- r=a 
2d 7t2a n=l n2 d 7t n=l n 2n7la d 

16) For the evaluation of the integral, see Appendix B. 

( 25) 
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Sz(r,z)= ----+- :E-·--K1 n7r-, 1 z2 1 r 2 2 "' ( -1)n ( a) 
2 ad 4 ad 7L n~ 1 n d 

2 "' ( -1)n ( a) ( r) z -- :E K1 n1r- 10 n7t-- cosn7t-
7tn~1 n d d d 

r~a 

r=a 

r~a 

From (63) (64) (67) and (68), we can find temperature and the components of 

displacement and stress in the plate. Fig. 7 and Fig. 8 show the variations of o-r/EET0 

() o . .s !0 !.S 20 
ria 

Fig. 7. Variation of t:Jr/EET0 with r and 

z for a!d=l. 

25 

0 6 ,-----,----,------r----,----, 
Z/ri- 0 

0.4 

0.2 

o.s !0 IS 2.5 
rja 

Fig. 8. Variation of t:Jo/EET0 with r and 

z for a/d =1. 

and a-o/EET0 respectively for six planes parallel to the faces of the plate. The chain 
lines represent the corresponding stresses computed from the theory of thin plate 
obtained by Goldberg07) which coincido with the stresses computed from the present 
solution on the free surfaces and give higher values in the interior of the plate. So 
we can conclude that the stresses computed from the theory of a thin plate are always 
on the safe side. The contours of equal temperature and equal maximum shearing 
stress are shown in Fig. 9 and Fig. 10. Fig. 11 shows the displacements u and w 

17) J, E, Goldberg, J. Appl. Mech. vol. 22, p. 257, ( 1953) 

( 26) 
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on the upper and the middi~ planes of the plate. 

f----{l--..:....-j r-a 

Fig. 9. Contours of Equal Tmperature 

for afd=l. 

Fig. 10. Contours of Equal Maximum 

Shearing Stress for ajd=l. 

a6r----,-----,-----.----,---~ 

Fig. 11. The Variations of u and w on the Upper and 

the Middle Planes of the Plate. 

Conclusions 

The general solutions for the thermal stresses in a semi-infinite solid and a large 

thick plate with steady distribution of temperature are obtained and the following 

results are derived. 

1. The stresses in the direction normal to the plane surface, that is, a-z, Toz and 
Tzr vanish everywhere in the medium. 

2. Stresses on the surface are entirely determined by the distribution of surface 

temperature and coincide with the ones computed from the solution of a thin 
plate. 

3. Every stress has cE as a linear factor and the pattern of the stress distribu

tion is determined by the distribution of temperature and is not affected by the 
Poisson's ratio v. 

( 27) 
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Postscript 

After the completion of the paper, the author found that, at approximately the 

same time of the publication of the Japanese issue c18) of this paper, the solution of 

the steady state thermoelastic problem for a semi-infinite solid has been presented 
by E. Sternberg and E. L. McDowell C19) and the one for a thick plate of infinite 

extent with axisymmetric distribution of temperature by B. Sharma C20 ) who, however, 

did not apply the solution to any particular example of a thick plate. Sternberg 

and McDowell have studied the problem by the use of the Green's functions, while 

Sharma directly integrated the thermo-elastic equations. 

Appendix A. 

fcosh~z · t: 
The evaluation of the infinite integral Ro =a cosh~df1 (s a)fo(~r) d~. 

u 

For r;£a, consider the integral 

!~J c:_osh~z H1 Cl)(wa)~ (wr)dw 
27tt coshwd 0 

' (69) 

around the contour which is taken to be a large semicircle 

above the real axis with its center at the origin, together 
with that part of the real axis (indented at the origin) 
which joins the ends of the semicircle. 

Then, we find that 

Fig, 12. The Contour 

1 scoshmzH CD( ) T ( )d 
2. ------; -h d 1 wa Jo wr w 

7tt cos w 
R 

= 2;i lim [ f ~~:Ma{Hlm (a~)+H1 (~ae1(1)}fo(~r)d~ 
R~ro e 
f!~O 

18) See, note * on page 12. 
19) E. Strenberg, E. L. McDowell, On the steady state thermoelastic problem 

for the half space, Quart. Appl, Math. vol. 14, No. 4, p, 382, ( 1957) 
20) B. Sharma, Thermal stresses in infinite elastic diskes, J. Appl, Mech. 

Vol. 23, No. 4, p, 527, (1956) 

( 28) 
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= sum of residues at poles, wd = 2n
2
+ 1rn:. (70) 

Evaluating the residues at the poles, the infinite integral R0 is then obtained as shown 
in (59). 

Using the relation 

Km(X) In (x) * ix (71) 

which is valid with less errors for larger value of x, we can accelerate the conver
gence of Ro at r=a. From the expression of Ro(r,z) for r~a in (59), we have 

in view of 

"" (-1)n Z _ 7t 
1::2- +1cosf3nd- - 4--, 

n=O n 

2n+1 where f3n = -- 2~ 7t. 

For r?:..a, considering the integral 

-~ J cosh wz !t ( wa) Ho <1) ( wr) dw . 
27tt coshwd 

(72) 

(73) 

(74) 

and carrying a similar calculation as to the case of r~a. we obtain the result indi
cated in (59). The other integrals Rt. R2, Su and S1 can be evaluated in similar ways. 

Appendix B. 

r 

The evaluation of the integral S2' = J ~~2 dr+ [S2(0,z)- S2(0,0)]. 
0 

The integrals, ~~ and S2 (0,z)- S2(0,0), can be evaluated in a similar way as Ro. 

The integration of 352 thus obtained with respect to r presents no particular difficular 
ty. Then we obtain the result for r~a as shown in (68). 

The result for r?:;a is 

, 1 z2 1 a 1 a r 2 "" ( -l)>t K ( a) S2= --------log-+- :E-- 1 n7t-
2ad 4d 2d a 7tn=t n d 

( 29) 
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+ -- :E --/1 n7t- Ko n7t- cosn7t-2 "' ( -lY~ ( a) ( r) z 
7t n=1 n d d d 

(75) 

which can be expressed in a neater form indicated in (68) by employing the follow

ing formulas. 

/ 1-1 (x) K 1 (x) + 11 (x) K 1-1 (x) = ! = __!!_ , x n7ta 

"'(-l)n z 7t2[(z)2 1] :E -
2
-cosn7t- =- - - · , 

n=1 n d 4 d 3 

( 30) 

(76) 


