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Thermal Stress in a Semi-Infinite Solid and a Thick

Plate under Steady Distribution of Temperature*
(Recieved March 13, 1957)

Rokurs MUKI **

Abstract

This paper contains the exact and general solutions for the thermal stress in
a semi-infinite solid and a thick plate under steady distribution of tempera-
ture. The approach used rests on the method of Hankel transforms in the
three dimensional theory of elasticity which is introduced into the axisymmetric
case by Harding and Sneddon and generalized to the unsymmetric case by
the present author. It is found that the stresses in the direction normal to
the plane surface, that is, ¢s, 7¢. and 7. vanish everywhere in a semi-infinite
solid and a plate with infiinite extent when the distribution of temperature is
steady. The general solution is then used to solve some particular problems
of a thick plate. Numerical calculation is carried out in detail and the result
is compared with the corresponding solution for a thin plate.

Nomenclatures

The following nomenclatures are used in this paper:
u = Modulus of rigidity
v = Poisson’s ratio
& = linear thermal expansion coefficient
T = distribution of temperature in the medium

U, v, W, o, Gg, ot = components of displacements and stresses, respectively.
¢ , 10 ,1 & 22
2— Y Y Y
v or? rar+ 72 ol + 0z?
2 O (10 m?, &
,V"‘ =ty taz
Introduction

Although considerable attention has been paid to the thermal stress in a body
due to an inclusion of different material in it, comparatively little is known of the
thermal stress in a body with three dimensional distribution of temperature varying

* This investigation was supported in part by a Grant in Aid for Develop-

mental Scientific Research from the Japanese Ministry of Education. Part of
of this work has been presented in Japanese to the Trans. Jap. Soc. Mech.
Eng. Vol 22, No. 123, p. 795, (1956

** & i BE B ; Lecturer at Keio University
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Thermal Stress in a Thick plate 43

from place to place. The solution of the latter problem have been obtained for a
sphere by E. Almansi, ¥ for a circular cylinder by T. Suhara,® by E. Melan® and
by T. Tsubouchi® and for a spheroid by the present author.

In this paper, the problem of the thermal stress in a semi-infinite solid and a
thick plate with steady distribution of temperature is considered. In the first part
of the paper is introduced the general expression in form of the Hankel tranforms
for the particular solution of the thrmo-displacement equations which can be applied
to any (steady or unsteady) state of temperature distribution. The procedure used
is similar to what was adopted to obtain the transforms of the general solution of
the displacement-equilibrium equations in the previous papers ® ? which dealt with
the generalization of Sneddon’s method ® ¢ to the unsymmetric case. The general
solution for the thermal stress in a semi-infinite solid and a thick plate with the
steady distribution of temperature are then obtained by the aid of the foregoing
method of solution by Hankel transforms.

The Transformation of a Particular Solntion of
the Thermo-displacement Equations

If we employ the cylindrical coordinates (7, 6, z), a particular solution of the
thermo-displacement equations can be taken as!® :

1+V gag v = 1+1/6_8!l w = + aQ €D

or, T1-v " rod, 1—v az,

and the corresponding stress components are
_1+v [P0 N
ol =q1", € o T], ‘
17—7&5 v [laﬂ 1220 T]

75_0_—'_ 7 o0?

1—!—
e 122 307

oo/2p =

) S. Timoshenko, & J.N. Goodier, Theory of Elasticity, McGraw-Hill p. 433 (1951)

) T: Suhara, read at the Congress of the Japan Soc. Mech. Eng. Nov. 11th
(1951)

3 ) E.Melan, & H: Parkus, Wirmespannungen, Springer Verlag, Wien, (1953)

4 ) T. Tsubouchi, Trans. Jap. Soc. Mech. Eng., Vol. 19, No.83, p. 35 (1953)

5 ) R. Muki, Proc. Fac. Keio Univ. Vol. 6, No. 20, p. 10, (1953)

6 ) R. Muki, Proc. Fac. Eng. Keio Univ. Vol 8, No. 30, p, 8, (1955)

7 ) R. Muki, Proc. 5th Japan National Cengress for Applied Mechanics. p. 119,

(1955)

8 ) J. W. Harding and I. N. Sneddon, Proc. Camb. Phil. Soc Vol. 41, p. 16,
(1945)

9 ) I. N. Sneddon, Fourier Transforms, McGraw-Hill, (1951)

10) See (1), p. 433. The expressions employed here differ from Timoshenko’s

N

in the multiplier }Jr ¥ which is introduced for the sake of convenience,

(11)



4 Rokuro MUKI

1w . 20 ‘; @
Tos/2p0 = 1= ¢ 7500z, |
_ l4» 50 |
Tel2u= 1 55,
20 Q
Trof2p = FZ rae[ ,

where
viQ=T. (3)

In the derivation of (1), it is assumed that the inertia terms in the displacement
equations are so small that they can be neglected in comparison with the other

terms.
We may write  and 7 in the following forms;

Q(7, 8,2 )= 3 (Qn(7, 2, Hhcosmd + Qu(7, 2, 1) sinmb) 1
= <))
T(r, 6,z t)= f}o[Tm(r, z, tycos md + ’i‘m(r, z, 1) sin m@) J

For the sake of simplicity, we put Qn=Tn=0" and consider only a single value
of m without loss in generality.

Substituting (4) in (3), the relation between Q, and T is obtained as

2 10 m
\—"‘Q’"—(arﬁrar +az)ﬂm Tn. )

Using the formulas of the Hankel transforms,!® it can be shown that

( (;"';2 —E)Ln= M, (6)

where

© o«

Lo= [7Qu]u(r)dr, My = [ 7 Toju(Er)dr. )
0 0 .

Now, we obtain the result that if the temperature distribution is prescribed in the
medium, then the Hankel transforms of the corresponding particular solution of the
thermo -displacement equations is given as a particular solution of the ordinary
differential equation (6).

Next, we consider the transformation of the expressions for the displacement and
stress components into relations involving L., M, and their derivatives. Substitut- -
ing one term of (4) into the expression of w in (1) we have

w=1t? a(i cosmb .

1—v
If we multiply both sides of the above equation by 7J.(£7) and integrate it with

11) The solution for T is readily obtained if the one for Tw is given.
12) See (9), p. 61.

(12)



Thermal Stress in a Thick plate 45

respect to » over the range 0, co, we obtain

fwr]m(’g‘r) dr =117 ¢4Lln o0
J 1—v ~ dz

Inverting the result by the Hankel trnsform theorem !® we have

w = 1+" Sf’g'd[‘"‘]m('g‘r)cosmedf (8)
By a similar procedure, the expression for o can be obtained. A single expression
of the remaining components for displacement and stress, however, does not permit

the transformation in terms of L. and M.. Constructing the following pairs of
the components and carrying out similar calculations, we have

ufcosmf + v/sinmb = — i—j}z Ef & Ly Jns (Er)dE
[
: _14v -
u/cosmf — v/sinml = i 8([&2 LoJn(EN)dE ,

orfcosml + oe/sinml = — 1+'3 éf [d Ly + M., ]’g’]md&' ,

. IS E )
Tofsinmb + 1. /cosml = —2u e iffz—dz—]mﬂ dg, 0

T oz/sin mé — 7,,/cos ml = —2;/,%1’: EOf’éz%]m—l dg,

o rJcos m@ + 2uu/rcos ml + 2umv|rsin mo

—oultre f B ENE,

Tro/sin mO + 2umu/r cos mb + 2uv|rsinmd =0, /

Solving these equations, we can find the expressions for the displacement and stress
components in terms of L., M, and their derivatives. Summing them up with
respect to m, the expressions for displacement and stress component due to the
particular solution of the thermo -displacement equations are obtained as follows.

1+Z SZ‘UE Ly Jns1dE— fgsz]m—l df:l cosmb ,

13) See (2), p. 48
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p=— 12 gm_ [ff?Lme+ld§+ fs LuJno df |sinmf) ; (10)
0=ttt e S frihe.at eosm, )
2N = }Jr,’j m‘z;[ f&d Lo, dg + —(m+1)f§2Lmjm,,ldg
+ o (m—1) 0f E L Jn_s dE |cosmb,
gi=1ren[~ f E My ) dE ‘zl#m“).f £2 L [t dE
— g (m=1) [ Lo 1 |cosmd,
' an

;'/i 1+” .smz_;)[_/ E3 L Jn dE ]cos ma,

r o1t gm_o[ f gLn g, g+ f szde"fm dE |sinmo),

2= }Jrzgm_o[fgzdllm]m“df ffzdL”]m 1 dE |cos mf,

;T; }izggo[m+lf§ Lo Jnsi dE—"7 ’fEZLm]m 1d§]smm€

Up to this point, the theory is applicable to any state of temperature, that is, steady
or unsteady. Now, we shall confine our discussion to the steady state of tempera-
ture and assume that heat is not generated in the solid. Then, it follows from (4)
that 7o is the solution of the following differential equation

sz Tm = 0 . (12)

After the operation of Hankel transforms, we have, in view of (7), that'
& e -
(&.—€)Mn=0. (13)

The general solution of (12) is
Mm = ameéz + bme_E2 (14)

(14)
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or

My = ancosh &z + by, sinh &z, (15)
where an, b. are constants to be determined from the boundary conditions for
temperature. When these constants have been determined, the expression for T, may
be obtained directly from (14) or (15) by means of the Hankel transform theorem

Tn= [ MuEJu(E:)dE . (16)
(1]
Furthermore, in view of (6) (14) and (15), L, is easily found to be
Lm = 2% [am eﬁz - bm e‘Ezj s (17)
or
L, = oF Z (@nsinh&z + bncoshéz) . (18)

The Transformation of the General Solution of the Equations
of Equilibrium

In the previous paper ® 7 the expressions for displacement and stress components
which satisfy the equations of equilibrium of an isotropic medium have been shown.
For the sake of completeness the results are summarized here.

U=z 2 [Umﬂ(r 2)— Vi (7, z)]cos mo )

== %g[Um+l(r,2)+ Vm-l(r,z)JSin m() ’ ; (19)

w= Z[f{(l 2v ) ‘_2(1—V)Esz}ffm(Er)dE]cosm& ‘

m=g

T _ m_o[ f{ 4 on s+ (1—nedmle g Endg

(mz—:'l)U’" (ﬂz;%l)Vm_l]COS mé ,

so- v f {2 e g a

+ (m+1)Um+l + (m 1) Vm 1:ICOS me

_m_ﬂ[f{(l ”)d3 (2—v)§2dg;t} EJn(Er)dE |cos mt),

(15)
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Z‘Z 2m_0[f{ dGm+(1___ )E2Gm+de}’g'2]m+1(Er)dE (20)

+ f{ Ln + 1= eGn—Urler g (£ dE]sinmo,

RGN AL

"f{ ddsz"l'(l_V)Esz ‘{Hm}’g?]m I(Er)dE]COS mé,

g = [ f Hn £ ] (E7)dE — (”gri’ Unsi+ (L”Z—;D Vm_l} sin m6 ,

where

Unsi(7,2)= [ (- 2H ) s (EDVGE ’
|

(21)
Vm 1\7 Z) f(ic—;ﬂ — m) Ezjm—l(fr)dg y
and G, and H, are the solutions of the ordinary differential equations
(dz2 £ ) Gn=0, l
[ (22)
(dz2 E) Hn=0.

Solution for a Semi - infinite Solid

Choose the z axis normal to the plane surface and pointing into the semi-infinite
body. It will be supposed that the distribution of temperature is prescribed on
the surface. The boundary condition for tenperature on z=0 then becomes

T(r,0,0) = :zozm(,r) cos mé . (23)

Furthermore, we assume that the surface is free from external tractions which
requires at z=0 that
C:=Tp:=Ter=0. 24

For the time being, we shall consider only a single value for m.
From the requirement that temperature tends to zero as z tends to infinity, we
assume the solution of (13) in the form.

(16 )
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= f To(7,2)7 Ju(EP)dr = bue~. (25)
0
Putting z=0 and inserting the prescribed boundary condition (23) we obtain
bu= [ta(NrIniERdr. (26)
0
In view of (17) and (25), we have
_ _bmz g
Ly, = 25 e . (27)
Inverting o, in equation (11) by the Hankel transform theorem, we obtain
\
[ [oef2ucos mi] rm(ENdr =11 Veg Ly = — 14V EbnEZ o
and combining 7, and .., we find
S Crusl2usinmd + 7.r/2ucos mO) 7 Jws (Er)dr = — 117 sgdLm
’ }‘ (28)
%ﬂeb’"(l Ez)et:, |
N . _ dLm
f[n,z/Zusm ml — T2r/2ucos mO] ¥ Jm (Er)dr = — f
0

= ,12 Em (1 _Ezyete. )

Since the stresses due to L, do not satisfy the boundary conditions (24) at z=0,
we employ the solution of (22) of the forms.

Gn(£,2)=(Cn+ Dp2)e*, L@
Hm(gvz) = Fme—£2 -

In similar procedures as to L., we obtain

f [os/2ucos mO] 7 Ju(Er)dr = [(1 n® G’"—(z—y)gz‘%"]
=[ECn+{E2+(1—2v)}Dn]et,

f [7oz/2usinm@ + T:r[2pcOs MO] 7 Jrns1 (E7)dr
0

= [r4Gm+ (-G + Hn]

= EZ [EC"L + (EZ—_ZV) Dm - Fm] e—&z .

(30)

(17)
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©

[ [74:/2psin MmO + 7:,/2p cOS mA]

0
=g[p2Cm+ -0 G — Uln]

=E2[ECn + (E2—20) D + Fnle—t . /

/

From the boundary conditions (24), the sum of the corresponding components of
(28) and (30) must vanish for z=0. Solving these equations for C,, D»n and F,
and substituting them into (29), we have

Gu=1T2e I (— 1-20)+ E2er,
"2t (31)

(

Calculating the components of displacement and stress due to L, and G. inde-
pendently and then adding them up, we find the general solution for the thermal
stress in a semi-infinite solid with steady distribution of temprature as follows;

T= 20 Lu\(7, 2) cos ml) ‘ (32)
= (1405 3 = It cos md),
v=014+n¢ io[lm+1° + Ini®] sin m0 (33)

w=—1+»)€ iolm" cos ml.

Or_ _oc s [m+1 0oy m—1 0]

T~ emgo[ o s+ 7 In-] cos mé),

Oy _ o[ m+1 »
T%"GT,EO[ L'+ ==y + —~I - ]cos mo, | (34)

O'z:'rozz'rzr=0,

Tro _ m+1 _m—1 . ,
FQ - 2m-0l: In +1° Im—1°]51n mf) .
where
Pusg(1,2)= [bne s Jusg (ERErdE (35)
0 : .

and b, is given by (26). _
It is interesting to note that the steady distribution of temperature does not produce
any stress in the direction normal to the plane surface. Moreover, the distribution

(18)
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of stress is not affected by Poisson’s ratio ». "‘As will be séen later, these results
are also true for a region bounded by two parallel pianes. '
Solutlon for a Thick Plate

Consider a thick plate bounded by two parallel planes z= +d and with infiinite
extent. We assume the boundary conditions for temperature in the forms

T=3 () cosmb, A at z=+d 1
m=0 ' ) .
. . : (36)
T =X 2. (r)cos ml , : at z=—d I '
m=Q c . . R L

and for stresses o
¢Tz='7'oz=7'zr=0. : ‘ at z= id (37)
Assuming a solution of (13) in the form '

= me(r, 2)7Jn(Er)dr = an cosh &z + by sinh éz.
0

and inserting the boundary condition (36), we obtain
Bt . o
" 2coshéd, " 2sinhéd. ' (39)
" where v
;l,em:f,x,z,n(r)jm(fr) ar. o o
. 0 ‘ '
‘From (18), we have
L, _25[am sinh £z + by, coshsz] ‘ _ 41) -
We assumé the solutlons of (1_2) in the forms
Gu=[An+ Buz] coshéz+ [Cy + Dnz]sinhéz, o
H,, =[En cosh &z + F, sinh £2] . , [ 2

Inserting L. and H, into (28) and (30) respectively, and considering the boundary
conditions (37), we obtain six linear equations. Solving these equations for Am, B,
---F,, and substituting them into (42), we obtain finally

- _14+v& 5 72 y.{(1—2v)sinh{z + ézcoshézy \
On=1pq Bt Bl £2coshéd o
. { (34) -
1~l—v&(t1 — 2 - {(1—2v)coshéz + fzsinhéz} H, =0. !
¥sinhéd ’

Insertmg L and G, into (10) (11) and (19) (20) respectively, and adding them
up, we can find the general solution in integral forms for the thermal stress of a
thick plate.

(19)

38
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Now, we shall consider the case where the distribution of temperature is symmetric
about the plane z=0. In this case
() = B (9) = £ (7) (44)
and L, and G, are reduced to

z—t-m sinhéz
"~ 9¢ coshéd ’
(45)
G 81+”t {1—- _2u)smh£z+§zcosh£z} [
) g &coshéd |

Substituting L, and Gn into (10) (11) (20) respectively, and then adding them up,
we obtain

S a cosh éz
7 ‘Eo[ [t b oo df/m(fr)df]cosme (46)
u= (1+y)gmé0[um+1 (#,2) — Vmes (7,2)] cOSTE,

v= (1+u)§ i;o[umﬂ(r,z) + Uy (7,2)]sin mé ,

——nn

47
_ °r (7 sinh £z
w= (1+u)em§0[ [tn Sehgd JnED de |cosmf).
/
ar F— m+1 -1
F= EE:O[ T i+ T um_1:|cosm0,
a'9~ coshéz 71; +1 —1
emgo[ f n CoS D E Ju(EN dE + Pty 4 Jeosms, e
|
Uz:Tozz'Tzr:O :
T m+ 1
E‘—’ m_u[ Unpr+ 2 um_ ]Sm mo
where
_ r coshéz
Uy = Of SO L Ju (En)dE
1
[T coshéz L 49
tmor= Of s T

t_mzftmr]m(fr)dr. !
0 )

When the distribution of temperature is antisymmetric about the plane z=0, that

(20)
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is,

tn(r) = —En(r)=tn(7) (50)
the expressions for the components of displacement and stress can readily be ob-
tained by transcribing

cosh —— sinh, cosh —— sinh (61
in equations (46) (47) and (48).

We again arrive at the result, as in the semi-infinite solid, that every stress acting
in the direction normal to the plane surface of a thick plate vanish identically
throughout the plate when the distribution of temperature is steady and no heat is
produced in the solid. It is also known from the general solution that the distri-
bution of stress is not affected by the Poisson’s ratio » and the stresses on the
surface are completely determined by the distribution of the surface temperature.

Example 1.

We shall consider the problem of a plate where the surface temperature are kept
constant, say T, over the circles # <& ane zero outsides of them. The boundary
conditions then assume the forms;

T(r,+d)=T(r,—d)=1,(r), l
ty(r)=T, for r<a (52)
=0 ‘ for r>a
From (41), we have
7 r a
to :(ftorfo Enadr= Toajlég ) (53)
In view of (46) (47) (48) and (53), it is easily found to be
T=TyRy(r,2) 54
u=(1+1/)a$T0R1, w=(1+l))a$ToR2, I
F:—&TO‘ZR1 , %—"»—GTO{—RO+‘—:;R1}, [ (55)
V=0,=Tr=Tp=Trp=0 s
where
coshéz
R, <rz>_afc gy 1 EOL ENdE,
Ri(ra) = [ SO0 1 ea) s e, (56)

f shEd

. _ - sinh&z
Rerd)= | g GO ENE

To determine the distribution of stress on z==+d, we must calculate Ry(»,d) and

2L
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R, (7,d) which are reduced to Weber-Schafheitlin discontinuous integrals !*’; the com-

putations yield

Ry(r.d)=1 r<a, Ri(r.d)= %’
_ la
=0, r>a, =9y

In view of (55) and (57), we have on z=*d
_1

2

la?

272’

og/EET,= —%

-1
272"

U'r/(SET(]:

r<a 1
(57
rza {
0L r<a
r>a
(58)
0<r<a
r>a

Eq. (568) coincide with the ones computed from the solution for a thin plate.

The integrals (56) for arbitrary values of z and 7 can be evaluated by the method
of calculus of residues.'® The convergency of the series thus obtained is rapid except
the vicinity of »=a where some devices are introduced to accelerate the convergence.

The results of the evaluations are as follows.

Ro(r,z)zI—ZZné(—l)”Kl(ﬂng)[o(Bng)coanfi r<a

=3 P2G U (KB h(nl) —y o oossy  7=a

—_—2%"%(—1)’7‘11(67&3)1(0( ng)COSBn%, r>a

Ritra)= =% B K (Bag) (8 ))cos 8 r<a
zg—f’gé(én:)l)zcosﬂ“d 7 o(zn}r)1[K‘(B“ )"(B" )

(59)

Zﬂna]cosﬁn r=a

=55 w Bomia (g Ki (B J)cosBu ra

r<a

Rg(r,z)= 4 i( D Kl(ﬂnz)I()(ﬂng)Sian;

7T n= 02n+1

15) See the Appendix A.

(22)

14) Watson “ Theory of Bessel Functlons p. 398, (1922)
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_%g in:é;}_);[lﬁ( "o )Io(ﬁn ) 2/:?na smﬂ,, r=a
- (. ons
Bn_g’lﬂ” (60)

In view of (54) (55) and (59), temperature and the components of displacement
and stress at any point in the plate are readily computed. Numerical calculations
are carried out in detail for the case a/d=1. Fig. 1 and Fig. 2 show the variations
of o,/EET, and oo/SET, respectively, for planes parallel to the faces of the plate.
The contours of equal temperature and equal maximum shearing stress are shown

in Fig. 3 and Fig. 4 respectively.

The shape of curves in Fig. 4 shows clearly the

| 06 .
ZH=0
=10 EEES e
05— ——— / — 04 F———d—\ —f 02
Y m— \ 7S 02 — \ 0.6
\ \\/ —ra B /08
= — 02 h —
{0 ~ DX 7 — § 0 |
A égg —- ] ANa———
| 3 —
02 \\ \\ -02 74 ‘
=
X 098 /\J} ,\
01— -04 / L0
/
05 0.5 70 15 20 25 0, 03 70 7% 20 35
r/e - r/a
Fig. 1. Variation of o,/¢ET, with » Fig. 2. Variation of ¢¢ /e E Ty with
and z fos a/d=1, r and z for a/d=1,
- 0 ~
o

PN

a

Fig. 3. Contours of Equal Temperature
for a/d=1,

a

Fig. 4. Contours of Equal Maximum
Shearing Stress for a/d=1,

(23)



56 Rokuro MUKI

concentration of stress in the neighbourfood of the point from which the step of
temperature begins. Fig. 5 shows the displacements # and w on the upper and the
middle planes of the plate. In Fig. 6, the thermal expansion of the plate at =0 are
plotted for the ratio between the thickness of the plate and the diameter of the circular
area in which the temperature is kept constant, 7,. The chain line represents the
thermal expansion of the plate when the temperature of the whole plate is raised to
T,, that is d&T,. It is interesting to note that the expansion at =0 for a partly
heated case is greater than the expansion for a completely heated case in a certain
range of the ratio a/d.

10 | L
[ WasTs) -4 N e /]
08 /[ c ) g 08 o
| z=( R /‘/ /
_“\\/ _—y /
06 < - 5 500
AN / [W/v)acn) 2=d 3 /
\ N » z 04
04 /'( ( \4/ { Voo E
/// \ £ \\\\ 02
‘/ \ TS~
02)—— N S
N N
s T Y0 g s w0 054G 0
0 V4SS . Sl L e
05 025, 0
7 0.5 /.0 /.5 20 25

Fig. 6. The Variation of the Expansion
Fig. 5. The Variations ot # and w on the Upper of the Plate at »=0 with a/d.
and the Middle Planes of the Plate.

Example 2.

Consider the problem of a plate where temperature is kept constant 7, over the
circle r< a, z=d and — T, over the circle » <a, z=—d. The boundary conditions
then assume the forms;

T(r,+d) =ty(v), T(r,—d)= —1,(7). 1
and =T, for r<a (61)
=0 for r>a I
From (49), we have
t_oz TO.‘,’LEQE_") . (62)
As in the previous example, we have from (50) (51)
T= ToSo(?’,Z) (63)
u=1+v)acT,S (r,2), w=14+v)a& TyS:(7,2), ]
E=—¢eT,%S,(r,2) /E—eT{—s+@s} S
or/E= 0,1 »2), oy = 0 0T 1) I

02022772:0,

(24)
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where
S(r,2) = a j S L) LuEndE, |
S =a g;ﬂfgd J(Ea) )i (ENdE, (65)

S:(r,2) = j S i€ o En

From the fact that o, and 7., vanish everywhere in the plate, it is easily seen that
(64) also gives the solution for the following probiem ;

T(r,d) =1(r), T{r0=0
and or=1,=0, at z=d and 2=0. [ (66

In a similar procedure as in the previous example, the distribution of stress on

z=*d can be calculated. The variations of stresses on the plane z=d are the same
with (58) while the ones on z= —d differ from (58) in the sign.
The integrals S, and S; for arbitrary values of z and » can be evaluated by the
method of calculus of residues as in the previous example. The integral S; is,
however, divergent and can not be evaluated. Considering the physical meaning of
S., we introduce the following convergent integral ¢ ;

z

w

ow 35,
() aeT, <1+V>aenf o 4t 0A-w 0.0 |= f @+ I50,2 = 50,01

=8,/(r,2). 67
The results of the evaluations are;
Sy (r,2) = 2+%}’§1(—1)"K1 (nrz d) Io(nnd>sm mrd r<a
=2£d+g§§ —1)” [K,IO ——]smmu r=a
= _gdﬁn};:l(—l)ﬂl(nn Z) K(,(mt 2) sin mr%,. r>a
S, (r,z)=%2~;+ %’i(_nl)nlﬁ (ng)ll (mrg)sin mrf—l r<a
= %§+ e né( nl) sin mt‘zi+ 72r il( " I[K,Il — 7—]smnnf r=a (68
= ;Z—i+ infi( 1" I (mr Z) K, (mrg)sin mr; . r=a

16) For the evaluatxon of the mtegra] see Appendix B.

(25)
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, 122 1r8 2 2(—1n
SinA) =5 0a 4ad+7rn21 n KI( a’)

= B (o ) 1o ) cosnry r<a

122, 1d 1la & (—I)m a
4ad+12a 4d+7fnzl n K(mrd)

Z "( Dn[KIIO—2:”,);%:|cosn7r‘g r=a

7[n1 d

4d 6 2d 7 n=1
+7[n§( nl)nll(mr )Ko(mrd)cosnrra rza |

From (63) (64) (67) and (68), we can find temperature and the components of
displacement and stress in the plate. Fig. 7 and Fig. 8 show the variations of o,/€ET)

0.6

T
] v )
Ti=10 ” 02 __|
s=——r—— 1y — 4 =]
\ 26
04 \__/ 02,_}

NN/ ==\
IR %/
~

(- 03 /CER)

(%en )
1
by
N

'\,\é =
N zad

\

e
TS 2
0 \

0.1

. =04

-06

A 10 /
] 05 0 13 200 28 g o r/a 5
ra
Fig. 7. Variation of ¢./¢ET, with » and Fig. 8. Variation of ¢¢/¢ET, with r and
z for a/d=1. z for a/d=1.

and oo/EET, respectively for six planes parallel to the faces of the plate. The chain
lines represent the corresponding stresses computed from the theory of thin plate
obtained by Goldberg“™ which coincido with the stresses computed from the present
solution on the free surfaces and give higher values in the interior of the plate. So
we can conclude that the stresses computed from the theory of a thin plate are always
on the safe side. The contours of equal temperature and equal maximum shearing
stress are shown in Fig. 9 and Fig. 10. Fig. 11 shows the displacements # and w

17) J, E, Goldberg, J. Appl. Mech, vol. 22, p. 257, (1953)

(26)
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on the upper and the middi: planes of the plate.

7

. 08
‘oa/ / )
02

0/

0

Fig. 9. Contours of Equal Tmperature

i
Fig. 10. Contours of Equal Maximum
Shearing Stress for a/d=1.

for a/d=1.
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Fig. 11. The Variations of # and w on the Upper and
the Middle Planes of the Plate.

Conclusions

The general solutions for the thermal stresses in a semi-infinite solid and a large

thick plate with steady distribution of temperature are obtained and the following

results are derived.

1.

2.

The stresses in the direction normal to the plane surface, that is, o 7s. and

7. vanish everywhere in the medium.
Stresses on the surface are entirely determined by the distribution of surface

temperature and coincide with the ones computed from the solution of a thin

plate.
Every stress has €E as a linear factor and the pattern of the stress distribu-

tion is determined by the distribution of temperature and is not affected by the

Poisson’s ratio ».

(27)
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Postscript

After the completion of the paper, the author found that, at approximately the
same time of the publication of the Japanese issue “® of this paper, the solution of
the steady state thermoelastic problem for a semi-infinite solid has been presented
by E. Sternberg and E. L. McDowell ¢® and the one for a thick plate of infinite
extent with axisymmetric distribution of temperature by B. Sharma ¢® who, however,
did not apply the solution to any particular example of a thick plate. Sternberg
and McDowell have studied the problem by the use of the Green’s functions, while
Sharma directly integrated the thermo-elastic equations.

Appendix A.

3

The evaluation of the infinite integral R,= afzgzﬁg, ]1 Ea) ] (Er)dE.

[

For r=a, consider the integral

i | coshang i ) Jyaon) (69)
around the contour which is taken to be a large semicircle
above the real axis with its center at the origin, together
with that part of the real axis (indented at the origin)
which joins the ends of the semicircle.

Then, we find that

FanY

Fig. 12, The Contour

1 ( coshmz
9w ) coshwa ™" (wa) s (wr) dw
R
=1 5 cosh&z By
_'272';51[! SO ey (HL (@) Hy (Fae™)) Jo(Er) dE
§—> 0

”

_ . (coshéze® ,; " e
’j coshedgnth” (€ae®) Jo(Eae'?) Ee de]

0

18) See, note * on page 12,

19) E. Strenberg, E. L. McDowell, On the steady state thermoelastic problem
for the half space, Quart. Appl. Math, vol. 14, No. 4, p. 382, (1957)

20) B. Sharma, Thermal stresses in infinite elastic diskes, J. Appl. Mech,
Vol. 23, No. 4, p. 527, (1956)

(28)
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= [fzg:gg;fl EanEnds—1]

21, (70)

= sum of residues at poles, wd =

Evaluating the residues at the poles, the infinite integral R, is then obtained as shown
in (59).
Using the relation

1
KM(x)ln(x)"‘z)E 1)

which is valid with less errors for larger value of x, we can accelerate the conver-
gence of R, at r=a. From the expression of R,(7,z) for r=a in (59), we have

R,(a,2)=1-2 2( 19k coan Zgné(—l)"[lo(ﬁn%)& (Bng)—z—é‘n—d]cos&g

7T n= 027l+1
_1_ g3, 1y a
=222 S [K(8a8) 1(8:8) — g JeosBn . (72)
in view of
(-1~ z_ 7 _ z
“202’“_1 05 Bn W= 4 1<d<1' 73)
where B,= 2—”2"_ 1

For r>a, considering the integral

1 (coshwz W
97iJ coshwd Ji(wa) Hy® (wr)dw . (74)

and carrying a similar calculation as to the case of r=a, we obtain the result indi-
cated in (59). The other integrals R;, R,, S, and S; can be evaluated in similar ways.

Appendix B.

The evaluation of the integral Sy’ = f 385;3 dr+ [S:(0,2) — S,(0,0)] .
0

The integrals, %‘3 and S:(0,2) — S;(0,0), can be evaluated in a similar way as R,.

The integration of —aa% thus obtained with respect to » presents no particular difficul-

ty. Then we obtain the result for r<ae as shown in (68).
The result for r=a is

122 _la_la (=1
Sv=g i 45— salog s +2 SN (nr )

(29)
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+2
T n

Mes

l(—”1)” I, (mr%)[{o (m, :'7) cos nn%

_2 & (=1 2
w nE=1 n [[0K1 -+ I]Ko:l Cosmtd (75)

which can be expressed in a neater form indicated in (68) by employing the follow-
ing formulas.

L (K@) + L) Ky (x) = }:= 'ﬁi_a , l
> (76)
Clr z_mirzy 1 L 1<? <

B gecosnr = <d) . 1§d=1

(30)



