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A Three-Dimensional Problem of a Semi-Infinite
Elastic Solid under the Compressive Action
of a Rigid Body”

(Received May 19, 1956)

Rokurd MUKI**
Abstract

In this paper is given the general solution for a three-dimensional prob-
lem in elasticity, which consists in finding the stress-distribution of a semi-
infinite elastic solid under the compressive action of a rigid body of arbi-
trary (non-symmetrical) shape. Further, the solution has been applied to
a partibular case with the numerical calculations carried out in detail. It
is assumed, in the analysis, that the contact area between a semi-infinite
elastid solid and a rigid body be kept in a circular form.

Introduction

The problem to determine the distribution of stress in a semi-infinite elastic
solid under the compressive action of a rigid body has been considered by a num-
ber of authors.” The work by Muskelishvili 2> for the two dimensional case and
the one by Sneddon® for the three-dimensional axisymmetric case are most not-
able, since they have developed the general theories for the punch of an arbitrary
shape. The solution for the distribution of stress in an infinite solid under the
compressive action of an elastic plane is obtained for the two dimensional case
by H. Okubo.®

In a previous paper by the author,® the method of solution for the axisym-
metric problem of elasticity, which was introduced and used by Sneddon® for

*Part of this work has been published in Japanese on the Trans. Jap. Soc. Mech., Eng.,
Vol. 21, No. 111, 1955, p. 767

**&g FERE : Lecturer at Keio University.

1 For further reference, readers are referred to (2) and (3) for the two and three dimes-
ional case, respectively.

3 Muskelishbili (translated from the Russian by Radok) Some Basic Problems of the Math.
Theory of Elasticity. P. Noordhoff Ltd. p. 457 (1953)

% Harding and Sneddon, Cambridge Phil. Soc., Proc. Vol. 41, p. 61 (1945)

4 H. Okubo, Trans. Jap. Soc. Mech., Vol. 18, No. 65, p. 58 (1952)

5 R. Muki, “On the Sneddon’s Method by Hankel Transforms for the Three Dimensional
Problem of Elasticity Theory.” This paper will appear in the Proceedings of the 5th
Japan Natioanal Congress for Applied Mechanics (1955)

% Sneddon, “ Fourier Transforms” Chap. 10, McGraw-Hill (1951)
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A Three-Dimensional Problem of a Semi-Infinite Elastic Solid under the Compressive Action 69

various interesting problems, was extended to the general nonsymmetrical case.
This method is used to obtain the general solution for the displacement and stress
fields in a semi-infinite elastic solid under the compressive action of a rigid body
with an arbitrary shape. It is assumed, in the analysis, that the contact area
between the solid and a rigid body be kept in a circular form. The solution is
then applied to a special problem where the flat ended circular cylinder, which at
first instance was indented normally to the plane surface of the elastic solid, is
inclined by a small angle 4¢ due to the moment working on the cylinder. Nu-
merical calculation is carried out to show the influence of the inclnation of the
cylinder on the distribtion of stress.

The Expressions by Hankel Transforms for
the Displacement and Stress Components.

The derivation ™ of the expressions by Hankel transforms for the displacement
and stress components has been shown before, but, for the sake of completeness,
this will be recorded here.

If we employ the cylindrical coordinates (7, 8, z), the equations of equilibrium
in terms of the displacements #, v, w, in 7, @ and z directions are

1 o4 1 ov u !
2 P —_— — — ———— —_— .
rrut 1-2v or r (2 ra()+ ¥ ) 0,
g L o4 1 (v _gou)_g|
e R G ) 1)
] 1 od
Z — ——— . T
prw+ 1-2v oz .

where p? and v denote the Laplcian operator and Poissn’s ratio, respectively, and
4 denotes the dilatation and is given by

_Oou  u , OV , ow
A—_a_r—+r+ra(>’+az- @)

It may be verified by direct substitution that the equations of equilibrium (1) are
satisfied if we take

e DL 2N T o)

oroz o0 T rofoz or, @)
o1 _ N pac_ 0P (
w=21—v)p*P S5 )
where pib =0, pay=0. (4)

Eq. (3) is the generalization of the Michell’s stress function and if we take @
to be independent of ¢ and ¥=0, eq. (3) is reduced to the Michell’s stress function
which is defined to the axisymmetric torsion free deformation. On the contrary,

T See (5)
(9)



70 Rokurs MUKI

if we take =0 and ¢ being independent of #, eq. (3) represents the state of
pure torsion. Moreover, the generality of eq. (3) is assured, since a suitable
choice of the biharmonic function ¢ makes eq. (3) equall to the displacement
field derived from Boussinesq’s approach of which generality has been proved
by H. Miyamoto. &’

The stress field corresponding to the displacement field, eq. (3), is easily found
to be

0n2u= 2 ( VD — )+ ony 72,; o

ar2 r obdor o
cin (ool L T8 S
o= {@-npro- 27}
= fooore T3,
ruftp =2 {1-npro— TP 1 B
2= s (7 G )2 e g

We may write the biharmonic function @ and the harmonic function y in the
following forms
o —
(7, 0, 2)=> 0[<I>m(r, z)cos m 0+ Dy(7, 2)sin m 0] |
? (6)
co o i
W7, 8, 2)= 32 [, 2)sin m 0+, 2)cos m 6]
We assume P,=y,=0 and consider only a single term of m in eq. (6) without

loss in generality. It is easily seen that &, and = are the solutions of the fol-
lowing partial differential epuations

R = T
Pabm= ' Jom=0. (8)
Using the formulas of the Bessel functions, it can be shown that?®
[ padrtnEnar= (G, —£) [Cronfndr=0, ©)
[ Prtmriatrdr = (-5 =) [rimfua(Eridr=0. (10)

8 This paper was read at tre 4th Japan National Congress for Applied Mechanics
on Sept, 2nd, 1954.
9 See (6) p. 61.

(10)
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Now, if we write

Gn(E, 2)= f :°<p.m Ju(EP)dr, (11)

Hu(E,2)= [ 7 NomJu(Er)ar. (12)

we obtain the result that if » and Ym are the solutions of the partial differential
eq. (7) and (8), then their Hankel transferms Gm and H» must be the solutions
of the ordinary differential equations

(é’; —g?)zamzo, | (13)
(& —&)H=0. 14

The general solutions of (13) and (14) are
Gm(gyz)—_-(Am+Bwﬁ)e52+(Cm+DmZ)e,_§z (15)
H.(E, 2)=Enef*+ Fpe, (16)

where the arbitrary constants A,~F. are to be determined from the given bound-
ary conditions. Once these constants have been determined, G. and H, are
known functions of z and the parameter £ and the expressions for ®, and yn
may then be obtained by means of the Hankel transforms;

Du(r, 2= [ CEGAE, 2)Jm(ENE, an

V7, ) = [ CEHA(E, Dn(Er)dE. (18)

Next, we consider the transformation of the expressions for the displacement
and stress components into relations involving G, H. and their derivatives.
Substituting one term of (6) into the expression of w in (3), we have

w= [2(1—1/) V§,¢m—%?2‘”‘ cos m 6.

If we multiply both sides of the above equation by 7/.(£7) and integrate with
respect to 7 over the range 0, oo, we obtain

[ wrlaErdr=[ (1—20) LG — 212§ |cos m 6.

Inverting the results by the Hankel transform theorem, we have
— o _ dZGm . — 2
w= | ) [(1 20) & Zn —2(1-0)E Gm]cos MOETm(Er)dE . 19)

By a similar procedure, the expression for o. can be obtained. The single ex-
pression of the remaining components for displacement and stress, however, does

(115
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not permit the transformation in terms of G., H» and their deivatives.

Rokurs MUKI

So, con-

structing the following pairs of the components and carrying out similar calcula-

tions, we have

(CO:mH + sin m0) fw( don +2H"’)E2Jm“(57) dg,
( cog mO ~ sin mH) f ( dGm ZH"‘)EZJM"I(Er)dg ’
(co?ﬁi() cos m(i) f C"’[zu 51 Gm +A=208 =, dGm ]EJm(Er)dE
(geg + co?}n'e =2 [*r & Gm PCn 4 (1-1)EGn de e Tncenat,
(snﬂlro;w cos m9 )_ ﬂfoo d G
( cos mH rc%/;z:nﬂ rzs‘:r:n :;zf))
=2 [ - LG+ A—0)EG |ETmCEIGE
( _Trp Zumu zuv
A\sinmf  rcosmf ' rsin mb
=2u [ HuE Ja(En)dE

EGa —:@L]sz]m_msr)d&, (20)

Solving these equations, we can find the expressions for the displacement and

stress components in terms of Gn, H» and their derivatives.

Summing them up

with respect to m, the general expressions for the displacement and stress com-

ponents are obtained as follows.

21

U= 7..2_0 [Um+,(r,z)—Vm-,(r,z)]cos mé
=g m;}_O[Um+l(r,z)+ Vm_l(r,z)]sm mf,
I3 {(1 —~20) ECn 21— )EG}ETn(Er)dE |cos mb .
S IR T B A TRESY:
—(l‘zi;DUm+,—<_”’2;_1)_ Vs Jcos mé),

+MU +1+ *(m—l) Vm—l]cos m() 4

o " 2r

(125
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. *—M[ f {=v> EOn _a—u3g2 9 ), (Erya Joos mo),
=251/, Lo B Ay Gt U s ey =
+f { dGm +(1=0)EGm _,,,d,H }g jm_l(fr)def] sin md,
T S [, G Gt U e
-/ { & G’" + (A= )EGm— }52]"._1(67/)015] cos mf,
Tro _m_o[ f HpE? Ju(ET)dE — ,Qf"z‘:;p, Un +1+7(%:—1)7Vm_1] sin md,
where
UnisCry= [ (95m 4 2H,) 8 CEPE , \I
(23)

Varstr= [ (9m —2HL) £ Er2GE . |

//

It is easy to see that the equations (21) and (22) are reduced to the results which

have been obtained by Harding and Sneddon® for the axisymmetric torsion free
deformation if we put m=0 and H,=0.

General Solution

We shall now consider the stresses produced in a semi-infinite elastic solid under
compressive action of a rigid body of a prescribed end shape. It is assumed in the
analysis that the contact area between the solid and the rigid body be kept in
a circular form. If we assume that the shearing stresses vanish at all points of
the boundary, the boundary conditions of this mixed problem for z= 0 are

[oe]
w = w(r,p) =2_0w,,,(r) cos mb, 0L r<a 24
o.=0, r>a (25)
Tor = Tgz = 0. 0Lr< o (26)

For the sake of convenience, we consider only a single value of m. From the
requirement that the displacement and stress components vanish as z tends to
infinity, we assume the solutions of equations (13) and (14) of the forms

Gm(E’ZD = (Cm+ sz)e—gz, @7
Hn(E2)=Fy e, (28)

(13)
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Substituting (27) (28) in (20) and setting z=0, we find in view of (26) that
:|z=0=f(())o[Ecm—zqu—FmJES]"H—I(EY)dE:O ,

1[ Tox 4 Ter

2ul sinmt ' cosmt

1 TDZ — TZT, :L=0= fuoo [EC,,,——ZI/Dm-I-Fm] E3]m_1(fr)d§=0

2ul sinmd  cosmf

Hence we have
Cm:'gé}—Dmy Fm=0» (29)
_ 2]/ ' —tz
Gm_Dm[f§~+ 2 Jet. (30)
From the conditions (24) (25), we obtain the relations
w _ _ [oe] _ N
ot g = 20 [CEDnENDE = wa(h) . 0<r<a
1 3D
oz _ [ g3 _
2u L cos mo l=o_fo EDnfu(Er)dE = 0. r<e )

If we now make the substitutions
Esz=a2fm(P)y EGZP, r=aP;
32
—wn(r)=2(1—v)agn(p) ,
we find that f.(p) is a solution of the dual integral equations

0<p<1 j

[ 1 DI ppdp=gnCp)
(33)

f:opfm(p)]m(pp)dp=0. p>1 j
The dual integral equations of the type (33) have been studied by Busbridge.!®

From her results, we have

)= 2[5 Jug(®> [ y1C0- 357 guCrray

+ f ;y’"“(l—yz)‘*dy f ; gm(yu)(pu)'*%]mi(pu)du]. (34)
In the particular case in which
gn(p) =23 A;, p™m, (35)
fm(p) can be reduced to
o D(1+7 4m
(D=4 2p 3" (1 2 ) A% flu“’"**]m-%(pu)du (36)
=yt +m) 0

!0 Busbridge, London Math. Soc., Proc. Vol. 44, p.115 (1938)

(14)
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by the aid of the following formulas

\ n
./'; y”*‘(l——y2)‘idy=ﬁ I( ;+2)

2 (5+4),

p f : urtmtd [ (p)du = — ]y () + (n+2m+1) f : umnid [ 1 (puydu .

If we adopt the notation

Lur(p) = [ 9" fu e Juro(ppYdP

)

where ¢ = z/a, we find the displacement and stress components in the solid from

equations (21) (22) (30) (32) (36) as follows
_lasTas P, I
= 5@ 2 [ A=20) Loy L) = Cli =T} 1) | cos mf,

L 433 [ 2y s+ L) —E L o) | sin

m=0

o0
w=—a3) [2(1—u)19n+c1;] cos mf .
m=0

(1 21/) {

o= _2 I:p —tP— (m+D Ly +(m— 1)1%—1}

+ g, {n DB+ n=D 1} ] cos md,

2# 2u. —L [(1+2u)1‘ —§I2] cos mb,

é; = E [I,‘,L+§‘12] cos mb,

(o]
K :7 _ é s (;[I;‘;ﬂ+1m_1] sinmd

Tar

(o]
o = % %‘0 I [ I, — If,,_,] cos md,

o 2}0 [-& pz”) {n+D Bi—(m—D 12}

+ 2§p— {("H'l) Ly —(m—1) I},,_l} ]Sin ml.

(155

(38)

39
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Indentation by a Slightly Inclined
Flat Ended Cylinder

As an example, we shall consider

g
the case where the flat ended rigid ‘7 .
circular cylinder which, at first in- ; r
stance, was indented normally to the [
plane surface of the elastic solid is 2

f -
. . . — .
inclined by a angle 46 as shown in 5' >

Fig. 1 by the moment acting on the €
cylinder. As far as 40 is very small, Fig. 1 Fig. 2
this problem is identical with the one shown in Fig. 2, where i
the flat end of the cylinder makes a small angle 46 with |
a plane normal to the axis of the cylinder. If we take the (ciz)
solution to the problem shown in Fig. 2 as S, S may be |

considered as the sum of the solutions S;, S, for the two (Tb\’f
problems indicated in Fig. 3, (a), (b). Fig) .
The z component of the surface displacement for z=0 is
w=8+8% =8+&pcosh. (40)
Using the notations (35) and considering (32), we see that
1 )
&(p) = Aj= —21-v) a’ |
; (€YY
0 1 & |
g&(p)=Alp=— A=) a P )
From (36), we have
_ 2 _ 2
=y B asro. =2 Ao (42)

Since the displacement and stress fields corresponding to S, have been studied by
Sneddon ', we shall consider only the ones corresponding to S,.

It is easily seen from (38) (39) that the necessary integrals for the determination
of the displacement and stress components on the surface of the solid are I§( p.o),
$(p.0), 13(p.0), I} (p.0) which are reduced to the particular cases of the following
Sonnine Schafheitlin discontinuous integral '»

oo Ja— —1(b b1 b?
D e e N =R CE L D

The hypergeometric series obtained by inserting corresponding values in places of

11 Sneddon, Cambrige Phil, Soc., Proc. Vol.42, p.29 (1946)
12) Watson, “Theory of Bessel Functions” p.401 (1922)

(16)
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a, 8, ¥, a, b, can be reduced to the elementary functions by the aid of the recurrence
formulas of Gauss.

I3(p.0) = Ai 2F(2, L L3

2A° 1 2 N
= [(1+¢1 oyt {1 — g2 1-Q—ph}]
0<pLl
8 1
I3(p.0) = g Al s 1<p
Bpoy= 44 (1 peyh 0<p<1
T »
Ii(po)=0 1<p
I (p0)=Alp, 0<p<1 (44)
o= (3 3,8, 2)
2 .1 /1
:—#—A‘l’[p ar,csm»lvl;—\/l-—#], I<p
1I(p0)=0. 1<p

It is easily seen from (38) (39) (44) that the boundary conditions (24) ~ (26) are
satisfied. For the evaluation of the stresses in the interior of the solid, the integrals

LI I, 1L, G, I should be computed as seen from (39). On the z axis (p=0), all
the integrals vanish except I? which takes the from

2 4y [ — _ 8 4 1
B =2y 2 A [P perogdr = Sar L, (45

For arbitrary values of p ans ¢, these integrals can be evaluated in a same procedure
as adopted by Terazawa!® and by Sneddon.“’ For I!, we have

Lp/)= 2\/ 2 4"V e‘”gl%(ﬁ)h(pp)dp

- A° f °°( cosp + Sin*”)]x(ﬁp) e~"dp

5 ar = Re ([P0 1iop) )
+L(f* 9—(5—1 Jipp) dp )]

—*A"f—' [Ccos qb+(1 —R) sin —; :l (46)

ll

where R, and ]m represent the real and the 1mag1nary part of the function in the

18) Terazawa, K. Jour. Coll Sc1 Imp Umv Tokyo, Vol 37, Art7 p56

(17)
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parentheses, respectively, and

R =(pr = 1) 4407, 1
_ % « “n
tan¢ = L )
The results of the evaluation for the other integrals are;
A -4 . )
L) = ;4; A‘}[ —pR-% cos %—qb + RT ( COS~ -¢p—{sin éd) )] ,
I (p5) = ,,p (pO—LE(pD,
$
Li(p,0) = %A‘,’[{ Ri— % } cos o <j>+ 52 R sin —%(ﬁ]'
(48)

E(pp) = iA"[ng—ﬁ( ¢ cos 2 <;b + sin ; ¢)
3
—(R‘iﬂl- %)sin ; ¢+ R—%(g cos %¢> + sin %(b)] , \
: § |
BGpb) = 3 At KrGeos g p—sin g¢)— gl sin S bt s ]

For the sake of later convenience, we record here the expressions of o, for the
solution S; from Sueddon’s paper.!®

oip) _ 24, 1 )
o = 0 \/I——p‘" , 0<p<1
0_2(28@_ ~0, 1<p
(: ¢ 2A° 14352 “
[ ’ ) = ! +
o= T aeey o<t
Uz(z(ZLC) 2;;10 [ R4 sin %4, + gR-%( ¢ sin 3(15 — cos g ¢)] )

In view of (39) (43) and (49), it is easily seen that o, on the surface of the solid
is, for r<a,

[ ]z=o (1——1/)71 ~/1 (1+2<‘5/3pcos6) (50)

Eq. (50) enables us to evaluate the force P to penerate the cylinder to a depth §
below the level of the undisturbed boundary and the moment M to incline the
ylmder by 40=E/a to its orlgmal pos1t10n

14) See (11) or (6), p458 The last expression in (49) differs a little from the one in
the Sneddon’s paper, but, they are the same.

(18)
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_ (% - _ __ 2nad’u 8 5\
P ——fofo (o2) =g rd0@dr = (1—1)) "’
2 8a? & (61
. a2 L4 _ 7# & !
M—fof0 (02)z=p x ¥d 0 dr = 3(1-1)" @ - )

In order to arrive at a reasonable result, the tensile stress should not exist on the
contact surface beteween the cylinder and the solid. In view of (50), the validity
of the present solution is, therefore, restricted to the range

8<2.

In the following calculations, 0.25 is used for the value of Poisson’s ratio.

The variations of o, with p and ¢ are shown for the cases £/8=0, 0.25, 0.5 in Figs.
4,5, 6, respectively. These figures show that the distribution of stress is strongly
affected by the inclination of the cylinder. The variations of the stresses due to
the solution S; (nonsymmetric part of the solution S) with p and & are shown in
Figs. 7~12. 1In Fig. 12, 7, at p=1 are plotted against {, since the point, where
T on a plane parallel to the surface, attains its maximum value are at or very
near to p=1

i |
L5 i :
|
|
! b -0 |
|
l 1)
| |
‘ [
1.0 ‘\ + Z=0
Sy
\
N \
S \
\
s / 3

20 L0 7 . 14/ 20

Fig. 4

(19)
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The infinite principal stresses on the circumference of the rigid cylinder indicate
that a certain amount of plastic flow will occur. For low loading, however, as
suggested by Sneddon for the axisymmetric case, the elastic stress is predominant
except in the vicinity of the cicumference of the rigid body and the results derived
above will approximate closely to the true state of the stess distribution.
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