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Oscillation Represented by the Third 

Order Differential Equations (Part 1) 

(Received August 20, 1956) 

*Hiroichi FUJITA 

Abstract 

A self excited oscillation expressed by the third order differential equa

tions is illustrated in the phase space, whose axes are displacement x, 

velocity y=dxjdt and accelaration Z=d2xjdt2
, respectively. 

It is found that trajectories of the constant coefficient third order linear 

differential equation are rather simple. In aperiodic case, corresponding 

to the real characteristic root, the trajectories are straight lines on a corn 

y2 = xz ; in oscillatory case, corresponding to the complex roots, the trajectories 

are spiral curves on a plane ax+by+cz=O. 

A nonlinear characteristic curve of a vacuum tube is divided into several 

sections and a linear approximation is made in each section. At the con

necting poit, the aperiodic component is of great importance for the balance 

concerning to the limit cycle, and this is one of the features of the third 

order oscillations. 

Hartley and Colpitts oscillator are analized. 

I. Introduction 

The oscillation involving one dependent variable is usually represented by the 
second order ordinary differential equation. However, if the oscillation is repre
sented by the third order, more complicated phenomena may be represented. 

II. Phase space 

In the second order ordinary differential equations, we consider the phase plane 
whose holizontal axis is dependent variable x and transversal axis is its derivative 
dx/dt. Now, in the third order differential equations, we consider a phase space. 
It is difficult to select the most suitable axes of phase space. But, here, the axes 
are dependent variable x, its derivativey=dx/dt and its second derivative z=d2xjdt2• 

When we take these axes, the trajectories are not entirely free. Let us divide 
the phase space into 8 quadrants. FoJ? z>O, denote I+, II+, III+ and IV+, the four 
quadrants of x-y plane, Denote I-, n-, III- and IV- the four corr.esponding 

quardrants of z<O. Then, in I+, since y=x>O, x increases and since z= y>O, y 
increases too. As the result, in It and III-, the trajectories go away from the origin. 
In the contrary, in IV- and II+, they come to the origin. In III+, II+, I-, and IV-
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the trajectories turn around the origin 
in this order. As described later, the 
trajectories corresponding to periodic 
solutions turn on these quadrants in 

this order. The extremity of x is on 
the xz plane and the extremity of y 

is on the xy plane. 
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III. Singular points 

Let x be variation of voltage or cuvrent. The differential equation for the os
cillator of the third order are generally 

-~l-=Y ~-= z ~: =f(x,y,z) f(O,O,O) = 0 

At the origin, the directions of trejectories can not be decided, so the origin is 
a singular point. In the neighbourhood of origin, the trajectories of general 
nonlinear differential equation coincide with the trajectories of the third order 

constant coefficient linear differential equation. 
The differential equation has three characteristic roots. If the roots ate com

plex, they are conjugate. Thus their characteristic roots will accord with one or 
other of the following 8 cases: 

(i) -A. -a±jw (v) -A-t -:\2 -Aa 

(ii) -:\ a±jw (vi) A-t -A2 -A3 

(iii) A -a:±jw (vii) At A2 -As 

(iv) A a±jw (viii) At :\2 A-s 

where all letters are real positive numbers. (i) and (v) are stable and the others 
are all unstable. 

IV. The trajectories of the third order constant 
coefficient linear differential equations. 

In order to know the rough characteristics of trajectories of nonlinear differen
tial equations, it is neccessary to investigate the third order constant coefficient 
linear differential equations. 

IV -1 Corn of non-periodic solutions 

When a characteristic root is real, say At, 

x = Ke~1t 

(4-1) y = A.tKe~tt = A.tX 

z = At2X = A-tY 

Where K is an arbitrary constant. (4-1) are equations of lines passing though 
the origin, that is 
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(4-2) 

For any A.t, the line is on the corn 
(4-3) y 2 = xz 

The axis of this corn is 

(4-4) 
( X= Z 

( y = 0 
and angle of vertex is 7t. Near the z 
axis on the corn, representative point 
moves rapidly. In I+ it moves to in
finity and in IV+, to origin. 

When a differential equation has 
three real characteritic roots, the gene
ral solution is represented by linear 
conbination of three non-perodic solu-
tions. 

Fig. 2 

Define a vector whose direction is tangential to the trajectory and whose ampli
tude is the velocity of representative point. Then the vector of nonperiodic gen

eral solution is decomposed to three vectors which are paralell with the trajectories 

on the corn corresponding to KieA.it ( i= 1, 2, 3,) 
(Let us called these trajectories non periodic solution axes.) 

The decomposition and composition of these vectors are done by the parallel 
quadrilateral method. No trajectories cross a plane decided by the two nonperiodic 
solution axes and trajectories on this plane never go out from this plane. 

IV-2 Plane of periodic solution 

When the characteristic roots are complex conjugate, the solution is periodic. 

Then x = Ae-a~t sz"n(wt+cp) 

( 4-5) y = Ae-a~t { w cos( rot+ cp) -a sz"n( (JJt + cp)} 

z = Ac-a~t {(a2-w2) sin(wt+cp)-2aw cos(wt+(p)} 

Where A and qJ are ar.bitr.ary constants, From (4-5), eliminate sz"n(wt+cp) cos(wt+cp) 

and e-a~t, and obtain the followidg 

(4-6) (a2+w2)x+2ay+z = 0 

( 4-6) is the equation of plane. 
This plane intersects yz plane (x=O) along the z= -2ay and xz and xy planes 

along the lines z= -(a2 +ro2)x andY= -(a2+w2)x/2a. In fig. 3, D is a plane for 
damped oscillating solution and I is a plane fot increased one. 

For high frequency oscillation, the velocity and acceleration are large, and an 
angle between the periodic solution plane and yz plane is small. General solution 

which contains periodic component, has a vector turning clockwise on the plane. 
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So, trajectories are on an exponential horn or a hyperbolic horn. 
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Fig. 3 
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V. Oscillators represented by the third order 

nonlinear differential equations. 

X 

We will apply the above representation to the anlysis of oscillators. At first, 
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Hartley and Colpittz oscillator are analized. 

V-1 Hartley oscillator 

Using notation shown in fig. 6, we obtain the circuit equation for grid voltage 

Vu =x 
d3 f(x) d 2 f(x) d 2x 

C dt3 +(LpRu+LuRp) C~dr+(Lp+Lu) C dt2 

dx df(x) 
+(Rp+Ru) C dt +RPRu C~+ X= 0 * 

where -f(x) = ip neglecting grid cur

rent. 
Grid current plays an important role 

in the oscillator but in order to simplify 
the problem, we neglect it here and 
later (part II) we will consider it in 
grid tuned oscillator. 

For the convinience of numerical 

~p 

&p 

Fig. 6 
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Fg 

calculation, let the time normalize 

wt = T 

where w is an angular frequency of 
oscillator decided by linear network 

-.---+------'-----X theory. 

Fig. 7 

The nonlinear characterisitic of 
vacuum tube is divided into three 
sections and approximated by line
ar characteristics in each sections, 
shown in fig. 7 Denote V, as cri
tical value between linear zone and 
satulating zone. 

For I x I < V, (linear zone) 

gl %+Cl+g2) x+,.j~plL~(gs+Rp+Ru) x+x = 0 

I xI> V, (satulaing zone) 

x+ JLp-~L~ cRP+Rr~) x+ x = o 

*H. Fujita, This Proceedings, 7. 29 (1954) 
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where gl = m3L1L1JCgm 
g2 = w 3 C(LvRg+ LgRv)gm 

g3 = RvRr.Jgm 

For ordinary circuit elements of oscillator, the origin in the phase space is singu

lar point (ii). In the satulating zone, the differential equation has the complex 

Fig. 8 

characteristic roots whose real parts are 
negative and the trejectories lie only on 
the plane of periodic solution. 

If a small initial deviation from the 
origin is given, the representative point 

reaches at I xI = V, on the plane of in

creasing periodic solution of linear zone, 
for nonperiodic component will become 
negligibly small. 

At !xi= Vs representative point jumps 
onto the plane of decreasing periodic 
solution of satulating zone. Here, the 

solution and its derivative are continu
ous and second derivative is discontin
uous. If the characteristics of vacuum 

tube has continuous derivative, the representative point does not jump but comes 
very rapidly to the plane of satulating zone. 

From here, the representative point goes through the maximum value of x and 

comes to ix! = Vs again and enters the linear zone. But here the representative 
point is not on the plane of periodic solution. 

So, the solution must have nonperiodic component. Therefore the periodic com
ponent is suppressed. This suppression at the boundary plane between linear and 
satulating zones does not occur in oscillations represented by the second order dif

ferential equations. 
On the limit cycle. 
The increase in the linear zone and the decrease in the satulating zone and at 

boundary planes 'x = Vs, are balanced. Then the solution is stately periodic. 

V-2. Colpittz oscillator 

The differential equations for the Colpittz oscillator are obtained in the same 
way as for the Hattley oscillator. 
In the linear zone 

and in the satulating zone 
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where 1 
R=r/wL = Q 

g = Kmlw(C+Cg) 

In the linear zone, trajectories are 
same type as the Hartley oscillator. 
But in the satulating zone, the solu-
fun~ X 
x = Ae-Rt/ 2 sin(wt+cp)-ivot+K 

where A, cp and K are arbitr:ary con

stants. 

L r 

Cg 

Fig. 9 

Therefore, in satulating zone, the nonperiodic axis is on x-y plane and parallel 
to x axis. So representative point is on exponential horns shown in fig. 10. 

Physical meaning of -'ivot is constant current discharge from Cg in satulating 
zone. Stately periodic trajectory occurs in the same way as with the Hartley 

oscillator. 

Fig. 10 

( 7 ) 


