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Analysis of Non linear Electric Circuits 

having Periodic Solutions ( Part II ) 

(Received 21 October, 1955) 

By Hiroichi FUJITA* 

Abstract 

This paper is continuation of Part I of the same auther's paper in Vol. 

7, No. 25, 1954 of this proceedings. Here, some nonlinear circuits are 

analised as examples for the method described in Part I . 

For van der Pol's self-exited oscillation, we can obtain the s:>lution 

which is the same as the first approximate solution obllined by the usual 

perturbation method. Hartley oscillator, one of self-exited oscillation 

represented by the third order differential equation, is calculated too. 

Last example is a saturable reactor with inductive load. 

I. Van der Pol's differential equation 

Well known van der Pol's equat:on is 

d2x 2 _ dx _ --;w:-+ c (x 1)dt+ x -0. 

This is the equation for a plate tuned vacuum tube oscillator and it is already 

known that the amplitude of the approximate solution of this equation is 2 by 

usual perturbation method. My method is equivalent to van der Fol's meihod 

but more general than his method. 

Now, from the part I we put 

and 

dx =Y 
dt 

dy -dt -- (x2-1)y-x 

X=K cos(rot+qy) 

y= -Ksin(rot+qy) 

l 
J 

(1-1) 

where K and rp are slowly varied with timet and ro is angular frequency of oscil
lation which is not known now. Then 

cos(wt+qy) ~~ -roKsin(rot+qy) d::; =0 

-sin(rot+qy) ~~ -roKcos(rot+qy) ~f 

=roK cos(rot+qy)+E(K2 cos2(wt+qy)-1)Ksin(wt+qy). 

* ~EEl{i!(-: Lecturer at Keio University 
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Then D. C. component of dK/dt and dcp/dt are respectively 

[ ~~ Jn.c. =2 cK _ c~
3 

If (1-3) are not zero, K and <p tend to ±co after a long time. 

Then they are equal to zero, and we obtain 

K=2 and w=1 

(1-3) 

So van der Pol's oscillator has the amplitude 2 and angular frequency 1 appro

ximately. 

II. D.C. component of dK/dt and dcp/dt 

Van der Pol's oscillator has a vacuum tube whose characteristics is re
presented by the first and third power polinomial. If the nonlinearity is of more 

complex type, say fifth or seventh power polinomial, D. C. component of dK/dt 

and dcp/dt are different from (1-3) 

In general case, we must calculate 

1 !211' 
27t 

0 
sin(t+8)F(t.K.8)dt 

1 !2"' 
27t 

0 
cos(t+8)F(t.K.8)dt 

When F(t.K.8) is the integer function of sin t and cost, we can easily expand 
F(t.K.8) to Fourier series of sin nt and cos nt. 

Then the term for n=O, is the D.C. component of F(t.K8). 

When F(t.K8) is polinomial of sin"t cosmt, and m,n~3, we obtain the D.C. terms 

using triangular formula. But for m,n>3, the calculation is very troublesome. 
So we will try to make the formula for general m and n. 

i) For the terms of o:ld integer n (n=2P-1. P=1, 2, ... ) 

1 J"2..r 
27t 

0 
sin"t dt=O 

1 !21"' 
27T 

0 
cos" t dt=O 

So here is no D.C. component 

ii) For the terms of even integer n (n=2P, P=1, 2, ... ) 

1 f27t. 1 f27t 2JT 
0 

sm" t dt= 2;r 
0 

cosn t dt = ( 1 )" -.- C, 
2 'IZ ~ 

The a hove is proved by using 

( 20 ) 
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. ett-e-it 
SID f= 2i 

ett-e-tt 
cost- 2 
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If n+m-2(r+s)=t=O, it has no D.C. component. If n+m-2(r+s)=0 and n or m 
is odd integer, D.C. components vanishes. When n and m are both even integer, 

there are D.C. component. The result is shown in next table. F(t,K,()) is ge

nerally n~gular function which is not always integer function. But the integral 
can be calculated after the transformation 

t u=tan--2- or 

n,1n. 0 

0 1 

2 1 
2 

4 3 
-8-

6 5 
16 

8 35 
280 

10 93 
256 

12 231 
1024 

14 429 
2048 

16 6435 
32768 

III. 

u=tan t 

Table 

2 4 

1 
8 
1 3 

16 128 

5 3 
128 256 

7 7 
259 1024 
21 9 

1024 2048 
33 99 

2048 32768 
429 

32768 

Colpittz Oscillator 

6 8 

5 
1924 

5 15 
2048 32768-
45 

32768-

Colpittz oscillator whose vacuum tube has high amplification facter JL, can be 
analized by this method. When f..' is not very high, iv is the function of Vv and 

V". Then the circuit equation is not adequate. (II-B Note) 

The plate current of high J.L vacuum tube is the function of grid voltage V" 

only. So it may be written 

iv=f(V") 

For so amplification, let /( Vy) be as the following 

( 21 ) 
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If we neglect the grid current,* we can obtain the circuit equation by referring to 
Part I, (II-G) and Fig. 1. 

Since the D.C. components of dK/dt and dcpfdt are zero, we obtain following conditions 

Fig. 1 

-(1/2)+(C+Cu)/2LCCu=O 

Cg Then the amplitude and angular frequecy are 

1\2= -4r(C+C.1)/3g3Lu+4gl/3g3 

w = ( C+ Cu )/ LCCu 

The angular frequency is the same as that calculated by the linear theory. 
The amplitude is maximum when r=O. 

IV. Saturable Reactor 

Saturable reactor consists of a nonlinear ferromagnetic core and two windings: 

one of the windings is for A.C. power supply voltage 

_____ ._u,__ --- H 

.fig. 2 

Fig. 3 

and another is for D.C. signal voltage. 

The nonlinearity of core is often represented by 

the broken lines shown in Fig. 2. Then, for the only 

extreme case (namely, zero and infinite impedance of 

D.C. circuit, corresponding respectively to free mag

netization and forced magnetization) may be analized. 

Here, we will analize the general case. 

Fig. 3 is the circuit diagram of a fundamental 

saturable reactor with inductive load. Induced volt

ages acrOSs A.C. windings are re -
spectively 

v1 =Ntd¢/dt 

Vz=N,.d¢/dt 
\ N1, N 2 numbers of turns) 

*) Grid current is a very important factor for the oscillator. But we neglect it here to 

simplify the problem in order to understand the essential character. 

( 22 ) 
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The magnetomotive force is 

(ampere turns / meter) 

For this case, the four-terminal-network constants AnB1A21 and B2 are 

An=l 

A21=l 

B1=LtP+R1 

B2=R2 

L1 is inductance of load in 

Henry and RhR2 are resistances 

of A.C. and D.C. circuits in 
ohms. 

Fig. 4 

The nonlinear characteristics of ferromagnetic core is 

H=g(cp) 

Then we obtain the circuit equation (II-F in Part I) 

N1 Vusinrot +!!__1Eo -(N12 1 +!Jl J_)d¢> +g(A.) 
l L1P+R1 l R- l LP+R1 l R2 dt '~-' 

The differntial equation for this, is 

Ln22d2cp/dt2+(n1
2+n22)d¢/dt+g(cfl)+ Ldg(¢)/dt= Vsinrot+E ( 4-1) 

where 

z Nt2 

n 1 = lR1 

N12 

V= lRt Vo 

Let the nonlinear characteristics 

be 

If g( cp) has general power ¢n, the 

calculation will be complicated but possible. 

From (4-1) and (4-2) 

d2cp dcp 
a dt2+(b+c¢2

) dT+acp+/3¢3
- Vsinrot-E= 0 

where 

c=3f3L 

( 23 ) 

Iii (A.C.) 

Fig. 5 
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Then let 

¢=¢o+K cos(T+O) 

where T=rot (refer III-B) 

dcp/dT= -roK sin( T+O) 

d2cp/ dT2 = - w2sin( T + O)dK/ dT -ro2 Kcos( T + fJ)( 1 +dO/ dT) 

[dKl 1 [ (J)K " 1 " 1 J . - =--;, - I (b+ccpu-)- cwwK3 -- -Vcose =0 dt- n.c aw- 2 ' 8 2 

[d~J - 1 + _l__ [ 1 K( 3 (..) -{, 3) 3 f:)K3 1 T J: • (} J - 0 dt n.c ---2 a~"l( 2 a+ ~'-'(~-' 0 + 8 ~'-' -2 vsm -

Then 

Solve ( 4-5) for ¢ 2 and we obtain 

(4-3) 

(4-4) 

c/Jo2 = K 2 
ro

2bc+3B(a-aw)2+ /(w2bc+3(3(a-aw)2) 2 w 2b2+(a-arol!)- V'"/K'-
4 wl!c2 +9,dl! V wl!C:~+9(32 w2c2+9f:i2 

14~------~----~----~----~----~~ 

,...-.... 
t
~12~*---r--- --- EXPERINENT-+---1 

--- CALCULATION 
> 
v:) 

~ 

w 
c...!:> 

S81-----l-----'-~~~---+-----t------t-----1 
a 
> 
0 
w 
~ 6 -----r·------+-

~ I 
u 

<i 4 

0 0 I 0.2 0.3 0.4 O.S 
D. C CONTROL CURRENT iz (Amp.) 

Fig. 6 

( 24 ) 
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Relation between A. C. current £1 and magnetic flux [{ is 

1
.

1 
= /V0

2 +w2N1K:?.+2wN1 VoKcostl 
ZJ Y R1 2 +w2L1~ 

This is obtained by substitution (4-3) to 

Vcsinwt=Lldiddt+Rit +N1d¢jdt 

From (5-5) and (56) 

J
ill= / Vo:?.-2ro:?.K:?.{N2]J+R1N12/R2+t¥lL 1 +3L1f.](p02 +K"A/~J} 

'V R12 +w'3L1:1. 

25 

Thus we have discovered the relations i 1 -¢0, K 2 -q>u2 and / 1-K2
• So from the 

Fig. 5, the characteristic curve of saturable reactor, i 2-i1 curve, is obtained. 
If the load inductance L 1 is zero 

¢u2 = -K2,4 -o:j3f.]+ ~V~/K2 - w 2(nt:a+nz2 ):?. /3/:l 

li1l =V' Vo?-2w:?.K2(Ni/2+.HlR~)Nt2 !Rt 

From these equations, the charac

teritsic curve for pure resistive 

load is known. Fig. 6, shows the 

results of the experiment and cal

culation. Fig. 7 is the character-

t 1.6 
~ 

~/.2f-----t--~~-k---+ 
~ APPROXIMATION 
~o:a H -4ooa + fia3-
m I 

istic curve of ferromagnetic core. 0.4- f----:H---+-----+-----+----+----t 

I 0 20 30 40 
H (ATjm)-

Fig. 7 
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