慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Analysis of nonlinear electric circuits having periodic solutions（part II）
Sub Title	
Author	藤田，廣一（Fujita，Hiroichi）
Publisher	慶應義塾大学藤原記念工学部
Publication year	1955
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University Vol．8，No． 28 （1955．），p．19（19）－25（25）
JaLC DOI	
Abstract	This paper is continuation of Part I of the same author＇s paper in Vol．7，No．25， 1954 of this proceedings．Here，some nonlinear circuits are analised as examples for the method described in Part 1. For van der Pol＇s self－exited oscillation，we can obtain the solution which is the same as the first approximate solution obllined by the usual perturbation method．Hartley oscillator，one of self－ exited oscillation represented by the third order differential equation，is calculated too． Last example is a saturable reactor with inductive load．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00080028－ 0019

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Analysis of Nonlinear Electric Circuits having Periodic Solutions（Part II）

（Received 21 October，1955）

By Hiroichi FUJITA＊

Abstract

This paper is continuation of Part I of the same auther＇s paper in Vol． 7 ，No． 25,1954 of this proceedings．Here，some nonlinear circuits are analised as examples for the method described in Part I．

For van der Pol＇s self－exited oscillation，we can obtain the solution which is the same as the first approximate solution obtained by the usual perturbation method．Hartley oscillator，one of self－exited oscillation represented by the third order differential equation，is calculated too． Last example is a saturable reactor with inductive load．

I．Van der Pol＇s differential equation

Well known van der Pol＇s equation is

$$
\frac{d^{2} x}{d t^{2}}+\varepsilon\left(x^{2}-1\right) \frac{d x}{d t}+x=0 .
$$

This is the equation for a plate tuned vacuum tube oscillator and it is already known that the amplitude of the approximate solution of this equation is 2 by usual perturbation method．My method is equivalent to van der Fol＇s method but more general than his method．

Now，from the part I we put

$$
\begin{align*}
& \frac{d x}{d t}=y \tag{1-1}\\
& \frac{d y}{d t}=-\left(x^{2}-1\right) y-x
\end{align*}
$$

and

$$
\begin{aligned}
& x=K \cos (\omega t+\varphi) \\
& y=-K \sin (\omega t+\varphi)
\end{aligned}
$$

where K and ρ are slowly varied with time t and ω is angular frequency of oscil－ lation which is not known now．Then

$$
\begin{align*}
& \cos (\omega t+\varphi) \frac{d K}{d t}-\omega K \sin (\omega t+\varphi) \frac{d \varphi}{d t}=0 \\
& -\sin (\omega t+\varphi) \frac{d K}{d t}-\omega K \cos (\omega t+\varphi) \frac{d \varphi}{d t} \tag{1-2}\\
& =\omega K \cos (\omega t+\varphi)+\varepsilon\left(K^{2} \cos ^{2}(\omega t+\varphi)-1\right) K \sin (\omega t+\varphi) .
\end{align*}
$$

[^0]Then D. C. component of $d K / d t$ and $d \mathscr{P} / d t$ are respectively

$$
\begin{align*}
& {\left[\frac{d K}{d t}\right]_{\text {D.c. }}=\frac{\varepsilon K}{2}-\frac{\varepsilon K^{3}}{8}} \tag{1-3}\\
& {\left[\frac{d \Phi}{d t}\right]_{\text {D.c. }}=\frac{1}{2}+\frac{\omega}{2}}
\end{align*}
$$

If (1-3) are not zero, K and ρ tend to $\pm \infty$ after a long time.
Then they are equal to zero, and we obtain

$$
K=2 \quad \text { and } \quad \omega=1
$$

So van der Pol's oscillator has the amplitude 2 and angular frequency 1 approximately.

II. D.C. component of $d K / d t$ and $d \boldsymbol{q} / d t$

Van der Pol's oscillator has a vacuum tube whose characteristics is represented by the first and third power polinomial. If the nonlinearity is of more complex type, say fifth or seventh power polinomial, D.C. component of $d K / d t$ and $d \varphi / d t$ are different from (1-3)

In general case, we must calculate

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (t+\theta) F(t . K . \theta) d t \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t+\theta) F(t . K . \theta) d t
\end{aligned}
$$

When $F(t . K . \theta)$ is the integer function of $\sin t$ and $\cos t$, we can easily expand $F(t . K . \theta)$ to Fourier series of $\sin n t$ and $\cos n t$.

Then the term for $n=0$, is the D.C. component of $F(t . K . \theta)$.
When $F(t . K . \theta)$ is polinomial of $\sin ^{n} t \cos ^{m} t$, and $m, n \leq 3$, we obtain the D.C. terms using triangular formula. But for $m, n>3$, the calculation is very troublesome. So we will try to make the formula for general m and n.
i) For the terms of odd integer $n(n=2 p-1, p=1,2, \cdots)$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{n} t d t=0 \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{n} t d t=0
\end{aligned}
$$

So here is no D.C. component
ii) For the terms of even integer $n(n=2 p, p=1,2, \cdots)$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{n} t d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{n} t d t=\left(\frac{1}{2}\right)^{n} C_{n} \frac{x^{2}}{}
$$

The above is proved by using

$$
\sin t=\frac{e^{i t}-e^{-i t}}{2 i} \quad \cos t=\frac{e^{i t}-e^{-i t}}{2}
$$

iii) For $\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{n} t \cos ^{m} t d t$

$$
\left.\sin ^{n} t \cos ^{m} t=\left(-\frac{1}{2 i}\right)^{n}\left(-\frac{1}{2}\right)^{m} \sum_{r=0}^{n} \sum_{s=0}^{m}(-)^{r} C_{r} C_{s} e^{i\{m+n-2(r+s) t}\right\}
$$

If $n+m-2(r+s) \neq 0$, it has no D.C. component. If $n+m-2(r+s)=0$ and n or m is odd integer, D.C. components vanishes. When n and m are both even integer, there are D.C. component. The result is shown in next table. $\mathrm{F}(t, K, \theta)$ is generally regular function which is not always integer function. But the integral can be calculated after the transformation

$$
u=\tan \frac{t}{2} \quad \text { or } \quad u=\tan t
$$

Table

n, m.	0	2	4	6	8
0	1				
2	$\frac{1}{2}$	$\frac{1}{8}$			
4	-3	$\frac{1}{16}$	$\frac{3}{128}$		
6	$\frac{5}{16}$	$\frac{5}{128}$	$\frac{3}{256}$	$\frac{5}{1924}$	
8	$\frac{35}{280}$	$\frac{7}{259}$	$\frac{7}{1024}$	$\frac{5}{2048}$	32768
10	$\frac{93}{256}$	$\frac{21}{1024}$	$\frac{9}{2048}$	$\frac{45}{32768}$	
12	$\frac{231}{1024}$	$\frac{33}{2048}$	$\frac{99}{32768}$		
14	$\frac{429}{2048}$	$\frac{429}{32768}$			
16	$\frac{6435}{32768}$				

III. Colpittz Oscillator

Colpittz oscillator whose vacuum tube has high amplification facter μ, can be analized by this method. When μ is not very high, i_{p} is the function of V_{p} and V_{g}. Then the circuit equation is not adequate. (II-B Note)

The plate current of high μ vacuum tube is the function of grid voltage V_{g} only. So it may be written

$$
i_{p}=f\left(V_{g}\right)
$$

For so amplification, let $f\left(V_{g}\right)$ be as the following

$$
i_{p}=g_{1} V_{g}-g_{3} V_{g}^{3}
$$

If we neglect the grid current,* we can obtain the circuit equation by referring to Part I, (II-G) and Fig. 1.

$$
L C C_{g} p^{s} V_{g}+r C C_{g} p^{2} V_{g}+\left(C+C_{g}\right) p V_{g}+g_{1} V_{g}-g_{s} V_{g}^{s}=0
$$

Since the D.C. components of $d K / d t$ and $d \varphi / d t$ are zero, we obtain following conditions

Fig. 1

$$
\begin{gathered}
-(r / L)+\left(g_{1} / \omega^{2} C C_{g}\right)-\left(3 g_{3} K^{2} / \omega^{2} C C_{g}\right)=0 \\
-(1 / 2)+\left(\mathrm{C}+\mathrm{C}_{g}\right) / 2 L C C_{g}=0
\end{gathered}
$$

Then the amplitude and angular frequecy are

$$
\begin{aligned}
K^{2} & =-4 r\left(C+C_{g}\right) / 3 g_{3} L_{g}+4 g_{1} / 3 g_{3} \\
\omega & =\left(C+C_{g}\right) / L C C_{g}
\end{aligned}
$$

The angular frequency is the same as that calculated by the linear theory. The amplitude is maximum when $r=0$.

IV. Saturable Reactor

Saturable reactor consists of a nonlinear ferromagnetic core and two windings: one of the windings is for A.C. power supply voltage

Fig. 2

Fig. 3 and another is for D.C. signal voltage.
The nonlinearity of core is often represented by the broken lines shown in Fig. 2. Then, for the only extreme case (namely, zero and infinite impedance of D.C. circuit, corresponding respectively to free magnetization and forced magnetization) may be analized. Here, we will analize the general case.
Fig. 3 is the circuit diagram of a fundamental saturable reactor with inductive load. Induced voltages across A.C. windings are respectively

$$
\begin{aligned}
& v_{1}=N_{1} d \phi / d t \\
& v_{2}=N_{2} d \phi / d t \\
& \left(N_{1}, N_{2} \text { numbers of turns }\right)
\end{aligned}
$$

[^1]The magnetomotive force is

$$
H=\left(N_{1} i_{1}+N_{2} i_{2}\right) / l \quad \text { (ampere turns } / \text { meter) }
$$

For this case, the four-terminal-network constants $A_{11} B_{1} A_{21}$ and B_{2} are

$$
\begin{array}{ll}
A_{11}=1 & B_{1}=L_{1} p+R_{1} \\
A_{21}=1 & B_{2}=R_{2}
\end{array}
$$

L_{1} is inductance of load in Henry and R_{1}, R_{2} are resistances of A.C. and D.C. circuits in

Fig. 4 ohms.

The nonlinear characteristics of ferromagnetic core is

$$
H=g(\phi)
$$

Then we obtain the circuit equation (II-F in Part I)

$$
\frac{N_{1}}{l} \frac{V_{6} \sin \omega t}{L_{1} p+R_{1}}+\frac{N_{1} E_{0}}{l} \frac{E^{2}}{R}=\left(\frac{N_{1}{ }^{2}}{l} \frac{1}{L p+R_{1}}+\frac{N_{2}{ }^{2}}{l} \frac{1}{R_{2}}\right) \frac{d \phi}{d t}+g(\phi)
$$

The differntial equation for this, is

$$
\begin{equation*}
L n_{2}{ }^{2} d^{2} \phi / d t^{2}+\left(n_{1}{ }^{2}+n_{2}{ }^{2}\right) d \phi / d t+g(\phi)+L d g(\phi) / d t=V \sin \omega t+E \tag{4-1}
\end{equation*}
$$

where

$$
\begin{aligned}
L & =\frac{L_{1}}{R_{1}} \quad n_{1}{ }^{2}=\frac{N_{1}{ }^{2}}{l R_{1}} \\
n_{2}{ }^{2} & =\frac{N_{2}{ }^{2}}{l R_{2}} \quad V=\frac{N_{1}{ }^{2}}{l R_{1}} V_{0} \\
E & =N_{2}{ }^{2} E_{0} / l R_{2}
\end{aligned}
$$

Let the nonlinear characteristics be

$$
\begin{equation*}
g(\phi)=\alpha \phi+\beta \phi^{3} \tag{4-2}
\end{equation*}
$$

If $g(\phi)$ has general power ϕ^{n}, the

Fig. 5 calculation will be complicated but possible.

From (4-1) and (4-2)

$$
a \frac{d^{2} \phi}{d t^{2}}+\left(b+c \phi^{2}\right) \frac{d \phi}{d t}+\alpha \phi+\beta \phi^{3}-V \sin \omega t-E=0
$$

where

$$
a=L n_{1}{ }^{2} \quad b=n_{1}{ }^{2}+n_{2}{ }^{2}+L \alpha \quad c=3 \beta L
$$

Then let

$$
\begin{equation*}
\phi=\phi_{0}+K \cos (\tau+\theta) \tag{4-3}
\end{equation*}
$$

where $\tau=\omega t$ (refer III-B)

$$
\begin{align*}
& d \phi / d \tau=-\omega K \sin (\tau+\theta) \\
& d^{2} \phi / d \tau^{3}=-\omega^{2} \sin (\tau+\theta) d K / d \tau-\omega^{2} K \cos (\tau+\theta)(1+d \theta / d \tau) \\
& {\left[\begin{array}{l}
d K \\
d t
\end{array}\right]_{\mathrm{D} . \mathrm{C}}=\frac{1}{a \omega^{2}}\left[-\frac{\omega}{2} K\left(b+c \phi_{0}{ }^{2}\right)-\frac{1}{8} c \omega^{2} K^{3}-\frac{1}{2} V \cos \theta\right]=0} \tag{4-4}\\
& {\left[\begin{array}{l}
d \theta \\
d t
\end{array}\right]_{\mathrm{D} . \mathrm{C}}=-\frac{1}{2}+\frac{1}{a \omega^{2} K}\left[\left[\frac{1}{2} K\left(\alpha+3 \beta \phi_{0}{ }^{3}\right)+\frac{3}{8} \beta K^{3}-\frac{1}{2} V \sin \theta\right]=0\right.}
\end{align*}
$$

Then

$$
V^{2}=\omega^{2} K^{2}\left\{b+c\left(\phi_{0}{ }^{2}+K^{2} / 4\right)\right\}^{2}+K^{2}\left\{\alpha-a \omega^{2}+3 \beta\left(\phi_{0}{ }^{2}+K^{2} / 4\right)\right\}^{2}
$$

Solve (4-5) for ϕ^{2} and we obtain

$$
\phi_{0}{ }^{2}=-\frac{K^{2}}{4}-\frac{\omega^{2} b c+3 \beta(\alpha-a \omega)^{2}}{\omega^{2} c^{2}+9 \beta^{2}} \pm \sqrt{\left(\frac{\omega^{2} b c+3 \beta(\alpha-a \omega)^{2}}{\omega^{2} c^{2}+9 \beta^{2}}\right)^{2}-\frac{\omega^{2} b^{2}+\left(\alpha-a \omega^{2}\right)-V^{2} / K^{2}}{\omega^{2} c^{2}+9 \beta^{2}}}
$$

Fig. 6

Relation between A. C. current i_{1} and magnetic flux K is

$$
\left|i_{1}\right|=\sqrt{\frac{\overline{V_{0}^{2}+\omega^{2} N_{1} K^{2}+2 \omega \overline{N_{1}} V_{0} K \cos \theta}}{R_{1}^{2}+\omega^{2} L_{1}^{2}}}
$$

This is obtained by substitution (4-3) to

$$
V_{\mathrm{C}} \sin \omega t=L_{1} d i_{1} / d t+R i_{1}+N_{1} d \phi / d t
$$

From (5-5) and (56)

$$
\left|i_{1}\right|=\sqrt{\left.\frac{\overline{V_{0}^{2}-2} w^{2} K^{2}\left\{N_{2}^{2} / 2+R_{1} N_{1}^{2} / R_{2}+x l L_{1}+3 L_{1} \beta\left(\phi_{0}{ }^{2}+K^{2} / 4\right.\right.}{R_{1}^{2}+\omega^{2} L_{1}^{2}}\right)}
$$

Thus we have discovered the relations $i_{1}-\phi_{0}, K^{2}-\phi_{0}{ }^{2}$ and $I_{1}-K^{2}$. So from the Fig. 5, the characteristic curve of saturable reactor, $i_{2}-i_{1}$ curve, is obtained. If the load inductance L_{1} is zero

$$
\begin{aligned}
& \phi_{0}{ }^{2}=-K_{2} 4-\alpha / 3 \beta+\sqrt{V^{2} / K^{2}-\omega^{2}\left(n_{1}{ }^{2}+n_{2}{ }^{2}\right)^{2}} / 3 \beta \\
& \left|i_{1}\right|=\sqrt{V_{0}{ }^{2}-2 \omega^{2} K^{2}\left(N_{2}{ }^{2} / 2+K_{1} / K_{2}\right) N_{1}^{2}} / R_{1}
\end{aligned}
$$

From these equations, the characteritsic curve for pure resistive load is known. Fig. 6, shows the results of the experiment and calculation. Fig. 7 is the characteristic curve of ferromagnetic core.

Fig. 7

[^0]: ＊藤田展一：Lecturer at Keio University

[^1]: *) Grid current is a very important factor for the oscillator. But we neglect it here to simplify the problem in order to understand the essential character.

