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Problems Related to Heat Conduction 

in Solids and Liquids 
(Received Sept. 15, 1955) 

Sanchi MIZUSHIMA * 

Abstract 

As a continuation of the investigation on the thermal conductivity of 

solids and liquids, several problems are discussed in this paper. Mixtures 

of two pure organic liquids have excess thermal resistance over the mean 

value of those of the components, as has been shown by Riedel experimen

tally. This is shown to be primarily due to the mass difference between 

the component molecules. Secondly, it is pointed out that an isotope effect 

resulting from the mass difference among isotopic atoms plays a role in 

the restriction of the heat conduction in crystals at very low temperatures, 

which has been overlooked until now. Finally, the anharmonicity of vi

bration in solids which constitutes the fundamental mechanism for the es

tablishment of equilibrium among the lattice phonons as well as for the 

finiteness of the conductivity contributes to the dissipation of the energy 

of any forced vibration as heat. This effect is estimated numerically and 

expressed in terms of the thermal conductivity and other physical prop

erties, but it is found its influence is rather small in technically attainable 

frequencies. 

I. Introduction 

Previously 1> I described the results of a theoretical investigation on the ther
mal conductivity of solids and have given a formula by which the conductivity 
can be expressed in terms of known physical constants. This calculation was 

found to be applicable to liquids as well as solids, in coincidence with the current 

picture of liquids as having a quasi -crystalline structure. In this paper are given 

discussions on several topics related to the heat conduction phenomenon, the prin
ciple of the calculation being based on the idea of the previous paper. They 

are: 1) thermal conductivity of liquid mixtures, 2) effects of the presence of 

different isotopic atoms in crystals on the low temperature conductivity and 3) 

that part of the internal friction of solids which is related to the anharmonicity 

of the vibrations in solids. 

II. Liquid mixtures 

The structure of liquids is more similar to that of crystalline solids than to 
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8 Sanchi MIZUSHIMA 

that of gases. The thermal conductivity of pure liquids was calculated in the 

foregoing paper on the approximation which makes use of this similarity and 

the results were shown to agree with the experimental results fairly accurately. In 

this chapter the conductivity is calculated on the.same basis for mixtures of different 

liquids. It is .shown that there arises some amount of excess resistance beyond 

the normal resistance calculable theoretically from the apparent properties of each 
mixture regarded as a pure liquid. The excess resistance owes its origin to the 

scattering of thermal elastic waves or phonons by the individual molecules with 

masses and other physical quantities different from one species to another, which 

does not appear in cases of pure liquids. 
In the foregoing paper the conductivity was calculated on the approximation 

that the phonons contained in some volume element remain at any instant in a certain 

distribution which is the most probable one among those having a given amount 
of energy density and a definite momentum density P which is related to the energy 

flow I as, l=q2p, where q is the sound velocity. This approximation means that 

the collisions without the change of the total momentum occur far more frequently 

than the other type, which is accompanied by the momentum change, namely 

the Umklapp collisions, characterized by the intervention of Bragg reflections by 

the lattice periodicity and as a result the most probable distribution of the phonon 

system is attained quickly. By this way of treatment the distribution of the phonon 

system was uniquely determined at any value of the temperature and the tem
perature gradient. The expression for the conductivity K is thus, 

(1) 

where Cv is the heat content of unit volume (we disregard the contribution from 

the intramolecular vibrations so that c!J represnts the heat content for the inter

molecular vibrations only), and T is the relaxation time for the establishment in 

the absence of the temperature gradient of the Bose distribution. The calculation 

of the relaxation time has led to the following formula for the conductivity, 

K=Cqa(E/V)T-1 , (2) 

where a is the lattice constant of the solid or liquid in question, in the latter case 

of which molecules are assumed to be located on the sites of a closed-packing 
lattice, E/V is the cohesive energy per unit volume and T is the temperature. The 

numerical constant C was calculated to be of the order of about I0-1 and the ex
periments show that it is about 0.05 for ionic crystals having the NaCl type lattice 

and is about 0.12 for a number of organic liquids. The thermal resistance which 

is the reciprocal of Kin the form of (2) may be called nonlinearity resistance 

or ordinary resistance since the nonlinearity of the vibration causes the collisions 
of the phonons in this case. 

For a liquid mixture, two mechanisms of collision should be considered which 
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Problems Related to Heat Conduction 9 

prevent the free flow of the phonons: the one is the above-mentioned scattering 

by the mutual collision which is the cause of the ordinary resistance, and the 

other is the one by the randomly distributed molecules resulting in the excess 

resistance. In the above approximation that the phonon system remains at any 

instant in the most probable distribution, these two mechanihms can be considered 

to act independently, so that the scattering rate as a whole, T-
1
, is simply the sum 

of each rate. 

(3) 

Then the excess thermal resistance We is 

(4) 

whereas the ordinary resistance retains its original form, the physical constants 

appearing in (2) changing with composition. 

We take up first the ordinary resistance Wo and consider again that the mole

cules are arranged on the sites of a closed-packing lattice which does not change 

its structure at any composition though of course the lattice constant should vary. 
The molecules of the different species are distributed randomly on the lattice 

sites ju,st as so in substitutional alloys. The realization of this state of affairs 

necessiates that the molecules of different kinds do not differ much from each 

other in their sizes and shapes, which means alEo that the mixtures are nearly 

ideal solutions. For the sake of comparison with the experimental results, the 

case of two components will be considered here. 

Under these conditions, the sound velocity q and the lattice constant a are 

nearly linear fu,nctions of the molar content of one species in the mixture. Speci

fically for the former quantity, a number of measurements have shown that this 

is almost true for many mixtures of organic liquids except those cases where the 

components differ from each other greatly in the physical properties. Since the 

cohesive energy per unit volume E/V is also dependent on the composition in 

the manner analogous to the above quantities, the thermal resistance varies ar· 

proximately linearly with the molar content between the two values of the con· 

ductivity of the components. In that connection it should be noted that the thermal 
conductivity of organic liquids does not differ much from one to another. 

Nextly we have to calculate the scattering rate due to the random local fluc
tuation of the density and of other properties. Among the several types of local 
fluctuations, that of the density (molecular mass divided by the molecular volume) 

seems to exceed that of the compressibility (spring constant between adjacent 

molecules, which is intimately related to the intermolecular potential) in most 

cases because the heat of var;orization per mol does not differ greatly among 

the common organic liquids. The effect of the difference of the molecular size 

( 9 ) 



10 Sanchi MIZUSHIMA 

and of the shape which will result in the disturbance of the lattice structure is 

not considered here. 

We take a bulk liquid of volume V which is held at a uniform temperature 

T. If there are N molecules contained, the number of vibrational modes is 3N. 

Since the distribution of the molecules on the lattice sites is random, the way in 

which each elastic wave, which is regarded to be progressive, is scattered can be 

determined by the consideration of the scattering by a single molecule supposed 

to be immersed in a liquid which has uniform properties throughout. 

The collision of a thermal wave against a molecule having different density 
from the surroundings in which it is embedded may in most cases not be regarded 

as a perturbation process, since the density differs greatly from that of the sur

roundings frequently, and sometimes it would be better to treat it as a collision 

against a rigid obstacle. Here we adopt the well-known scattering formula of Lord 
Rayleigh which permits the treatment by the differential scattering cross-section 
s(O,¢). 

We take the case in which the momentum of the system is directed towards 

the positive x-axis. Let there be na phonons in the normal mode which has the 
~ 

wave number vector u and is propagating in the direction of that vector at an 

angle e against the X-axis. The number of phonons belonging to this mode which 
pass a unit cross-section per unit time is therefore naq/V, and that of phonons 

scattered due to the collision into a small solid angle dw' per unit time is naqsdw' IV. 
The rate of the momentum decrease in the x-direction due to this process is, 

~ 

since each phonon carries momentum hu ,* 

v-1nahuqs (cos 8-cos8') dw'. 

where 8' is the angle between the scattering direction and the x-axis. 

(5) 

If the isotropicity of the scattering is assumed for brevity, the integration of 
the above expression over the whole solid angle gives, 

(6) 

Here P is the total momentum of the system and is equal to PV. The value of 

na was calculated in the previous paper and is (kT/hwX1+3qpcos8 /2C!!T) at high 
temperatures. 

The summation of (6) over the all modes gives the total rate of the momentum 

decrease which is replaced by the integral, 

3 V(2lt )-3 J 0"22lt sine (Integrand) du dO , 

*In this paper h stands for the Planck's constant divided by 27t 
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Problems Related to Heat Conduction 11 

where the factor 3 means that there are three modes of independent directions 

of the polarization vector belonging to the same wave vector. 
Then, 

a-a 

P=-(3kqP/7tVC~)J a-2 sda-, (7) 

The functional relationship of the differential cross-section with a- is not clear at 

the shorter wavelengths or at large value of a- whereas that at longer wavelengths 

or at small values of a- should be represented by s=Za-4, where Z is a constant. 

For convenience we assume the latter relation to hold up to the shortest wave
lengths or the largest value of a-, designated by a-a. This assumption may result 

in the too high values of the thermal resitance. 

When there are m such targets being distributed randomly, m being taken to 

be small compared to the total number of molecules in the first stage, the relax

ation time for the dissipation of the momentum is given by 

(8) 

The momentum deprived from the phonon system is changed to the force upon 

the targets which in turn acts upon the whole lattice, since we have considered 

these targets being fixed on their respective lattice sites. 

From ( 4) and (8) the excess resistance is expressed as 

As the heat content at high temperatures is 3Nk/V, we get, 

We-::::.600(N/V)1 13Zm/kqV. (9) 

Here we have taken a-o to be equal to 27t(3N/47tV)1 13• 

Now according to the calculation on the scattering of sound waves by a gaseous 

obstacle the differential cross-section is 

s=(7tv/A,'l)2{(tc' -tc)/tc+3 cos B(p' -p)/(p+2p')}, (10) 

where v is the volume of the obstacle, A, the wavelength, p and p' are the densities, 

" and tc' the volume elasticities, of. the medium and the o'!Jstacle respectively. Since 
the first term in the curly bracket on the right side of (10) is small as said before 

and the scattering in the crystalline lattice is very complicated because of the 

existence of three different polarization directions of the thermal wave and so 

forth, we approximate the differential cross-section in the present case by, 

_ 3(p'-p) ,_ M' -M u --~-----
p+2p' - Mo • 

(11) 
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12 Sanchi MlZUSHIMA 

which is angle-independent. M and M' are the average molecular weights of the 
mixture and that of the obstacle. Mo is the mean of the molecular weights of 

the two components. Z in (9) is given then by, Z=v2 U2/l67t2 and the thermal resist

ance becomes, 

Wc~4 v2 U2 (N/V)ll3 (m/V)/kq. 

If we introduce the molar fraction x in3tead of m and consider that N/V=4a-3
, 

then the above expression changes to 
We~ U2a2x/kq. (12) 

When the concentration of one component is not low, lJ2x in. (12) has to be re

placed by, since both kinds of molecules contribute to the sea ttering, 

U2x~U12x+ U22(1-x ); 

(13) 

where M1 and M2 are the molecular weight of the components respectively. Since 

We~ ( a 2 / kq )(~M/ Mo)2x(l-X). (14) 

Experiments on the conductivity of several mixtures have been carried out by 

Riedel 2) and the results seem to be reliable. As had been noticed by Riedel 

himself, the observed resistances vary with composition almost in a parabolic form 

when plotted against the molar fraction, confirming the above calculation. These 

excess resistances are calculated from his data and shown in Fig. 1. 

w s 

0 100 
X, MOLAR CONTENT,%-

Fig. 1. Excess thermal resistance for various kinds of 

liquid mixtures determined by experiment. 

1 Benzene- Nitrobenzene 

2 Benzene- Acetone 

3 Benzene - Cyclohexane 

4 Benzene - Chloroform 

5 Benzene - Methanol 

6 Acetone - Carbon disulfide 

7 Benzene - Carbon tetrachloride 

8 Benzene - Bromoform 

As seen in the figure the maximum of We occurs 

at the 50-50 composition in mols, i. e., at which 

X =0.5. 

To compare the results of the calculation with 

the experiment, the maximum values of the excess 

resistances observed and calculated are plotted in 

Fig. 2. Here a in (14) was taken to be equal to 

the mean of those of the component liquids which 
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Problems Related to Heat Conduction 13 

were calculated by N/V=4a-3 and q equal to the mean of the sound velocities 

of the components which were calculated by the approximate formula- q=(Xp)-J 12 

where X is the compressibility. The straight line in the figure corresponds to 

the expression We=O.l(a2jkq)(AM/M0 ) 2• 6 ..-----,.---,---,.---r---.---..---.,......., 

The calculated values exceed thus the xI O 
2 

obseved values by a factor of about 

ten, which seems to be caused by the 

too large values of the sea ttering 

crosssection, as mentioned before. But 

the general tendency is an expected 

one and a reasonable proportionality 

between the observed and the calculat
ed values can be seen to exist. 

Mixtures showing anomalously higher 

resistance than expected are benzene

cyclohexane \).nd acetone-carbon disu

lfide. This will primarily be due to 

the inaccuracy of the assumption that 

the ordinary resistance varies linearly 

with composition. 

III. Isotope effect in crystals 

The free flow of lattice phonons in 

a solid is prevented by the existence 

of various kinds of irregularities and 

also by the Umklapp collisions among 
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Fig. 2. 

I _j 
2 4 . 6 X !()3 

TH[RHAL I~ESISTL.NCE CALC., 
CAC1-cth. SeC. oc 

Maximum values of e;Kcess . 

resistance for liquid mixtures 

Note : Numerals in the figure mean 

the same thing as in Fig. 1. 

themselves, from which the finite value of the thermal conductivity results. 

Several types of these irregularities may be tabulated. Usually,. the. foEowing 

types are taken into account for the calculation of the conductivity: foreign 

atoms, lattice vacancies, mosaic boundaries (or dislocations), grain boundaries 

and the boundary of the specimen. 

It is the aim of this chapter to point out that there exists another type of the 

lattice imperfection which may not be neglected for the cases of the analysis 

of the conductivity of a nearly perfect single crystal at low temperatures on which 
a certain number of experiments have been performed from the point of view of 

theoretical interest. 

Nearly all crystals are composed of elements which are not single in the isoto'piC 

composition. Because of the mass difference among these isotopi~, atoms and the 

random distribution in the crystal lattice, even a perfect crystal may be regarded 

as a kind of substitutional alloys. In the following the effect of this fact is estimated. 

( 13 ) 



14 Sanchi MIZUSHIMA 

First the case of a dilute isotopic composition is considered. Due to the randomness 

of the distribution of the minor atoms in the lattice, estimation of this effect can 

be done by the consideration of the case of a single minor atom in the lattice. 

Then the perturbation hamiltonian is, 

H'=(Sm/2) /D]2 , (15) 

were om is the mass difference, Sm = mmtno~·-mma;or, and Dis the displacement 
of that atom. 

As has been shown in the preceding paper, and also as proved by Klemens3
\ 

the thermal resistance can be obtained by the calculation of the relaxation time for 
·· the attainment of the e:::tuilibrium among the lattice phonons in a definite volume 

kept at a determined temperature throughout. Now the perturbation causes the 

attainment of the equilibrium distribution of the lattice phonons. The excess or -deficit number of phonons belonging to each vibrational mode a- decreases with 

a certain rate characterized by a relaxation time. The calculation of the relax
ation time T is rather straightforward, as in this case only twq phonon colli

siofis are in problem, if temporarily a monatomic crystal is assumed. The result is 

(16) 

where m is the mean of the atoms, q the sound velocity, a- the wave number, V the 

volume of the crystal and N the number of atoms in V. 
When there are x of minor atoms present in mole fraction, where x< <1, (2) be

comes 
T-1 =3x(Sm/m)2qa-4/247t(N/V). (17) 

The corresponding mean free path I is then, 

(18) 

According to Klemens, the thermal resistance due to the lattice defects in gen

eral, Wn, can added to the total resistance arithmetically at extremely low 

temperatures . 
(19) 

where a is the lattice constant, c the concentration of the defects and F 
a constant depending on the mechamism of scattering, 

After expressing Fin terms of I in (18),* combination of (18) and (19) gives 

(20) 

In order toget the order of magnitude of this effect, we take the following 
typical case. 

om/m=1/30, a=4x10-8cm, x=10-1, T=10°K, q=2x1or'cmfsec. 

3) P. G. Klemens, F:roc. Roy. Soc. (London), 208, 108 (1951). 

* See reference 3) 
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Problems Related to Heat Conduction 15 

The corresponding resistance is Wo=0.03 watt-1• Since the conductivity of a crystal 

of KCl at very low temperatures was measured to be K~0.04T(watt), the isotope 

effect can not be=neglected if the component element is rich in minor isotopic 

species such as, 

Cl311 :Cl37=75.4 :24.6, Br79 :Br81 =50.6 :49.4, Rb85 : Rb87 =72.8:27.2, Sb121 :Sb123 =56:44, 

and also Cd, Gd, Ge, Pb, Hg, and many others. 

Now let there be several isotopic species of atoms, with masses mt. m2,. .. , 
in the crystal and their fractions be .Xt, xa,-··, respectively. Then, ~x,=l and 
the mean mass of the atoms m is ~ximl. If we denote the deviations of the 

masses of these isotopic atoms from the mean value by omt. om2, ··· respectively, 

x( om/m ) 2 in ( 5) should be changed to 

(21) 

For the case of two isotopic component systems, this may be written as 

(22) 

which takes its maximum value at the 50-50 composition just as in the case of the 

electrical resistance of two component alloys. 

As for the experimental verification of the above calculation, it is unfortunate 
that the lack of the experimental data prevents the comparison. 

IV. Damping of vibration in solids 

Factors which cause the damping of vibraton or the attenuation of sound in solids 

may be divided in to two groups. In the one group there are the movable irreg

ularities in the lattice, such as the dislocations, the grain boundaries, solute atoms 

and so forth which, while being moved by the applied stress, dissipate the vibrational 

energy as heat. It should be noted in this eonnection that the static irregularties, 

such as the lattice vacancies and fixed solute atoms can contribute likewise to the 
scattering of the progressive sound waves, but they are inactive for the consump

tion of energy of the periodic vibrations of the specimen. In contrast to the first 

group that is related to the imperfectness of the crystal lattice, the second group com

rises those factors which exist inevitably in all solids. Thermal diffusion current 

across the specimen or the grains due to the thermoelastic effect is the typical one. 
Now we wish to estimate the effect of the anharmonicity of vibration upon 

the internal friction, which seems to have been overlooked heretofore and should 
be classified into the second group. Anharmonicity or nonlinearity of vibration is 
fundamental in cryat-al since the interatomic potential is not at all quadratic in 

the relative displacements. As a result, when the specimen is expanded, for 

instance, the frequencies of the normal modes of vibration decrease, and vice 

versa. Therefore these normal modes undergo some kind of frequency modulation 

if the specimen is set into periodic vibration, accelerating the transitions of 

( 15 ) 



16 Sanchi MIZUSHIMA 

energy among the numerous modes. This process is accompanied with the taking 

up of energy from the periodic vibration and giving it to the other normal modes 

or the lattice phonon system, until the energy of that vibration becomes equal to 

the value given by thermodynamics. 

The general procedure of calculation follows that of the preceding paper. For 

convenience we suppose the normal modes as well as the periodic vibration to 

be progressive rather than stationary in a crystal of volume V having periodic 

boundary conditions. The problem is to study how the vibration in question re

acts with each normal modes. In the calculation th)s is treated as a consequence 

of three phonon collisions caused by a perturbation. The nonlinearity of vibration 

is expressed by the following perturbing hamiltonian that is third order in 
the amplitudes. 

~ ~ ~ ~ -· ~ ~ ~ ~ 

II'= "AN-3 12 ~ rrrr1rrz[aa1a2exp i(rr+rr1 +rr2)r-aa1a2exp i(rr+rr1-rrz)r (23) 

(J'h(J'2 +······]' 
~ 

where rr represents the wave propagation vector of the vibration in question, 
--~ -~ 

and rr1 and rr2 the representatives of the other normal modes. N is the total num-

ber of atoms, a is the amplitude operator which is time-dependent, a its complex 
~ -~ 

conjugate and the sum over rr1 and rrz means also the sum over the modes with 

d.Jferent polarizations. .\ is the nonlinearity costant. (23) causes the transition 

'l"oC ···n···n1···n~r··) -) '¥( ... n-1· .. n~-1 .. ·n2+ 1 ... ), 

with the reaction theme 

(24) 

wher n, n1 and n2 are the number of phonons belonging to each mode. In this 
~ -~ 

reaction the vibration rr and the mcde a-1 lose one phonon respectively while a 

new one is created in the mod; rr2. Here the total momentum has to be con
served during the reaction. 

~ ~ ~ 

hrr + hrr1 = hrrz • 

The rate R1 of the above transition is, 

R1 = Lrrrr1 rr2nn1 (n2+ 1) Jl (Er-Ei) ;L = ,\2 V2 h 3 1 N3 (2m) 3 qs, 

ll(x) = 4 sin~(xtl2h) I X2 , E1 = hw2 , Et = h(w+uJt), (25) 

where m is the mass of an atom, q the propagation velocity and w is the fre
quency. 

~ ~ ~ 

Combining (25) with that of the reverse process rr+rr1 -rr2, we get the rate of 

the decrease of the number of phonons in the vibration under discussion. 

(26) 

( 16 ) 



Problems Related to Heat Conduction 17 

n1 and n2 are given by thermodynamics as, 

nhll = (ehwi'Il/kT-1)-1, 

while n is decomposed into two terms as 

n =fin+ (ehw/kT-1)-I, (27) 

where fin is the number of excess phonons compared wilh that given by the equi

librium distribution law. The term in the curly bracket of (26) becomes then 

(28) 

at temperatures higher than the characteristic temperature. 
Now we have to sum up all the reaction rates of the type of (26) to get the rate - -of the decrease of fin at various sets of u1 and u2. 

As is well known well, the simultaneous conservation of energy and momentum 

during the three phonon collision is not allowed in the continuum approximation 

of the lattice such as adopted here. The periodic structure of the lattice makes 

the collision possible, the details of which can not be determ:ned. - -The sets o~ u1 and u 2 become fixed if one of these is gh e .. 1. 1 he sum over 
the sets is therefore replaced by the sum over ;;, wbic:1 jn turn is replaced by 
the integral in the wave vector space, as, 

(29) -It can easily be shown that the u 1's satisfying the conservation laws, if present, 

should lie on planes in the wave vector space. We denote the mean value of 

the distance between the origin and these planes by u 0 and replace the integral 

in (29) by 47tC J Ut
2 duio where C is a constant of the order of unity. 

The calculation yields, 

LJ Ra = (32 '}1_2 C u 0
2 k T 123 7t p3 q/j) u 2 fin. (30) 

0 1,0'2 

The nonlinearity constant ;\ ca~ be expressed by the thermal conductivity K as 
given previously 

A-2 = 0. 01 p 3 q7 a I K T, 

where a is the lattice constant. 

We get finally the rat~ of the decrease of An, which is expressed by the re
laxation time T. 

(31) 

Now we wish to replace uo it the above eqdation by the characteristic temt::er
ture 61, both being related by the equation 

u o = wo I q = C' k B I h q, (32) 

( 17 ) 



18 Sanchi MIZUSHIMA 

where C' is a constant of the order of unity. Then (31) changes to 

(33) 

where v is the frequency and equal to qcr f27t. In (33) all quantities are ex

pressed in c. g. s. units. 

As an example we take the case of NaCl, for which a=5.63X10-8cm, 8=220°K 

(Einstein), q = 3 x 105 em/sec, /( = 0.0087 cal/ em. sec. °C and assume CC' to be unity. 

The followings are the result. 

v (cycles/sec) I 106 1012 

I 

T (sec) I 29.4 0.294 x I0-10 

0.46 X 1013 

1.4 X 10-12 

Here the trequency in the last row is that corresponding to the characteristic 

temperature and the corresponding relaxation time is seen to be reasonable. 

As can be seen in the above list, the attenuation at the artificially attainable 

frequencies is rather small for observation, the Q being of the order of a hundred 

million at megacycle regions. But at higher frequencies it is clear that this 

mechanism predominates the others for the attenuation of vibrations in solids. 
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