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On Intermittent Oscillation and
Oscillation Hysteresis

(Received April 13, 1955)

Zin-iti NAGUMO*
Abstract

A type of intermittent oscillation which frequently cccurs in electrical
system is considered. 1t is pointed out that an oscillation hysteresis of
the system plays an important role in the intermittent oscillation. Meth-
ods are derived to get intermittent oscillation and to prevent intermittent
behaviour of oscillation.

I. Introduction

The definition of ”’ intermittent oscillation”” considered here is an oscillation
which can be regarded as hamonic and the amplitude cf which is modulated
periodically by the oscillating system itself. The definition implies, as an ex-
treme case, a harmonic oscillaion which occurs and vanishes periodically.

It seems to be impossibleP to describe such an intermittent oscillation by a
single differential equation of pseud-harmonic type :

z+x=puf(x, %, ) D

where p is a small parameter. But it is possible if the oscillating system has
an element which changes by the oscillation itself and the change of the element
affects back the oscillation.

The simplest case of these intermittent oscillations is that oscillating system
of the form (1) contains an element expressed by a parameter A and the change
of A is governed by a first order differential equation:

A=G(%o, \) )

where x, is the amplitude of the oscillat on =x.

We shall call (1) ”” harmonic part’’ and (2) ”’ relaxative part’’ of the system
respactively and consider such an oscillating system that can be regarded, under
suitable assumptions and approximations, as being composed of the two parts
(Fig. 1).

* #ZE{=— Dr. of Engineering, Assistant Professor at Keio University
P> It is of course possible if the frejuency cr the phase, as well as the am-
plitude, is modulated.
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Harmonic Part Amplitude %, Relaxative Part
e
;x‘:+x—_-'uf(x, g}, ;) Parameter A i:G(zo, A
-—
Fig. 1

II. Intermittent Oscillation
We shall consider the harmonic part:
x+x=uf(x, %, ;) 3

containing a parameter A. The function f is considered to depend only on the

parameter A although it contains A , A etc. since they affect f so slightly that
we may neglect them.

The Stroboscopic System » of (3) is written as
dp
( z f(P; ¢ )“
dop
[ TN @

and the stationary oscillation is decided from

filp, ¢ A=0, fulp, d; A)=0. ®)

The stationary amplitude x, of (3) is given by eliminating ¢ from (5) if the
change of A is sufficiently slow compared with the transient time of (3). We
write it in the form

F(xo, 7\)=0 (6)

where p=x,% and call it ’’ characteristic of the harmonic part .
On the other hand, the behaviour of the relaxative part is governed by the
first order differential equation:

x:G(xo, )b) (7)
and the equilibrium point of A is given by

We call it ”’ characteristic of the relaxative part’’, From physical consider-
ation the equilibrium must be stable and A must change continuously with respect
to time.

We shall consider the intermittent behaviour by means of the two character-
istics on the (\, x¢)-plane (Fig. 2).

D N. Minorsky : Accademia delle Scienze dell/Istituto di Bologna (1952); Bulletin
Société Frangaise des Mécaniciens (1954)
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A representative point on this plane corresponds to a steady oscillation and
the ordinate of the point expresses steady amplitude of the oscillation.

When the amplitude of the oscillation is modulated, the value of x, varies pe-
riodically so that the representative point travels on a part of (6) back and forth.
Accordingly, in general, the value of A varies periodically following the variation
of x,.

Therefore (8) must traverse (6) since A increasses on one side of (8) and de-
creases on the other side of (8).

The intersection of the two characteristics is a stable equilibrium with respect
to the relaxative part and hence it must be an unstable equilibrium with respect
to the harmonic part, since if it is stable with respect to the harmonic part the
whole system rests on the intersection and the intermittent behaviour does not occur.

Moreover, it is easy to see that the intermittent oscillation does not take place
if the characteristic of the harmonic part is single-valued, that is, if %, in (6) is
a one-valued funetion of A.

From these considerations we may presume the following result.

The intermittent oscillation occurs when the characteristic of the harmonic part
is many-valued and the characteristic of the relaxative part intersects the former
at its unstable branch.

An illustrative example which will occur

most frequently in practical cases is shown in Ko

Fig. 2, where the branch (D B) is the unstable

one. o F(%os A)=0
In this case, the representative point at A trav- ! \

els rightwards on the characteristic of the har- —_— I ; lB

. . : . | 4
monic part, since A>0 on the. left-side of the y = | G( X, \)=0
characteristic of the relaxative part. As soon D‘{\%\‘_
| G
' |

as it arrives at B, it jumps to C since A varies

continuously and the transient time may be ne- : | A
glected. 0 A Az
The rep. pt. at C travels leftwards since it Fig. 2

is on the right-side of the characteristic of the
relaxative part and no soonr it reaches to D than it jumps to A.

Then the rep. pt. repeats the cycling A B C D which expresses an oscillation
hysteresis ® on the ( A\, x, )-plane.

It is easy to know the period of the intermittent behaviour. Solving (6) with

» E. V. Appleton & B. van der Pol : Phil. Mag. 43 Q922) 177
L. Mandelstam & N. Papalexi: Z. f. Phys. 73 (1932) 223
N. Minorsky : J. Franklin Inst. 256 (1953) 147

(3)
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respect to x, we get
%o=5E(N),  x=EN) €C))

where £, corresponds to the branch A B and , corresponds to the branch D C.
Substituting (9) into (7), we have

A=G{EMNY,  A=G{EON} (10)

corresponding to the branch A B and D C respectively. Hence the period T of
the intermittent behaviour is given by

T fMG{El()\),X}-I-fM! G{E2(\)vk} (11)

where \; is the abscissa of A (or D) and A, is that of B (or C).

A representative point on the (A, x)-plane corresponds to a limit cycle on
the (x, x)-plane. At the branch points B and D, a stable limit cycle and an un-
stable limit cycle coalesce and disappear. In the special case, the lowest stable
branch ( D C in Fig.2) may be a stable singular point ( x=0, x=0, ie, %=0).

We shall call & harmonic part which displays an oscillation hysteresis on the
(A, %o )-plane ’” hard harmonic part ’/, analogizing with the naming of the ’* hard *
szlf-excitation # in the case of the autonomous system.

III. Hard Harmonic Part

Examples of the hard harmonic part which appear frequently in electrical
systems are as follows.®>

(A) The ferro-resonance circuit is an example of the hard harmonic part.
Under suitable conditions, the amplitude x, of the alternative current through
the ferro-resonance circuit displays an oscillation hysteresis with respect to the
amplitude p (p=uP) of the alternative source voltage, as shown in Fig.3.

760 %0
! |
' ' "‘I
NN :/"' !
I l
")'/ |
| |
0 P 0 B
Fig. 3 Fig. 4

® N. Minorsky : “Ncnlinear Mechanics” (1947) p. 87
Andronow & Chaikin: #”Theory of Oscillations” (1949) p. 329
*) Some reasons why these harmonic psrts are hard are furnished in Appendix.
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(B) Similarly, %, displays an oscillation hysteresis with respect to the series
resistance B (8=uB) in the ferro-resonance circuit, as shown in Figd.

(C) The amplitude x, of the current through a ferro-resonance circuit as
shown in Figb displays an oscillation hysteresis with respect to the voltage «
(a=uA) (Fig.6).

%y
r"'——‘ (' ““Wp“w i \\
|
pSint ’ g
| - }
- | .
Fig. 5 Fig. 6

(D) The self-excitation of a plate-tuning oscillator (Fig.7) ( or a grid-tuning
oscillator) is hard with respect to the grid bias voltage under suitable condition
on the vacuum-tube characteristic. Namely, %y, which is proportional to the am-
plitude of the alternative current 7, displays an oscillation hysteresis with respect
to the grid bias voltage —V in the neighbourhood of its cut-off voltage —V,, as
shown in Fig.8.

f———————
\

Fig. 7 Fig. 8

(E) In the case of forced oscillations, the amplitude x, of the oscillation
ofien displays an oscillation hysteresis wity respect to the frequency deviation
d (0=uD) of the forcing frequency from the proper frequency of the circuit.
(Fig.9).

(F) In the casz of parametric excitations, the amplitude x, of the oscillation
often displays an os:illation hysteresis with respect to the frequency deviation

o)
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8 (8=uD) of the parameter frequency from the proper frequency. (Fig.10).

Ao

Fig. 9 Fig. 10

IV. Relaxative Part

Examples of the relaxative part which appear frequently in electrical systems
are as follows.

(a) 1If the capacity C in Figll is so large that the period of the current
source can be neglected compared with the time constant C R, the voltage V is

given by
CcV+ %zkz}, (k: const.) 12)
approximately.
Similarly, in Fig. 12,
CV+—}€-=K00 (K: const.) 13

provided that the internal resistance of the rec‘ifier is fairly high.

g } J- - T — T
I |
LoSint Ré —L W Sint Ré CT v
5 T
Fig. 11 Fig. 12

(b) When an incandescent lamp is ignited by alternative current 7, sin #, the
resistance R of the lamp is approximately given by

R IRl 19

where H(R), g(i,) are such functions that they increase monotonically with

6
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respective variables,™
V. Examples of Intermittent Oscillation

It has seen in II that the oscillation hysteresis of the harmonic part plays
important role in the intermittent oscillation considered here.

Moreover, it is possible to get intermittent oscillation by combining suitable
relaxative part to a hard harmonic part.

The following examples will explain the situation.

Ex.19 (Hard harmonic part (C)+Relaxative part (a))

Xo

Fig. 13 Fig. 14

The circuit of Fig. 5 may be regarded as the harmonic part of the oscil-
lation system of Fig.13, provided capacity C is so large that its impedance to
the forcin frequency is very low. Hence Fig.6 gives the characteristic of

the harmonic part.
On the other hand, the circuit of Fig.1l is the relaxative part of the system.

Hence voltage « is given by

%zkxo (15)

Ca-+
and the characteristic of the relaxative part becomes
a=uA=kRx,
=_K*_
or X kRA ] (16)

An intermitt ent oscillation takes place when the line (16) intersects the char-
acteristic of the harmonic part as shown in Fig.14.
Ex. 29 [Hard harmonic part (B)+Relaxative part (b))

An incandesent lamp connected to alternative voltage source in series with

*) See Ref. (5) Nagumo
9 R. S. Mackay: App. Phys. 24 (1953) 1163
® R. S. Mackay: App. Phys. 24 (1953) 311
Z. Nagumo: Proc. Faculty of Engineering, Keio University (Japan) Vol. 6, No. 20(1953) 1

C75
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an iron-cored choke and a condenser flashes intermittently (Fig. 15). The period
of on and off” is sufficiently large compared with that of the voltage source.
Therefore Fig4 may be regarded as the characteristic of the harmonic part of

the system.

Fig. 15

—~~

On the other hand, the relaxative part is
given by

£ +HB)=gx) an

Hence the characteristic of the relaxative
part becomes

H(B)=H(uB)=g(x). (18)

The lamp flashes intermittently when the
monotonic curve (18) intersects the characteristic
of the harmonic part as shown in Fig. 16.

Ex. 3%, (Hard harmonic part (D)+Relaxative
part (a)]

Let us consider the plate-tuning oscil-
lator with grid-leak and grid-condenser
shown in Fig.l7. 1If the coupling of the
transformer is rough and the internal
grid resistance is fairly high, the grid

Fig. 17

(2

_L current is small and its reaction to tank
circuit may be neglected. Therefore, if
the capacity C is so large ihat its impe-
dance to the proper frequency of the tank
circuit can be neglebted, then the circuit
of Fig.7 may be regarded as the har-
monic part of the oscillator. Hence
Fig.8 1is the characteristic of the har-
mwonic part.

On the other hand, the circuit of Fig.
12 may b: thought as the relaxative
part cf the oscillator. Therefore the
voltage V is given by

CV+ %‘:K’% 19)

% W. A. Fdson: ”Vacuum-tute Cecillators” (1953) p. 227

8)
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and the characteristic of the relaxative part becomes

V=KRxo
or .
Xo=—i ¥ (20)
KR 7.

An intermittent self-excitation occurs when the line (20) intersects the char-
acteristic of the harmonic part as shown in Fig.18.

If the intermittent behaviour of the oscillation is undesired, we can prevent
it by shifting the characteristic of the relaxative part and making the intersection
in the stable branch of the characteristic of the harmonic part. E

For example, in the last case, we can prevent the intermittent behaviour by
reducing R so that the characteristic of the relaxative part intersects one of
the harmonic part in its upper stable branch.

VI. Summary

It has been pointed out that the oscillation hysteresis of the harmonic part
plays an important role in the intermittent oscillation cansidered here. '

The intermittent oscillation takes place when the characteristic of the relaxa-
tive part intersects the characteristic of the harmontc part in the unstable
branch of the latter. It is possible to get intermittent oscillation by combining
suitable relaxative part to a hard harmonic part, that is, a harmonic part the
characteristic of which displays an oscillation hysteresis.

On the contrary, if the intermittent behaviour of the os:illation is undesired,
we can prevent it by shifting the characteristic of the relaxative part and making
the inters:ction in the s"ab’e branch of the characteristic of the harmonic part.
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Appendix

As bzing well known,” the ferro-resonance pheromena can be explained by

the fo'lowing differential equation.

X+PBx+x—8x+Ex*=psnt D)

D J. J. Stoker: ”Nonl!inear Vibrations” (1950) p. 91

C 99
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If B, 8, &€ and p are small quantities of the same order with u, one gets by
Stroboscopic Method?

9E 2% —24 DEx§+16(B?+ D*)2f —16 P?=0 @

where %, is the stationary amplitude of z and 8/B=8/D=¢&/E=p/P=p.

Under suitable conditions, Eq. (2) takes the form shown in Fig.3, Fig4 and
Fig9 by choosing P, B and D as respective parameter.

If @ is a small quantity of the same order with g, it would not be a great
mistake to explain a ferro-resonance phenomenon of the circuit shown in Fig. 5
by the differential equation of the form:

2+ Br+x—8x+ Ex*x+asgn x=p sin t. 3
Then one has
E? DE 8AB 16A2
To =g s (B D 20 x0+(7— —P*)=0 @)
or
2 A=—But,[p- x0< E, —D) 5)

where a=pA.

Under suitable conditions, Eq. (5) takes the form as shown in Fig. 6.

In considering the oscillation hysteresis of the plate-tuning oscillator (Fig. 7)
with respect to gridbias voltage, one may, for simplicity, idealize the vacuum-tube
characteristic as follows:

= é’{l +sgn(e,+ Vo)} ©

where I, is the saturated plate current (Fig. A).
The differential equations of the circuit

b are
Lfi—’+Rz+ [—indt=0
C 4
ls
d:
er=Mg—v. )
e
-V 0 3 -
M .
Fig. A Putting =T i B= v%‘fR’

10
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1 t(}c: dx

W) , one has

=1 M _ o1
p—z .L_C.I,, V1 V-V, and t—x/E

Z+Bx%+x=p{l+sgn(x—V)}. ®)

The Stroboscopic System of (8) becomes

dp _ _ - dp _
B - _po+pr, %0 )

where
So= %N/ p—Vi (p>Vi?), =0 (p<V1?).

Hence p—0 if p< V12, p—p, if p>V)?
where

._ 8P [64PT _ 16P*V;? ao

PR et TN B Bt

From (10) and consideration of stability one has Fig. 8.
As an example of parametric excitations, we shall consider the differential
equation of the form

Z+(B+ya?) o+ (140t cos 2t e — Sz +E28 =0 an

where 7 is a small quantity of the same order with u (y=uC).
The Stroboscopic System becomes

d D a2
3E A
I 71% =g T g Py cos2p
Hence stationary amplitude x, (%,=0) is given by
p=3E .1 J (a2—aB)—28Cx1— @ (13)

From (13) and consideration of stability, one has Fig. 10.

an



