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On a Forced Discontinuous Oscillation 
(Received Nov. 24, 1954) 

Zin-iti NAGUMO* 

Abstract 
A forced oscillation of a discontinuous ~elf-sustained oscillation which is 

the limit case of a relaxation oscillation was analysed in the cass of small 

forcing term. The condition that the forced system bas the period which 

is an odd integer multiple of one of the forcing term was obtained. 

The result explains the subharmonic synchronization of a relaxation oscil

lator. Some experimental results were compared with that of the analysis. 

I. Introduction 

Much interesting researches!) have been carried, since van der PoP), on 

the forced oscillation with continuous wave form but less has been done on di:::;

continuous one. 
The following argument is an analysis of a forced oscillation of a discontinuous 

self-sustained oscillation which is the limit case3 ) of a relaxation oscillation·!). 

II. Forced Oscillation by Small Sinusoid 

We shall consider a forced oscillation of a discontinuous self.sustained oscillation 

which is expressed by 

(i) differential equation : 

-o(1-x2
) ~~ +x=bsin(-r+-<p) (22: jx[ >1) (1) 

T 

where o, b and rp are constant; 

o>O, b>O and b is small 
0 ,____ _______ _ 

I 
I 

----T (ii) condition of jump: 

-1 

-2 

I 
I 
I 
I 

-----~-?-

Fig. 1 

X=±l---~-*+2 

which means x jumps from + 1 to -2 

and from --1 to +2. 
It is .:_~lear that the solution of (1) 

which has the initial condition: X= --2 

when -r=O, increases monotonically and 

approaches to X= -1 at some -r, as 

shown in Fig. 1. 

Hence v;e shall consider 

*)J¥i~t:- Dr. of Eng., Assistant Professor at K.~io Univer:>ity-

1) For example, M. L. Cartwright: "Contributions t'.J the Theory of Nonlinear 

Oscillations" Princeton Univ. Press (1950) p. 149 

2) B. van der Pol: PhiL Mag. 3 (1927) p. 6~, 

3) J. ]. Stoker. "Nonli•1ear Vibrati;ns" Int:~r,;cieixe Publishers fnc. (1950) p. 1:)7 

4) N. Minorsky: "Nonlinear· Mecha'1ics" Ed'.'lards 8rothers Inc. (1917) p. 381 

( 8 ) 
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d-r S(1-x2) 

dx = i~bsin(T+;p) (22: lxl 2:1) (2) 

instead of (1). 

It is easy to see that Eq. (2) has a solution which satisfies the initial condition: 

T=O when X= -2, of the form 

T(X) =To(X)+bTt(X)+b2T2(X)+ ··· ............. .. (3) 

convergent for -2;Sx;S-1 in b<bo, bo being some positive constant. 

If we substitute (3) into (2) and equate terms containing the same powers of 

b, we have, after integrations, the following successive relations : 

To(X) = rx S(1-~2)d~ 
• -2 ~ 

(4) 

(5) 

(6) 

The first relation gives 

To(x) = {a- ( ~~2 

-log lxl ) }8 (7) 

where a=2-log2, and hence 

To( -1) = ( ~ -log 2 ) 8. (8) 

We write To( -1) as k, 2k being the period of the self-sustained discontinuous 

oscillation. 

The second relation gives 

IX ~c~..-f2)s~~~(rx_---(f ~!~~'~')}_8_+~)-]at 
Tt (x) = _

2 
f 2 s (9) 

and hence 

J-18(1-~2 )sin [{a_- (_f~-log lfl )}8+(1' Jdt 
T 1 ( - 1) = _

2 
f~ S 

=Is( 8)cos<p+ lc( 8)sin<p 

=A(8)sin{<JJ+x(8)} (10) 

where 

A(8)= J I~(8) -+- 1~(8) 

A( 8)sinx( 8) = Ic( 8), A( 8)cosx( o) =Is( 8) 

I~C8)= J=:8\~l~f
2

) sin[{(l'- (~~ -log]fl )} o] df (11) 

lc( o) = I=:~C!fif
2

) cos [ { a- ( f -log If[ ) } 8 J df. (12) 

From (3) (8) and (10), we have 

T( -l)c=To( -l)+bTl( -l)+O(b2)=k+bA(o)sin{(p+x(o)}+O(b2). (13) 

( 9 ) 



38 Zin-iti NAGUMO 

We now confine our consideration to the first approximation of b, so that we 

use T: 

_!=k+bA(o)sin{cp+x(o)} (14) 

instead of T( -1). Hence _7"__ is the time required for the solution to travel from 

x= -2 to x= -1 in the first approximation of b. 

In the same way, for a solution of (2) which has the initial condition: T(x) =0 
when x= +2, we have 

T( + 1) =k-bA(o)sin{ cp+xC c))}+O(b2). 

The time required for the solution to travel from x = + 2 to x = + 1 is, in the first 

approximation of b, given by -i where 

-7-=k-bA(o)sin{cp+x(o)}. (15) 

Since the angular velocity of the forcing term is unity, the phase angle of the 

forcing term at X= -1 proceeds_2:_ compared with one at x= -2. Similarly the phase 

angle at x= +1 proceeds--;:. compared with one at x= +2. 

Now let the initial phase angle be (1'1 at x= -2. The phase angle at X= +2 
(after one jump) is given by 

qJt'=tpt +k+bAsin(<pt +X) (16) 

and the phase angle at X= -2 (after the next jump ) is given by 

cps=<pt' +k-bAsin(cpt' +x). 

Substituting (16) into (17), we get 

(Ps=q,t+2k-2bAsin -~cos (q~~+x+-~-). 
Hence we shall consider the difference equation: 

tfJn+I =cpn+2k-2bAsin -~cos (qJn+X +-~-) (n= 1,2,3, ...... ) 

where qJn denote the phase angle of the forcing term at the 2(n-1)-th jump. 

If we put Bn=q,n+X+-~-, l=2k, $=2bAsin ~; (19) reduces to 

(17) 

(18) 

(19) 

(20) 

Now the forced system is said to be synchronized when {Bn-27l'nm} tends to 

80 where Bu is a constant and m is a positive integer. 

Substituting On-27tnm=00 into (20), we obtain 

l-27tm=$cos00 • (21) 
Hence the condition that there exists a positive integer m such as 

]l. -27tm[ ;;:S 1$1 (22) 

is necessary for the system to be synchronized. 

Conversely, if there exists -;uch an integer m which satisfies (22), we can find 
cos8o which satisfies (21). 

Hence from (20) we have 

Bn+1 -Bn=27rm+$cosBo-$cos8n. 

Putting 1)n=Bn-27tnm (n=1,2,3, ...... ), we obtain 

c 10 ) 
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</Jn+t =cpn+f3(cos80 -coscpn) (n= 1,2,3,-·····). (23) 
If cp1 belongs to an interval (27ts, 2ns+27t), where s is an integer or zero, i.e. if 

27ts~cpl <27ts+ 27t 

then setting A.n=cpn-27ts in (23), we get 

1\.n+I =An+f3(cos8o-COSAn) (n= 1,2,3,······) 

where O~A-1 < 27t. 

i\.rtt-1 
The relation between An+t and An 

is shown in Fig. 2 in the case: /3>0 
and cos8o>0. It is evident from 
the figure that the sequence {An} 

tends to :.\0 if A' o< :.\1 <27t, and to 

A.,tt 0 if 0~:.\1 <:\'n, where 0<:\u~27t, 

0~:.\' 0 <277', cosA-o=cosA'o=cosBo and 

A-'' o= :\o-27t. 

I 27[ ---------------

Hence choosing 8o=Ao+27ts if 

A'o<At <27t, and 80 =A-0 +27t(s-l) if 

0~:.\1 < :.\' o, we can assert that 

{8n-27tnm} tends to eo. 
Similarly it can be seen that 

{8n-27tnm} thnds to f1o in the other 

three cases: /3>0, cos8o<O ; /3<0, 
cos8o>O; /3<0, cos8o<O. 

Hence we may conclude that the condition 

Jl-27tml < 1/31 * 

0 

Fig. 2 

is necessary and sufficient for the forced system to be synchronized. 

(24) 

-i\n 

27[ 

(25) 

Now if the period of the self-sustained oscillation is p. times as many as that of 

the forcing term, then 

k=JL7t. (26) 

Substituting (26) into (25) we obtain 

lt-L-ml < t_A;~) Jsin fJ.:J I (27) 

implying that f.L must be near to a positive integer m for the system to be syn
chronized. 

Moreover setting f-L=m(l+tm) and substituting into (27) we have 

ltml < -~A(o) lsin f!l7t (l+tm)l 
tn7l' 2 

(28) 

implying that I tm I must be small. 

If m is an even integer, we get from (28) 

Jt ml < bA 1}!_7!_ It ml 
mn 2 

-xThe equality should be omitted since it correspond-> b semi-stable limit. 

( 11 ) 



40 Zin-iti NAGUMO 

and this is impossible since b is small. 

Hence m must be an odd integer. 

If the condition (25) is satisfied with an odd integer m, the period of the syn

chronized system is evidently 27(m, that is, exactly m times as many as that of 
the forcing term. We will call m as the order of subharmonic synchronization. 

As far as the first approximation of b is concerned, we may use m instead of 

p. in the right hand side of (28) since t;rn=O(b). 

Hence (28) may be written as 

ll;ml <t;(m) (29) 

b 
where t;(m)= ---A(,8) 

m7t , 
mTt 

,8= ~ -log2 and t;(m) represents the width of the syn-

chronous range of the m-th order subharmonic synchronization. 

After ali we have the foiiowing conclusion. 

As far as the first approximation of the small forcing term is concerned, the 
subharmonic synchronization of the m-th order occurs under the condition 

IC:ml <~(m) 
where ~(m) represents the synchronous range of the m-th order and 

C:m= ~ -1 , t;(m)= JiiA(,8), A(,8)= J 1~(,8) +1~(,8) 
ls(,8)= ~~,8( 1 ~x

2

)sin [{a- (~
2 -logx)},e]ax 

lr.((J)= J:,8(
1

-;;2x
2

)cos [{a- (-~
2 

-logx)},e ]ax (30) 

mTt 
,8=- · a=2-log2 a-t, , 

f.L is the ratio of the period of the self-sustained discontinuous oscillation to that 

of the forcing term and m is the odd integer nearest to f.L· 

III. Forced Oscillation by Di:;;torted Small Sinusoid 

Next we shall consider the case where the forcing term has higher harmonics. 

The forced system is expressed by 
(i) differential equation: 

-S(l-x2) ~x +x= f bCs)sin(sT+<p<8 ))(2> lxl ~1) (31) 
dT s=l 

where b<s)'s are small 

(ii) condition of jump: 

X=± 1------~ +2. 

By the same method described in II, we have, corresponding to (20'), the following 

simultane8US difference equations: 

(:32) 

( 12 ) 
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where 
, n ~ ;.. (r.Y. 2 · l (1')~ i . 11 ~; • ' 1 ~ d 'f"li · t • · • .- • ' ~ • · ' · · • • e = rp + x(ro)+--

n n 2 

. I 

(3<r> =b<r> 2ACro) sin _!k_ (r= 1,2,3,-· · ··· N). 
r 2 

Jn this case, the forced system is said to be synchronized when every 

{ 

(r) ) (r) en -27tnm<r) r tends to ()0 respectively where m<r)'s are positive integers. 

It is clear from (32) that 
(r) (r) { (1) (1·)· } () -e = r () -8 . i 
n+I n n+1 n " 

(33) 

and hence 

8(r) -8(r) = r{8(1) -8(1)1 (34) 
n+1 1 n+1 1 f · 

It follows from (34) that the simultaneous difference equations can be reduced 

to the following single one : 

(1) (1) N { (1) ( (s) (1))} 
8 -8 = l- 2: (3<s)cos s8 + 8 -s8 

n+l n s=l n 1 1 
(n=l,2,3,-·····). (35) 

Therefore the condition that every { fJ~) -27tnm<r)} tends respectively to O~r) is 

also reduced to the single condition that {e<
1
) -2rrnm<n} tends to 8<

1
) where men 

n 0 

is an integer. 

We can obtain the condition of synchronization by the similar way but it will 

be rather troublesome to get explicit result. 

IV. Application to Practical Circuits 

By numerical computation of (30) we know that 

tCl)=0.39b 

tC3)=0.15b 

tC5)=o.ogb 

and s(m) is approximately equal to _Q._~_Sb when m (odd integer) is large. 
- 1n 

These results will explain the synchronization of the van der Pol Osci11ator5), 

a negative transconductance re1axation oscillator. 
In this case the assumption that the n')nlinear characteristic of the vacuum-tuhe 

is expressed by a cubic polynomial can be satisfied fairly well by suitable choice 

of the position of the working point. 

When the van der Pol oscillator is synchronized as shown in Fig. 3, the amplitude 

of the forcing term is approximately prop::>rtional to rn (the order of subharmonic 

synchronization). Therefore the width of the synchronous range is approximately 

5) W. A. Edson: ; Vacuum-tube Oscillators(! John Wiley & Sons Inc. (1953) p.272 

( 13 ) 



42 Zin-iti NAGUNO 

independent of m. 
But the above mentioned assumption on nonlinear characteristic is not satisfied 

well in the case of the synchronization of the Multivibrator as shown in Fig. 4. 

c 

1 

Fig. 3 Fig. 4 

Appendix 

The above mentioned method of analysis can be applied to the synchronization 

of relaxation oscillator with glow-discharge tube as shown in Fig. 5. 

[ __ 

(a) (b) 

(c) (d) 

Fig. 5 

Under the assumption that the time required to discharge can be neglected 

compared with the period of the self-sustained oscillation, the results are respec

tively as follows. 

(a): 

(b): 

(c): 

1 
t(m)=--~-~---------- e 

.../ 4n2m 2 +log2h 

1 
t(m)= Iogh e 

2nm 
t(m)=loghv4n2m2-+iog2h e 

( 14 ) 



(d): 

where 

On a Forced Discontinuous Oscillation 

1 ?;(m)=--e 
logh 

e =eo( _u1_ - _!__ ) eo : synchronizing A. C. voltage, h = udu2, 
ll lit ' 

Ut: (D.C. supply voltage)-(deionizing potential) 
u2: (D.C. supply voltage)-(firing potential). 

Some of these results are compared with experimental data in Fig. 6. 
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