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On a Forced Discontinuous Oscillation

(Received Nov. 24, 1954)
Zin-iti NAGUMO*

Abstract
A forced oscillation of a discentinuous self-sustained oscillation which is
the limit case of a relaxation oscillation was analysed in the case of small
forcing term. The condition that the forced system has the period which
is an odd integer multiple of one of the forcing term was obtained.
The result explains the subharmonic synchronization of a relaxation oscil-

lator. Some experimental results were compared with that of the analysis.

I. Introduction

Much interesting researches have been carried, since wvan der Pol®, on
the forced oscillation with continuous wave form but less has been done on dis-

continuous one.
The following argument is an analysis of a forced oscillation of a discontinuous

self-sustained oscillation which is the limit case® of a relaxation oscillation®.

II. Forced Oscillation by Small Sinusoid

We shall consider a forced oscillation of a discontinuous self-sustained oscillation

which is expressed by
(1) differential equation :

ey

—6(1—x2)%+x=b sin(t+) 2= |x] >1)
% where 8, & and ¢ are constant;
T ,.- 6>0, 6>0 and b is small
0 _: ‘ (ii) condition of jump:
[ F=t1——>F2
: which means x jumps from +1 to —2
S I I S — and from —1 to +2.

It is clear that the solution of (1)

/ which has the initial condition: x=—2

shown in Fig. 1L
Fig. 1 Henrce we shall consider
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C8)

when 7=0, increases monotonically and

// approaches to x=-—1 at some T,

as
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dar _ d1-x)

dx — x—bsin(=+¢)
instead of (1).

It is easy to see that Eq. (2) has a solution which satisfies the initial condition :

2= |« =1) (2)

7=0 when x=—2, of the form
1) =To(2) F BT (X)) + B2 X)) coerereeeneins 3
convergent for —2=x=<-—1 in b<b,, b, being some positive constant.
If we substitute (3) into (2) and equate terms containing the same powers of
b, we have, after integrations, the following successive relations:

r(o= [ 29 a @
(%)= f o(1— Ez)sm{-ro(f)+<p} dE )
o) = f—f(l —£2)[ Slnz{ffﬁ)+(l’g{"TI(E)‘EQS’S{T?@&Q}JAdE ®)

The first relation gives

() = {a— (v’zﬁ—log | )}3 (7
where a¢=2-—log2, and hence
To{ —1)= (%—logz ) 3. ®

We write 7(—1) as &, 2k being the period of the self-sustained discontinuous
oscillation.
The second relation gives

2 2 )
(%)= JLf(l : )Sm [{ (Ez : l'og g )}84—”1115 €)
and hence
52
D fg&(l F)sm [{ : (EZZ 10g|‘f|7>}3ff7’ ]dg

=I;(8)cosp+1.(8)sing

=A®sin{p+x(8)} (10
where

A®= [ rey + 128)
A(S)siny(8)=1(8), A(S)cosx(5)=I(8)

L= [ _15‘11%52') sinf {o - (5* —loglfl )} 8] d& (1

L®= [, 8“ = cos [{a(§ 1oz o] ae. (12)
From (3) (8) and (10), we have

(=D =7 —1)+bri(—1)+O(6)=k+bAE)sin{p+ x(8)} +O(b?) . (13)

(9)
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We now confine our consideration to the first approximation of b, so that we
use T
T=k+bA(S)sin{p+x(8)} 14
instead of 7(—1). Hence T is the time required for the solution to travel from
x=—2 to x=—1 in the first approximation of .

In the same way, for a solution of (2) which has the initial condition: 7(z)=0
when z=+2, we have

7(+1)=k—bA(8)sin{p+x(F)}+0(d).
The time required for the solution to travel from =42 to x=+11s, in the first
approximation of b, given by v where
r=k—bA(8)sin{@p+x(&)}. (15)
Since the angular velocity of the forcing term is unity, the phase angle of the
forcing term at x= —1 proceeds T compared with one at z=—2. Similarly the phase
angle at =-1 proceeds T compared with one at z=+2.

Now let the initial phase angle be ¢, at x=—2. The phase angle at v=+42
( after one jump ) is given by

o =@+ k+bAsin(gp:+x) (16)
and the phase angle at x=—2 ( after the next jump ) is given by
@a=@’ +k—bAsin(p,’ +x). an
Substituting (16) into (17), we get
@a=q¢,+2k—2bAsin —gcos (q»,+x +-§) (18)
Hence we shall consider the difference equation:
Prs1=Pnt2k—2bAsin -I;———cos (patx +J§‘) (n=1,23,--) (19)

where ¢, denote the phase angle of the forcing term at the 2(#—1)-th jump.

If we put (),,:(/)n-{—x—l-v}ze— =2k B=2bAsin—123~; (19) reduces to
0n+1=0n+l—BCOS()n (7’!:1,2,3,""“) . (20)

Now the forced system is said to be synchronized when {#.—27nm} tends to
6, where 6, is a constant and m is a positive integer.
Substituting @,—2znm=4¢, into (20), we obtain

I—27zm=Bcosb, . 2D
Hence the condition that there exists a positive integer m such as
I —27zm| = |8 (22)

is necessary for the system to be synchronized.
Conversely, if there exists such an integer m which satisfies (22), we can find
cosf, which satisfies (21).
Hence from (20) we have
On1—0n=2nm-Bcosty,—Lcosh, .
Putting ¢pn=60,—27rnm (n=123,-.-- ), we obtain

(10)
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¢n+1=¢n+B(COSHO—COS¢n) (n=123,.--- ). (23
If ¢, belongs to an interval (27s, 2zs+27), where s is an integer or zero, i.e. if
2as<h1<2ms+2n
then setting An=¢r—27s in (23), we get
A1 = At B(cosdy—cosh,) (n=123,----- ) 24

where 00\, < 27.

The relation between Au41 and An
is shown in Fig. 2 in the case: 8>0
and cos#,>0. It is evident from
the figure that the sequence {Aw.}
tends to Ay if Ah<\<27, and to
Ay if 0<SA <N\, where 0<A =27,
0=\ y<2m, cosh,=cosNo=cosf, and
N o=No—27.

Hence choosing Go=No+27s if
No<M<2r, and Gy=n+27(s—1) if
0<nm<)\, we can assert that
{0»—27nm} tends to 6. ;‘Jf

Similarly it can be seen that i
{8,—2nnm} thnds to , in the other
three cases: B3>0, cos#,<0 ;5<0, 0 2’
cosfy>0 ; 8<0, cosdy<0. Fig. 2

Hence we may conclude that the condition

[1—2nm} < |B] * (25)
is necessary and sufficient for the forced system to be synchronized.

D ———

S D
w

?‘ = e o ——
N

%
Q— -

A
=
>

Now if the period of the self-sustained oscillation is x4 times as many as that of
the forcing term, then

k=pr. (26)
Substituting (26) into (25) we obtain
i) < A8 iy 17 @n
T 2

implying that x must be near to a positive integer m for the system to be syn-
chronized.
Moreover setting p=m(1+¢,) and substituting into (27) we have

ignl < PAO) 1in M (11 1) (28)

mr

implying that £, must be small.
If m is an even integer, we get from (28)

ol <2 == 1Cnl

*The equality should be omittad since it corresponds to semi-stable limit.

(11)
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and this is impossible since b is small.

Hence m must be an odd integer.

If the condition (25) is satisfied with an odd integer m, the period of the syn-
chronized system is evidently 27m, that is, exactly m times as many as that of
the forcing term. We will call m as the order of subharmonic synchronization.

As far as the first approximation of & is concerned, we may use m instead of
w in the right hand side of (28) since {,=0(b).

Hence (28) may be written as

1Eml <§(m) (29
where é‘(m)=757A(,8) B= Tl_"%gz and &(m) represents the width of the syn-
H z

chronous range of the m-th order subharmonic synchronization.

After all we have the following conclusion.

As far as the first approximation of the small forcing term is concerned, the
subharmonie synchronization of the m-th order occurs under the condition

[Em] <E(m)
where C(m) represents the synchronous range of the m-th order and
w=t -1 tmy= P A®) A= re+re)
IL(B)= f‘:ﬂ(l;xz)sin [{a— (9202 —logz>},8 ]az
L(B)= f;Ba;fZ)cos [{a— (gg?—logx)}ﬁ :'ax 30
8= aﬁ_”% a=2—log?

1 is the ratio of the period of the self-sustained discontinuous oscillation to that
of the forcing term and m is the odd integer nearest to pu.

IT1. Forced Oscillation by Distorted Small Sinusoid
Next we shall consider the case where the forcing term has higher harmonics.

The forced system is expressed by
(i) differential equation:

N
~8(1—at) ¥ 4 o= 3 pOsinCsr+ (2> 1] 21) @30
s=1

where b¢¥s are small
(ii) condition of jump:

By the same method described in II, we have, corresponding to (20), the following
simultaneous difference equations:

Q)

n+1

. N .
I 7'{l~ S B cosh’ } (r=12-N: #=123,----- ) (32)
b S:.l b3

(12)
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PR

where
St oaEEe U @R i galigdr beovroe T e e R YO ey
6 =@ +x(r0)+—9
B = 2.&5@ sin I’; (r=123,---N).
In this case, the forced system is said to be synchronized when every

() (] . .. .
{0 —27mm(’)} tends to 0  respectively where m™’s are positive integers.
n n

It is clear from (32) that .

6" —e"’=r{0‘“ o L, (33)
n+1 n nt1 n )
and hence
6(7‘) _0(7‘) _ 7{0(1) _6(1) (34)
n+1 1 n+1 1 .

It follows from (34) that the simultaneous difference equations can be reduced
to the following single one:

(&) (¢))

_391 )} n=1,2,3,----- Y. (35)

nt 1

(¢h) (¢} N [¢))
8 —0 =1-3 B¥cos {5(9 +(9
1 n s=1 (3
) . o
Therefore the condition that every {On —27mm(’)} tends respectively to (}0 is

- 1¢H) )
also reduced to the single condition that {H —Znnm(”} tends to 90 where m("
7
is an integer.
We can obtain the condition of synchronization by the similar way but it will

be rather troublesome to get explicit result.
IV. Application to Practical Circuits

By numerical computation of (30) we know that

£(1)=0.39
£(3)=0.15b
£(5)=0.09%
and ¢(m) is approximately equal to ~Ogﬁ when m (odd integer) is large.

These results will explain the synchronization of the van der Pol Oscillator®,
a negative transconductance relaxation oscillator.

In this case the assumption that the nonlinear characteristic of the vacuum-tube
is expressed by a cubic polynomial can be satisfied fairly well by suitable choice
of the position of the working point.

When the van der Pol oscillator is synchronized as shown in Fig. 8, the amplitude
of the forcing term is approximately proportional to m (the order of subharmonic
synchronization). Therefore the width of the synchronous range is approximately

5) W. A. Edson: Vacuum-tube Oscillators” John Wiley & Sons Inc. (1953) p.272

(13)
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independent of m.
But the above mentioned assumption on nonlinear characteristic is not satisfied

well in the case of the synchronization of the Multivibrator as shown in Fig. 4,

i e}

Fig. 4
Appendix

The above mentioned method of analysis can be applied to the synchronization
of relaxation oscillator with glow-discharge tube as shown in Fig. 5.

(a) (b)

©) (D)
Fig. 5

Under the assumption that the time required to discharge can be neglected
compared with the period of the self-sustained oscillation, the results are respec-

tively as follows.
1
@z Em= e Ciogeh ¢

®: =155 ¢

2rm
@ EOW= 10 h dmme+logh

(14)
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1
(d): C(m)=*@€
where
e=e(—1~——1) e, : synchronizing A.C. voltage, h=u/u
Ou, Ul,o'y g A.L. s 12,‘

u; : (D.C. supply voltage)—(deionizing potential)
us: (D.C. supply voltage)—(firing potential). ,
Some of these results are compared with experimental data in Fig. 6.

|

Z (Mm)2p
L0}
0.9+ PR ($) € =0.005
08t e S
07t S
g; —— MEASURED
’ ——— CALCULATED
04 :
031 AN (a) e =0.0005 y
02t . : )
N R E A e
! 2 3 4 N 6 7 8 ‘/ 10
m -—-— .
Fig. 6 ‘ Ty
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