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Analysis of Nonlinear Electric Circuits having 
Periodic Solutions (Part I) 

Hiroichi FUJITA* 

Abstract 

The differential equations and their solutions of some nonlinear electric 

circuits are obtained in this paper. The order of these differential equations 

are not restricted, i. e. we can solve not only the second order but also the 

first or more than the third order differential equations. 

However it is necessary for this method, the circuits contain only one 

Bonlinear element and the solutions are quasi sinusoidal functions. 

I. Introduction 

Although the general behavior of differential equation solutions for nonlinear ele­

ctric circuits cannot readily be known, the difficulty can be avoided in the case 

of a circuit having a periodic solution by paying attention to the fundamental 

component of the solution and by neglecting the effects of higher harmonics. 

Van der Pol's method is essentially this type of treatment applied to a differential 

equation of the second order. 

This paper is concerned with the extension of his mehtod to the case of a 

nonlinear differential equation of an arbitrary order. The author has worked out 

a method of solving equations for a circuit involving a single nonlinear element 

provided they have a periodic, steady state solution of nearly sinusoidal form. 

A method of formulating circuit equations suitable to the proposed method of 

solution is also shown. Among the difficulties yet to be solved is the impossibility 

of formulating equations for a circuit involving two or more nonlinear elements. 

Another headache with the new method lies in knowing how to distinguish 

whether or not the waveform of the solutions resembling close enough to a sinu­

soid so that the proposed method of solution can safely be applied. 

II. The circuit equations 

In the theories of linear electric circuits highly refined representations are 

used, such as impedance, admittance, vectors or integral transformations. But in 

the nonlinear circuits, they are not adequate because of their original properties. 

So for the linear parts of nonlinear networks, we use differential operators P"' and 

impedance or admittance which are the function of differential .operators P"' (n 

is integer and pn is dnjdtn ). 

* if¥Rl.r~-· Lecturer at Faculty of Eng., Keio University 

( 1 ) 



30 Hiroichi FUJITA 

In this section how to make the circuit equation which are suitable for our 
method will be shown. 

II-A Equation for passive network containing one nonlinear element. 

For passive network containing only one nonlinear element, we may cosider 
closed circuit in which nonlinear element and linear two-terminal network are 

connected in series. v is the voltage across the nonlinear element and i is the 

current through it. Nonlinearities are generally expressed 

i=/(v) 

v=g(i) 

(2-1) 

(2-2) 

When operational impedance and admittance of linear 

circuit is Z(p) and Y(p) then the circuit equations are 

Fig. 1 

11-B Note 

or 

v=Z(p)f(v) 

i= Y(p)g(i) 

We may make the equation for the current 

i=f {Z(p)i} 

and for the voltage 

v=g{Y(p)v} 

(2-3) 

(2-4) 

However, these are not suitable for our method. It should be noticed that 

nonlinear function must not contain operators pn. We must choose the equations 

in which impedance or admittance operate to the nonlinear functions. The reason 

will be state later. 

11-C Equation for passive network containing multiple nonlinear elements 

but equivalently (II-A). 

One of these types occurs when several nonlinear elements are connected in 

series. So they have common current i. We denote the 

Fig. 2 

nonlinear characteristics as 

Vn=f,,(i) 

From the same argument as (II-A) 

i = Y(p )v = Y(p )2.:,;vn 

The circuit equation is 
n 
2. Y(p )fs(i)= Z 

S=l 

(2-5) 

(2-6) 

(2-7) 

The se~ond type is of parallel nonlinear elements and in the same way as 

( 2 ) 



Analysis of Nonlinear Electric Circuits 

the series case, we obtain the equation 

n 
~Z(p)f,(v)=v (2-8) 

s=l 

where nonlinear characteristics are represented in the forms 

V = /s(is) (2-9) 

11-D Active network containing one nonlinear element. 

When the network contains one nonlinear element 

and one electromotive force, we consider the linear part 

of the network as four-terminal network whose input is 

the two terminals of the nonlinear element and output 

is those of electromotive force. In the input voltage V1 

and. current it, there is nonlinear equation 

Vt = f(i1) (2-10) 

Fig. 3 

31 

Output voltage v2 is the known value V. We use four constants A, B, C and D 

which are represented by differential operator pn. 
Then 

( "! 1) =(fl.. it))= (A B\( ~) 
h zt C D) z2 

f(it)=AV+Bi2 

it=CV+Diz 
D/(i1)-Bil =(AD-BC)V= V 

(2-13) is the circuit equation. 

(2-11) 

(2-12) 

(2-13) 

Vj 

Fig. 4 

li-E Equation for the circuit containing multiple nonlinear elements. 

v 

The equation for these circuits can not be solved as noted in Note II-B. For a 

simple example, we examine a circuit containing two nonlinear elements which 

are represented 

Vt=/J.Cz"t) (2-14) 

(2-15) 

Then using four-termnal constants A, B, 

C and D 

(~t)=(~Z)(~2) 
~Cit))= ( jE)~~i2)) 

(2-16) 

(2-17) 

If i1 is eliminated then fi{Cf2(i!l)+Diz}=Af.ii2)+Bi2 

A J] Vz 
c 

Fig. 5 

(2-18) 
The right of (2-18) is the case of Note II-B, hence it. can not be solved. 

II -F Equations for the circuits contining iron core. 

The nonlinearity of ferromagnetic core is very important in the electrical engi­

neering. Their nonlinearity is expressed by the follovving form in general 

( 3 ) 



32 Hiroichi FUJITA 

H=f(cf>) or cp=g(H) (2-19) 

where cf> is flux of core and His magn~tomotive force. 

~TI I ~,.Ill 
1 

I Ill 

H is linearly dependent on the currents of their wind­

ing circuits, but cf> is not represented explicitly in Z(p) 

Y(p) or A, B, C and D. Therefore the preceding method 
is not serviciable in this case. When the magnetic 

core has winding 1 2 . . n and the voltages are V1 . Fig. 6 

.. Vn 

v1=10-8NI(d¢fdt) ... Vn=10-8Nn(dcpfdt) 

Denoting i1 iz . . . z'n the currents in the windings 

n 
lH=~ i,N, 

r=l 

(2-20) 

(2-21) 

where lis the length of magnetic path. If the windings are connected to the linear 

networks which have the known electromotive force V,, 

(V') = (A,B,)(1!•) 
I, C, D, t, (2-22) 

where A,, B,, C, and D, are the four-terminal constants of the linear network. 

Then 

V,=A,l0-8N,dcf>fdt+B,i, (2-23) 

Multiply both sides with N,B,-1 and sum up to s and obtain 

-1 -8 2 -1 

2JN,B, V,=2J10 N,B, A,dcpdt+lH 

-8 2 -1 

= 2J10 N,B, A,dcf>/ dt+ If( cp) (2-24) 

(2-24) is the equation for these circuits. 

11-G Equation for the circuit containing three-terminal nonlinear element. 

Another important nonlinear circuit are the circuits containing the vacuum tube 

or transister which have three terminals. In these cases we can not always 

make suitable equations, but in special cases, we can. One example is the case 

of a pentode vacuum tube. For the pentode, the plate current £1 may be consi­

dered a function of grid voltage v1 only. If we take four-terminal linear circuit 

(see Fig. 7) 

A B 

c D 

Fig. 7 

(2-25) 

i1 is the grid current and it is usually negligible 

so 
(2-26) 

Then 

(2-27) 
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(2-27) is the equation for the circuit containing pentode vacuum tube. 

III. Solution of the Equations 

In this section how to obtain solutions of circuit equation will be studied. 

The first case is forced oscillation in which there are no D.C. component. One 

of these types is van der Pol's forced oscillation. The second type is forced 
oscillations whose solution contain D. C. component generated by nonlinear ele­

ment. Its popular example is the rectifier. These two types have finite period 

equal to the forcing oscillation's period. The third type is free oscilations where 

period is not known explicity. 

III-A Solution of forced oscillation having no D.C. component generated by 
nonlinear element. 

If w is angular frequency of forcing oscillation, put wt=T, then the period of 

oscillations is 27t. From here on we use independent variable t in this meaning 
of normalized time. Denote x as dependent variable. On x-px plane the solu­

tion describes a near circle. So we suppose 

x =K(t) cos(t+<p(t)) (3-1) 

Px= -K(t) sin(t+~t)) (3-2) 

K(t) cp(t) are the function of time (see Fig. 8). 

These representations are similar to those of van 
del Pol or Andronow & Witt. 

In Pz-P'x plane the solution also describe a near 

circle. Then 

Px=H(t) cos{t+<f>(t)} 
p 2x= -H(t) sin{t+¢(t)} 

From (3-2) and (3-3) 

(3-3) 
(3-4) 

- H( t) sin{ t + cp(t)} = K( t) cos{ t+ rp( t)} 

then 

-H=K ¢-cp=7t/2 

Fig. 8 

(3-5) 

Consequently, we may put the following relations to the circuit equation 
psx=Re(jsKeJCt+rp)) (3-6) 

vVhen the highest order of differential operators is more than the second. 
dprn-2xjdt=pm-lx 

apm-lxjdt=/(pm-lx,pm-2x .... px, X, t) 

Then, we get the type of equations (3-9) (3-10) from (3-7) (3-8) 

cos( t+ cp )dK/ dt-Ksin( t + cp )&p/ dt = 0 
-sin(t+cp )dKjdt-Kcos(t+cp )dcp/dt=F(K, cp, t) 

(3-7) 
(3-8) 

(3-9) 

(3-10) 

If the circuit equation has the only first order operaters, we operate one more 

p to the circuit equation to make the second order. Then we obtain the same re­
lation as (3-9) (3-10). It must be remembered that to operate one more p, drop3 D.C. 

comr:onent of the solution. The nonlinear equation which generates D.C. component 

c 5 ) 



34 Hiroichi FUJITA 

will be given m next section. If the equation is not suitable as seen in Note 

(II-B) P"'x can not be expressed explicitly, so (3-10) can not be obtaind easily. 
From (3-9) (3-10), we can calculate dK/dt and dcp/dt 

dK/dt=Dd~ 

dcp/dt=Dz/~ 

(3-11) 

(3-12) 

where Ll= I cos(t+cp) -Ksin(t+cp)/= -K 
1-sin(t+cp) -Kcos(t+cp) 

D1 =/ 0 -Ksin(t+cp)/ 
F(K,rp,t) -Kcos(t+rp) 

D2=/cos(t+rp) 0 / 
-sin(t+rp) F(Krp,t) 

Then we arrange the right of (3-11) (3-12) in the form of Fourier series. If the 

circuits are in the state periodic motion, K and cp have no secular term which 
tend to positive or negative infinity when t= oo. Hence the first terms of these 
which correspond to constant terms in usual Fourier series are zero. Then 

(3-13) 

(3-14) 

which do not contain time t and from which we can obtatin the values of K and 

rp. 

111-B Solution of forced oscillation having D.C. component generating by 

nonlinear element. 

In the case of rectifier, we must .take account of D.C. component in x. 
Then substitute 

x=Ko+ K cos(t+rp) 

in the circuit equation. The higher orders are the same as in ( 3-2). 

Now we must decide K In the circuit shown in Fig. 9 the nonlinear character­
istics are 

Fig. 9 

i=f(v) 

when the resistance of linear circuit is R, (which 

is not always the real part of the impedance.). 
ioR=Ko 

where io is the D.C. component of i . 

Hence 

[f{Ko+cos(t+rp)} Jn.r;=Ko (3-15) 

Then we can decide K, K 0, and cp from the three equations (3-13) (3-14) 

and (3-15). 

III-C Solution for the self-exiting oscillations 

When there are no forcing oscillations, the period is not known directly. So 

we can not normalize the time. However, using unkown constant angular fre-

c 6 ) 
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quency w, we transform the time t to T 

wf=T 

where w must be decided later from the following condition. The condition is 

that the solution describe circles on the psx-p"'+t planes. 

When the condition is fulfilled, the same argument as the above, is applicable. 
In spite of the new unknown w, the number of the unknown do not increase, be­

cause phase cp loses its meaning in the self-oscillation, and cp can be decided ar­

bitrarily. 

IV. Conclusion 

IV-A As explained in this papar, we can now obtain the ~olution of equation 

for the circuits which contain either only one nonlinear element or multiple ele­

ment acting as one and which have steady state periodic solution nearly equal 

to sinusoidal function. But two difficult problems have been left, one is how to 

make the equation for the circuit containing multiple nonlinear elements which 

is very necessary in electrical engineering. Another is how to decide if a wave 
form resembles sine wave close enough to be appliable to our method or not. 

But in many cases we can decide empirically from the type of the circuit. 

IV-B Stability 
In nonlinear problem, the stability of solution is very important. The usual 

method to know the stability is as follows. Substitute Ko+f cpo+77 for K and 

cp in (3-10) (3-11) and f, 77 are small quantities. When K 0 and <po are the solution 

of (3-12) (3-13), dK0/dt dcp0/dt vanish· Then neglecting the heigher orders of f, 77 

df/dt=P1(t)f+Q 1(t)r; 

d11/dt=P2(t)f + Q2(t)17 
(4-1) 

The convergence of solutions of these linear differential equations means 

stable solution. Though it is not always easy to solve ( 4-1), there are so many 

studies on this problem that I shall refrain from stating anything here. Mathie us 

or Hill's equations are examples of these with close relations. 

IV-C By the above study it has become possible to solve nonlinear circuit equ­

ation in the steady state much more generally than formerly. However to gene­

ralize the soution of phenomena of a nonlinear circuit seems almost impossible 

for the present. 
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